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Abstract
Sampled paths in Monte Carlo ray tracing can be arbitrarily close to each other due to its stochastic nature. Such clumped
samples in the path space tend to contribute little toward an accurate estimate of each pixel. Bidirectional light transport
methods make this issue further complicated since connecting paths of sampled subpaths can be arbitrarily clumped again. We
propose a matrix formulation of bidirectional light transport that enables stratification (and low-discrepancy sampling) in this
connection space. This stratification allows us to distribute computation evenly across contributing paths in the image, which is
not possible with standard bidirectional or Markov chain solutions. Each element in our matrix formulation represents a pair
of connected eye- and light-subpaths. By carefully reordering these elements, we build a 2D space where equally contributing
paths are distributed coherently. We devise an unbiased rendering algorithm that leverages this coherence to effectively sample
path space, consistently achieving a 2−3× speedup in radiometrically complex scenes compared to the state-of-the-art.

CCS Concepts
•Computing methodologies → Ray tracing;

1. Introduction

Realistic image synthesis relies on time-consuming physically-
accurate light transport simulations. Light transport in scenes
where only a small subset of emitters contribute energy to the
image sensor, and only after undergoing many scattering events,
are particularly challenging to simulate. Bidirectional path tracing
(BDPT) [VG94, LW93] aims to address inefficiencies of sampling
such complex paths by sampling subpaths between the eye and the
light, forming all possible pairs of complete light transport paths
by connecting vertices along the two subpaths. Each such connec-
tion can correspond to a separate sampling strategy, and the hope
of BDPT is to more thoroughly explore the space of all possi-
ble energy-carrying paths (called path space) by sampling them in
such varied ways. Metropolis Light Transport [VG97, KSKAC02]
(MLT) further aims to more thoroughly explore high-energy re-
gions in the path space by mutating “promising” paths (i.e., those
that contribute non-negligible energy to the sensor).

BDPT samples eye- and light-subpaths independently for each
pixel of the output image and does not exploit the benefits of strati-
fied sampling as the connection between independent subpath ver-
tices do not have any spatial relationship between them. This is
even more so true in large, realistic scenes with many lights, often
only a small subset of the light sources contribute to the final image.
Here, both BDPT and MLT can have poor performance: for BDPT,
significant time is wasted constructing subpath pairs that ultimately
contribute no energy to the image and it is possible that similar sub-
paths are sampled again within other pixels with low contributions.
While a combinatorial set of connections across an entire image can
lead to many more contributing paths, the quadratic cost of com-

puting it prevents its practical application. On the other hand, MLT-
based approaches exhibit non-uniform convergence over the image,
which is undesirable in practice since some light paths might not be
sampled at all even after significant computation times. This makes
it difficult for a user to assess the progress of an MLT simulation
and, namely, whether relevant transport contributions for an image
have all yet to be sampled.

We introduce Matrix BDPT (M-BDPT), a new path space sam-
pling strategy that allows us to stratify connected paths in bidirec-
tional approaches, while avoiding the quadratic cost of exhaustively
checking combinatorial connections of sampled subpaths. To do so,
we reorder potential subpath vertex connections into a set of trans-
port matrices in a manner that allows us to exploit coherence in the
path space. By introducing such coherence, we can perform strat-
ified sampling in a set of 2D connection subspaces, significantly
reducing the Monte Carlo variance. M-BDPT achieves a 2-to-3×
speedup for equal quality rendering compared to BDPT, and often
even higher speedups with more uniform convergence compared to
MLT, in radiometrically challenging scenes where only a few long-
chain paths contribute non-negligible energy to the image.

We present the following contributions:

– A matrix formulation of eye- and light-subpath connections that
allows us to exploit coherence in light transport,

– A stratification scheme tailored to connection space, based on a
spatial reordering of the eye- and light-subpath vertices, and

– A new global sampling technique that forms connections be-
tween large families of subpath vertices.
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a) BDPT b) Combinatorial BDPT [PBPP11] c) Matrix-BDPT (Ours)

Figure 1: We illustrate how subpath connections are formed across pixels for an example 4-vertex path and a single sampling technique (i.e.,
{s, t}= {1,1}) in: (a) standard BDPT, (b) Combinatorial BDPT [PBPP11], and (c) M-BDPT. BDPT combines subpath pairs independently
at each pixel, using the same connection across (s, t) strategies. Combinatorial BDPT performs a costly brute-force connection between
all pairs of subpath vertices across every light-subpath and every (pixel’s) eye-subpath. Our M-BDPT methods uses a specialized stratified
sampling to selectively connect eye- and light-subpaths across the image, only forming a number of connections proportional to the number
of eye-paths (i.e., the same sampling rate as standard BDPT). Here, we visualize only a single connection of the all-pairs connections that
BDPT makes, whereas Figure 2 shows the all-pairs connections for a single eye- and light-subpath for BDPT.

2. Related Work

Physically-based light transport is a mature research area, and we
highlight only the most pertinent related works below: approaches
that build atop BDPT to address issues concerning path formation
and connection, light-path reuse, and transport clustering. Quasi-
Monte Carlo methods [Kel95] generate samples which are not uni-
formly distributed to avoid sample clumping. These samples can
be generated using a low-discrepancy sequence such as the Hal-
ton sequence, the Sobol sequence, and the Faure sequence. As the
eye- and light-subpaths are sampled independently in BDPT, even
Quasi-Monte Carlo sampling for generating the individual subpaths
cannot achieve good spatial stratification in the path space.

Connecting paths. Pajot et al. [PBPP11] suggested a combinato-
rial connection scheme of all pairs of eye- and light-subpath ver-
tices across an entire image, as opposed to only connecting pairs
of vertices through a single pixel (as in traditional BDPT; see Fig-
ure 1). By optimizing connection computation on the GPU, they
improve upon traditional BDPT, but the complexity of considering
all such combinatorial connections can lead to scalability issues in
radiometrically complex scenes. We avoid this quadratic complex-
ity by subsampling connections, selecting only a sparse (and care-
fully reordered) subset of all possible connections using a stratified
low-discrepancy scheme.

As with our work, bidirectional lightcuts [WKB12] reduce the
number of bidirectional connections by prioritizing connections at
the endpoints of subpaths using a spatial data structure over path
vertices. By computing conservative throughput bounds at termi-
nal vertices, they choose which subpaths to connect. This approach
clearly demonstrates the potential benefits of selective bidirectional
connection, however the manner in which connections are cho-
sen results in a (controllably) biased estimator. We, instead, re-
order subpath connections and leverage the resulting coherence
with stratified sampling, resulting in a new unbiased estimator that
benefits from the advantages of connection subsampling.

Reusing paths. Bekaert et al. [BSH02] proposed combining paths
traced through nearby pixels. Each such path is designed to con-
tribute to surrounding pixels in a local neighborhood in a prov-
ably effective manner. This approach, while only originally pro-
posed for unidirectional path tracing techniques, yields an order of

magnitude improvement for indirect illumination in scenes of low-
to-moderate radiometric complexity. One could imagine extending
this local reuse policy to a bidirectional estimator, however here
correlation artifacts can become a serious concern.

Popov et al. [PRDD15] construct and cache importance func-
tions in connection space for certain path subsets, which they sam-
ple for nearby eye paths. An important drawback they discuss is
that the reuse of subpaths can introduce correlation. Inspired by
this work, we opt to avoid caching importance and instead build
a matrix formulation of subpath connection spaces that allows us
to benefit directly from stratified, low-discrepancy sampling. As
such, we do not rely on specialized MIS schemes. Most bidi-
rectional techniques that share/reuse subpaths components exhibit
some form of correlation, e.g., photon mapping and many light
techniques [Kel97, DKH∗14].

In independent work, Pantaleoni [Pan12] reformulated BDPT in
a matrix form and proposed a low-discrepancy sampling approach
based on reordered local throughput contributions. For each light
or eye vertex, a connection vertex is selected from their matrix us-
ing a k-nearest neighbors search according to throughput. This re-
ordering algorithm is GPU-accelerated and results in a 30% percent
reduction in variance. We instead introduce a reordered matrix for-
mulation that promotes path throughput coherence; this allows us
to perform stratified sampling in the path space, reducing variance
without necessitating an k-nearest neighbor searches.

Clustering paths and virtual light methods. Hašan et al. [HPB07]
framed VPL connection subsampling as a matrix completion prob-
lem, and they approximate the sum of VPLs contributions to pix-
els by selectively sampling rows and columns. They are also able
to take advantage of hardware-accelerated rasterization to populate
the matrix rows and columns and for many scenes, their matrix
is amenable to low rank approximation. Ou and Pellacini [OP11]
further extended Hašan et al.’s matrix approximation by clustering
similar surface samples in order to further reduce the rank of the
VPL transfer matrix: by operating at two scales, Ou and Pellacini
first capture the coarse structure of the matrix by globally clus-
tering lights and only afterwards do they selectively refine these
clusters to choose the most important light vertices to connect to
a given view sample. Our matrix formulation of BDPT is inspired
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by these aforementioned matrix formulations of the VPL connec-
tion problem. Our formulation can be thought as a generalization
of the existing formulations since VPL connection is a subset of
all the possible BDPT connections. Similar to VPL methods, we
reformulated BDPT to connect a single light-subpath with multi-
ple eye-subpaths. Instead of clustering VPLs, we use this matrix
formulation to achieve efficient stratification of BDPT paths.

3. Background

We review the path integral formulation for (surface-only) light
transport (Section 3.1) and the BDPT integral estimator (Sec-
tion 3.2), before presenting our M-BDPT estimator (Section 4).

3.1. Path Integral Formulation

We adopt the path integral formulation of light transport [Vea97] as
the basis for our matrix formulation. The observed radiance at pixel
j is expressed as the integral of the throughput f j of every possible
light transport path that connects points on a light source to points
on the jth pixel sensor element

I j =
∫

Ω

f j(x)dµ(x), (1)

where Ω is the set of all paths Ω = ∪∞k=1Ωk of all lengths k. A
path is expressed as vector x = [x0, . . . ,xk] of 3D surface points in
an environment, and µ is the area-product measure over this space
of paths dµ(x) = ∏

k
i=0 dA(xi) = dA(xi) · · · dA(xk). The throughput

of a path x is simply the geometry-weighted product of the bidirec-
tional scattering reflectance distribution functions (BSDFs) at each
interior path vertices {x1 · · ·xk−1}, the emission at the light source
vertex xk, the sensor importance at x0:

f j(x) =Le(xk→ xk−1)G(xk↔ xk−1)We(x1→ x0)

k−1

∏
i=1

fs(xi+1→ xi→ xi−1)G(xi↔ xi−1),
(2)

where Le is the emitted radiance (non-zero iff xk is on an emit-
ter), G the geometric term, fs the BSDF, and We the sensor impor-
tance.

3.2. Bidirectional Path Tracing

Figure 2: In BDPT, light paths are formed by connecting (dotted
lines) combinations of eye- and light-subpath (solid lines) vertices.

Bidirectional path tracing is a Monte Carlo integral estimator
of Equation 1 that draws path space samples according to a pdf
that is constructed “bidirectionally”: independent (and incomplete)
subpaths are traced through the scene from the eye and the light,
and these subpaths are constructed by sequentially importance sam-
pling local scattering and/or emission distribution functions. In or-
der to form a full path integration sample, the two independent eye-
and light-subpaths are connected together.

The traditional BDPT algorithm averages the contribution of
many full light transport path samples, each of which is constructed
by tracing a single length-s eye- and length-t light-subpath per
pixel. Full paths are formed by connecting all pairs of the sub-
path vertices (as opposed to simply connecting the subpath end-
points; see Figure 2). As such, a single eye- and light-subpath re-
sults in many full path space samples, and the process is repeated
(per pixel) in order to increase the total sampling rate.

An important detail of this BDPT algorithm lies in the manner
in which it forms and weighs subpath vertex connections. Specifi-
cally, consider a length-k = (s+ t +1) full transport path generated
from one of the all-pair eye- and light-subpath vertex connections
in Figure 2. There exists s + t + 2 different strategies capable of
sampling the length-k path. The traditional BDPT algorithm weighs
each contribution using multiple importance sampling (MIS) ac-
cording to these additional strategies [VG94, LW93], generally re-
ducing the variance of the estimator. The final MIS expression of
the traditional BDPT estimator

I j = E

[
∑
s≥0

∑
t≥0

w(xs,t)
f j(xs,t)

p(xs,t)

]
, (3)

where xs,t = [y0, . . . ,ys,zt , . . . ,z0] is a full light path through
pixel i, [y0, . . . ,ys] is the eye-subpath, [z0, . . . ,zt ] is the light-
subpath (Figure 2), p(xs,t) is the probability density function used
to generate the eye-subpath y and the light-subpath z, and w(xs,t)
is the MIS weight. The full BDPT algorithm averages many inde-
pendent evaluations of Equation 3 to obtain a result with a higher
sampling rate.

Problem Statement It is important to reiterate that BDPT only
samples and connects eye- and light-subpath vertices within a pixel,
and not across pixels. Even if we know that a particular set of sub-
paths within one pixel has zero or low contributions after connec-
tion, arbitrarily similar set of subpaths can be sampled again within
other pixels and causes low-contributing paths. We thus propose
a procedure for selecting candidate eye and light-subpath vertices
across the image. This allows us to stratify connections across the
image and avoids the same low-contributing paths to happen re-
peatedly across different pixels. To do so, we present a matrix refor-
mulation of BDPT that introduces coherence in potential through-
put connections by efficiently reordering subpath vertices across
an image. This coherence, in turn, allows us to perform stratified
sampling in the subpath connection space and reduce the variance
of the full bidirectional path samples compared to the traditional
BDPT (or the combinatorial BDPT) methods.
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4. Matrix Bidirectional Path Tracing

Unlike BDPT, which starts by generating an eye- and light-subpath
through a single pixel, we first generate N eye- and L light-subpaths
over the image. We treat fixed-length eye- and light-subpaths from
this set separately (up to the maximum possible length, computed
as the sum of the longest eye- and light-subpaths we sampled,
s < smax and t < tmax.), modeling their unshadowed throughput con-
nection in matrices Ms,t .

Matrix rows in Ms,t index a single length-s eye-subpath, and ma-
trix columns index a single length-t light-subpath, from the set of
subpaths we initially sampled (see Figure 3). Each matrix entry
stores the unshadowed full path throughput estimate which is triv-
ial to compute as it does not require any ray-tracing and can use in-
formation built up incrementally during subpath construction and
storage. The contents of the matrix are never directly used in the
rendering. When sampling matrix elements, we pick an eye- and
a light-subpath vertex and connect them together. Only after sam-
pling, we compute the full path throughput estimate for this connec-
tion. We discuss this matrix construction process in Section 4.1.

After populating every matrix Ms,t , for 0 ≤ s ≤ smax and 0 ≤
t ≤ tmax, we apply an efficient reordering scheme to introduce co-
herence in these throughput matrices (see Section 4.2) which, in
turn, allows us to sample full transport paths using stratified (or
low-discrepancy) samples (see Section 4.3).

4.1. Matrix Construction

Our M-BDPT algorithm treats eye- and light-subpaths, sampled
over the entire image, separately according to their lengths (or,
equivalently, their connection strategy (s, t)). Here, the contribu-
tion over the entire image from eye-subpaths of length-s and light-
subpaths of length-t can be expressed as a Monte Carlo estimate
with MIS as

Is,t
j = E

[
∑

(p,q)∈S
w
(
[yp

s ,z
q
t ]
) f j

(
[yp

s ,z
q
t ]
)

p
(
[yp

s ,z
q
t ]
) ] , (4)

where p and q index the length-s eye-subpaths yp
s = [yp

0 , · · · ,y
p
s ]

and length-t light-subpaths zq
t = [zq

t , · · · ,z
q
0], S is the set of all such

subpaths, and p
(
[yp

s ,z
q
t ]
)

is the sampling probability used to gen-
erate the full connected transport path.
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Figure 3: Let Ms,t denote the connection matrix for a given (s, t)
configuration (e.g., here (s, t) = (1,1)). Entries Mi, j

s,t correspond to
the connection throughput divided by its sampling probability.

It is important to distinguish between the quantities in Equa-
tions 3 and 4. In the traditional BDPT, we generate an eye- and
a light-subpath and consider all-pairs connections between them,
and compute their contribution towards an image pixel. Equation 3
evaluates the path integral of all possible path lengths (i.e., full
global illumination) using a single pair of an eye- and a light-
subpaths. In M-BDPT, we fix the path length and estimate the con-
tribution from different eye- and light-subpaths towards the entire
image. Equation 4 estimates the path integral for a single fixed path
length (e.g., just 1-bounce of indirect illumination) using a collec-
tion of pairs of an eye- and a light-subpath.

Using this formulation, instead of evaluating all the (s, t) pairs
for a couple of eye and light paths, we can quasi-randomly select
pairs (p,q) for each (s, t) pair. Hence, if the contribution of a light
path zq is zero, that is f j([yp

s ,z
q
t ]) = 0 ∀s, t,q, then this null contri-

bution is not evaluated (s+1)(t +1) times.

This formulation is equivalent to formulating the matrix of all
eye- and light-subpath pairs for a given (s, t) couple (see Figure 3).
We denote this matrix Ms,t as

Mp,q
s,t = w

(
[yp

s ,z
q
t ]
) f j(

[
yp

s ,z
q
t
]
)

p(
[
yp

s ,z
q
t
]
)
. (5)

For example, performing a combinatorial evaluation of BDPT,
as in [PBPP11], corresponds to

Is,t
j = 1T

N Ms,t 1M
/
(N×M) (6)

where 1N is a size-N vector filled with ones. The traditional
BDPT algorithm can also be expressed as summing the diagonal
elements of this matrix;

Is,t
j = ∑diag(Ms,t)

/
N. (7)

Here, we require a square matrix since there are an equal number
of eye- and light-subpaths.

Storage We only organize subpath connections into matrices as an
expositional tool; in practice, we never explicitly form nor operate
on any matrices. The matrices provide a concrete two-dimensional
representation of the connection between eye- and light-subpaths.
We store a set of eye- and light-subpaths and the corresponding
indices for reordering the matrix. While these matrices are dense,
we only sparsely subsample them and do not evaluate an entire
matrix.

4.2. Matrix Subpath Reordering

In order to benefit from the relative stratification of a low-
discrepancy sequence, we need to reorder our matrix to ensure lo-
cal coherency. The use of a low-discrepancy sequence is beneficial
when the integrand is continuous and slowly varying. However,
without reordering, the connection matrix has purely random in-
dexing (see Figure 4). To provide a better continuity in the matrix,
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Figure 4: Veach door scene rendered using technique (s, t) = (1,3). We visualize the matrix structure that arises through unordered and
ordered approaches. Ordered approach introduces coherence by accounting for spatial proximity between eye- and light-subpaths (inset).

we reorder the rows and columns using a spatial reordering based
on the distance between vertices. We compute the L2 norm for each
eye- and light-subpath vertices within each submatrix (s, t). For an
eye-subpath y, the distance metric d(y) is

d(y) =
s−1

∑
k=0
||yk−yk+1||2 and d(z) =

t−1

∑
k=0
||zk− zk+1||2,

where d(z) is the distance metric for a light-subpath z. Note that
this reordering does not ensure that vertices (from different sub-
paths) close to one another will correspond to close indices in the
matrix. It provides however, a distinction between lengthy paths
and short paths. The connection throughput then should be rela-
tively coherent between indices. We sort the eye- and light-subpath
vertices independently within each submatrix (s, t) based on the
above metric.

We experienced alternative metrics such as an Hilbert curve cod-
ing distance (evaluating the position of the last vertex of a path on
the 1D Hilbert curve). We found no major difference in variance re-
duction using this metric. However the cost of evaluation was much
higher and thus we opted for the faster metric. Note that while our
matrix formulation is similar to the one of Pantaleoni [Pan12], our
metric is much easier to implement and faster to evaluate. Pantale-
oni used the throughput of close vertices to reorder the matrix. This
technique requires to evaluate a k-nearest search for each vertex.

Paths with similar distances, according to our metric, tend to
have similar throughputs, given their geometric configuration. The
main idea is to place similar paths in neighboring matrix elements
and to cluster them together with a similar geometric throughput
(i.e., the product of all subpath vertex G terms); we only consider
spatial distances, and not orientation distances. This approximates
the geometric throughput. Our distance metric is effective in higher
dimensional spaces, as we consider distances from the first sub-
path vertex to the current subpath vertex (endpoint). As a result, we
achieve good spatial stratification in the connection space. For Mor-
ton or Hilbert codes, the subpath vertex endpoints are considered
alone when representing them in this higher dimensional space.

4.3. Sampling the Matrix Entries

The next step is to build the indices (p,q) from a set of eye- and
light-subpaths and select the list of pairs S. We select entries in the
matrix using a two dimensional low-discrepancy sampler. Given
that we want to evaluate K entries in the matrix, we generate K
two-dimensional points ε∈ [0,1]2, scale them using the matrix size
and use the integer part as the index (p,q) = (bNε1c,bLε2c).

Matrix Structure Figure 4 visualizes the matrix structure of two
different approaches: unordered and ordered. We render the door
scene using the sampling strategy (s, t) = (1,3). Unordered ap-
proach connects each eye-subpath vertex to all light-subpath ver-
tices and computes their contribution for the corresponding pixel
of the output image as shown in Figure 4. In this example, there are
1,728 eye- and 1,728 light-subpath vertices for the given strategy
technique. Ordered approach reorders eye- and light-subpath ver-
tices and connects them, and computes their contribution similar
to the unordered approach. We can observe that the matrix image
using the ordered version is a lot smoother when compared to the
unordered approach. This could be attributed to the fact that we re-
order subpaths; thus, achieving spatial coherence of the resulting
transport matrix.

In case of the traditional BDPT algorithm, we select diagonal
entries of the unordered matrix and connect the corresponding eye-
and light-subpath vertex using Equation 7. This results in a very
sparse matrix since the diagonal entries alone are considered. It is
computationally wasteful since our visualization clearly shows that
there are many contributing paths outside the diagonal entries. In
contrast, the low-discrepancy sampling in M-BDPT helps us pick
samples that are spatially coherent since the eye- and light-subpath
vertices are ordered in the matrix; thereby, exploiting the coherence
of the light transport field.

Our matrix formulation decouples vertex connections from the
usual subpath pairs of classical BDPT formulation in a much more
general form. This allows us to evaluate m connections per vertex,
each with a connection to a different light subpath. Our formulation
can be thought of as a stochastic sum (including additional visibil-
ity connections) over the entries of the M matrix, or as an integral
over path connection space. Stratified sampling can lead to sig-
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nificant variance reduction in these integral estimates. Contrarily,
BDPT evaluates the path integral by independently connecting gen-
erated eye- and light-subpaths. Since the eye- and light-subpaths
are sampled independently, the endpoints of the two subpaths do
not have any spatial relationship and cannot achieve good spatial
stratification in the connection space. Stratified or low-discrepancy
sampling achieves superior variance reduction when the integrand
is smooth with respect to its parameterization. The unordered con-
nection matrix is not a proper space for such stratified sampling
techniques as it lacks coherence or regularity. The manner in which
we reorder the matrix rows and columns induces a new parameter-
ization of the connection space that is more suitable for the appli-
cation of stratified or low-discrepancy sampling.

5. Implementation

We implement our M-BDPT algorithm atop the PBRT v3 frame-
work [PJH16] and we set N and L equal to the number of im-
age pixels. We also rendered our scenes using PBRT’s BDPT and
MLT implementations, the latter of which is based on multiplexed
MLT [HKD14]. Ground truth images are rendered using BDPT,
usually with multi-day rendering times.

We parallelize M-BDPT using a different, less efficient strategy
compared to standard BDPT parallelization strategies. BDPT sam-
ples eye- and light-subpaths independently for each pixel of the
output image. The output image is divided into tiles and each one of
these tiles is processed by a separate core. M-BDPT generates mul-
tiple eye- and multiple light-subpaths for each iteration per pixel,
so the tiling mechanism would not work in this case. There are
three distinct stages in our algorithm: construction, reordering, and
sampling.

We use Intel’s OpenMP runtime libraries to parallelize each
module separately. We first generate subpaths as described above.
We next reorder the subpaths and then sample the matrix entries
using a Latin hypercube sampling technique to compute the pixel
contribution. We use the Standard Template Library (STL) sorting
algorithm to sort the eye- and light-subpath vertices based on our
distance metric. We constitute matrices depending on the sampling
strategy (s, t) and each matrix computes radiance estimate inde-
pendently. Thus, each matrix is handled by a separate core similar
to the tiling mechanism used in the BDPT algorithm. In this sec-
tion, we detail our M-BDPT algorithm. We highlight its behavior,
in pseudo code, in Algorithm 1.

We use all eye-subpaths in the matrix, so that we consider
the contribution towards each pixel for each corresponding (s, t)-
connection. We do use reordered eye-subpaths in our algorithm: the
motivation for this is that similar eye-subpaths will lead to similar
importance transport on the light-subpaths. Without eye-subpath
reordering, connected light-subpaths will not be stratified across
different eye-subpaths, which can lead to additional correlation.

5.1. Selective Reordering

We implemented a brute-force sampling using our M-BDPT algo-
rithm. In this approach, we connect each eye-subpath vertex to all

Algorithm 1 Matrix Bidirectional Path Tracing
1: // Matrix formulation
2: Generate eye- and light-subpaths
3: Arrange the subpaths in terms of matrices
4:
5: // Reorder the subpaths
6: Compute L2 norm for each eye- and light-subpath vertex
7: for t = 1 to k do
8: for s = 0 to k do
9: // For each submatrix (s, t)

10: Reorder the subpaths based on their L2 norm
11:
12: // Sample the matrix entries
13: for t = 1 to k do
14: for s = 0 to k do
15: // For each submatrix (s, t)
16: for p = 0 to N do
17: // For each eye-subpath
18: Latin hypercube sample m light-subpaths
19: Compute the pixel contribution by connecting the
20: eye-subpath to m light-subpath vertices

light-subpath vertices within the submatrix (s, t). This is a combi-
natorial BDPT since it performs every connection for a given eye-
subpath vertex. We use this as a baseline to illustrate the potential
gains of our approach. For implicit path sampling techniques (path
tracing without next-event estimation and light tracing), reordering
does not provide any benefit as shown in Figure 5 (path tracing has
been omitted from the figure for brevity). In such cases, we use
the traditional BDPT algorithm’s approach by picking the diagonal
entries of the matrix using Equation 7. We choose either BDPT or
M-BDPT approach depending on the sampling strategy technique.

6. Results

Figure 6 shows the split screen results for our modified Veach’s
door scene, where we add adjacent rooms with non-contributing
(w.r.t. our view) emitters. We compare M-BDPT to BDPT for the
same pixel sampling rate. BDPT results are noisy, as it cannot ef-
ficiently find contributing paths in this scene. In BDPT, we con-
nect all vertices of eye- and light-subpaths even if they are not suc-
cessful. This example uses a modified door scene with unreachable
lights. Since we do not try to connect every vertex of a path in M-
BDPT, the probability of connecting a reachable source is higher
for a set of all eye-subpath vertices.

Figure 7 compares root mean square error (RMSE) images of
M-BDPT and MLT in the door scene. Here, we compare BDPT,
M-BDPT, and MLT at equal rendering time. MLT is slow to con-
verge as its mutation strategies cannot capture light transport paths
that contribute to the image, and it often spends significant time
exploring low-contribution regions of the path-space integrand. On
the other hand, M-BDPT is able to find more contributing paths as
its connections vary across (s, t) strategies. We highlight a small
distinction here in terms of comparisons in Figure 7: all the im-
ages used are for equal time comparisons, except the left most
M-BDPT image. We reemphasize that M-BDPT converges faster
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Figure 5: Cornell box scene rendered with BDPT and M-BDPT using different path sampling techniques. Top row: contributions from
interior connections (s 6= 0, t 6= 1). Bottow row: contributions from light tracing (t = 1). M-BDPT does not perform better than BDPT for
light tracing but it significantly outperforms BDPT otherwise.

than MLT from this time point onwards. We observe a similar per-
formance/accuracy relationship for other scenes, discussed below.
Figures 7 and 10 show two datapoints for M-BDPT in order to high-
light the progression of convergence rate in comparison with MLT.

We modeled a stacked house scene (Figure 8) with eleven build-
ings, each of which has three emitters. While such a configuration
is typical, it is also troublesome in practice since only a few light
sources contribute to the image. In order to reduce the inefficien-
cies of existing rendering algorithms, artists often carefully remove
invisible light sources using a manual, trial-and-error methodology.
Without any such manual pre-process, we rendered a view into one
of the rooms using BDPT and M-BDPT, as depicted in Figure 9.
This room is a part of the building shown in Figure 8. Figure 10
also shows equal-time comparisons for the living room scene. Our
algorithm works well in scenes with both diffuse and glossy sur-
faces.

7. Discussions and Limitations

Our matrix formulation separately handles subpaths with differ-
ent lengths, with submatrices for each length. This separation
does not exist in the single matrix formulation such as light-
cuts [HPB07, OP11]. While our method can alternatively utilize a
single matrix for all path lengths, we empirically found no gain
in doing so. Instead, using submatrices, we can allocate the same
number of samples per submatrix, which removes a part of the
noise caused by stochastic sampling of subpath length. This stratifi-
cation over subpath lengths is beneficial when indirect illumination
dominates and subpaths of “sufficient” length are hard to generate
stochastically.

Figure 11 shows the results for Veach’s egg scene. We compare
M-BDPT to BDPT and MLT using equal sampling rates and equal
time comparison renderings. In this case, MLT does not outper-
form BDPT, which could be attributed to the additional overhead
of finding suitable connections for this scene. M-BDPT is on par

with BDPT, even though connections between subpaths succeed
often with BDPT in this scene.

We note that our implementation of M-BDPT is not fully op-
timized as a part of our implementation is not suited for efficient
multithreading. Since we generate subpaths once for each iteration
per pixel, we need to reuse a set of light-subpaths while connecting
them with eye-subpaths. This reuse prevents us from using a tile-
based acceleration, since light-subpaths are not associated with a
subset of pixels.

Figure 12 shows the equal time comparison results for the bath-
room scene rendered with BDPT and M-BDPT. In this experiment,
M-BDPT reuses light-subpaths by connecting one eye-subpath ver-
tex to m light-subpath vertices where m= 2,4,8. This results in cor-
relation artefacts as seen from the increasing RMSE errors in Fig-
ure 12. We do not perform a full connection for the m light-subpaths
to the eye-subpath but only pick some of them. In such a case, it
can be detrimental if some paths have multiple vertices with a high
contribution. We have m long light-subpaths with equal contribu-
tion from all vertices but the contribution varies a lot between two
different light-subpaths. If we use M-BDPT with m > 1 as shown
in Figure 12, we will increase variance compared to BDPT since
we are not reusing all the vertices of a given light-subpath.

8. Conclusions

We introduced a novel bidirectional light transport sampling
method that reorders eye- and light-subpaths using a new matrix
formulation. Our formulation introduces and exploits coherence
in the transport connection matrix. By reordering subpaths, we
can use stratified sampling in connection space, leveraging spatial
coherence between subpath vertices. We integrated our sampling
method into a new unbiased rendering algorithm, matrix bidirec-
tional path tracing, which achieves significant variance reduction
compared to bidirectional path tracing and metropolis light trans-
port algorithms.
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Figure 6: Door scene rendered using BDPT and M-BDPT. There is an emitter in the adjacent room and ten other non-contributing emitters.
M-BDPT is more efficient than BDPT at forming meaningful connections between eye- and light-subpaths, at the same pixel sampling rate.
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Figure 7: RMSE errors are shown in false color for the door scene. Convergence plot on the right shows RMSE versus rendering time for
BDPT, M-BDPT, and MLT. The three false color images for M-BDPT and MLT are represented by the vertical lines on the convergence plot.
M-BDPT converges faster than MLT as we increase the number of samples.

Figure 8: Front and top views of the stacked house scene. The cam-
era overlooks the house as indicated in the house.

There are several interesting research avenues that follow our
approach. One could imagine using our matrix formulation to seed
MCMC sampling approaches. MCMC techniques could also bene-

fit from spatial coherence in the resulting connection transport ma-
trix, proposing mutations that could seek out new sets of eye- and
light-subpath connections that are otherwise not explored by exist-
ing mutations.
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Figure 9: Comparisons of BDPT and M-BDPT. Both rooms are parts of the building of the stacked house scene.
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Figure 10: RMSE errors shown in false color. The M-BDPT and MLT images can be seen on the convergence plot (right) with the corre-
sponding vertical lines. M-BDPT gives better results when compared to MLT and BDPT for a combination of glossy and diffuse surfaces.
M-BDPT converges faster than MLT as well.
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Figure 11: Veach egg scene rendered using BDPT, M-BDPT, and MLT. The convergence plot for all of them is shown on the right. MLT does
not perform better than BDPT for this simple scene. M-BDPT achieves a comparable result to the others, despite its overhead of reordering
subpath vertices.
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Figure 12: Bathroom scene rendered in 3 minutes with BDPT and M-BDPT. M-BDPT connects one eye-subpath vertex to m light-subpath
vertices. As m increases, M-BDPT reuses more and more light-subpath vertices resulting in increased sample correlation.
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