
Deep Partitioned Shadow Volumes

Using Stackless and Hybrid Traversals

F. Mora1, J. Gerhards1, L. Aveneau2, and D. Ghazanfarpour1

1University of Limoges, 2University of Poitiers - XLIM-CNRS, France
{ frederic.mora, julien.gerhards, lilian.aveneau, djamchid.ghazanfarpour}@xlim.fr

Abstract

Computing accurate hard shadows is a difficult problem in interactive rendering. Previous methods rely either on Shadow Maps

or Shadow Volumes. Recently Partitioned Shadow Volumes (PSV) has been introduced. It revisits the old Shadow Volumes Binary

Tree Space Partitioning algorithm, leading to a practicable and efficient technique. In this article, we analyze the PSV query

algorithm and identify two main drawbacks: First, it uses a stack which is not GPU friendly; its size must be small enough

to reduce the register pressure, but large enough to avoid stack overflow. Second, PSV struggles with configurations involving

significant depth complexity, especially for lit points. We solve these problems by adding a depth information to the PSV data

structure, and by designing a stackless query. In addition, we show how to combine the former PSV query with our stackless

solution, leading to a hybrid technique taking advantage of both. This eliminates any risk of stack overflow, and our experiments

demonstrate that these improvements accelerate the rendering time up to a factor of 3.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Real-time and pixel-accurate shadows remain a challenging prob-
lem in computer graphics. Shadows are important for realistic ren-
dering because they unveil spatial relationship between objects.
Many algorithms can compute accurate shadows, but few of them
can do it in real-time. Currently, most of the real-time shadow algo-
rithms rely on shadow mapping or shadow volumes. While Shadow
Maps are not pixel-accurate, they are widely used in practice be-
cause they are fast. Shadow Volumes are less efficient but they are
still investigated because they are pixel-accurate. A huge amount of
work tried to improve the shadow maps accuracy and the shadow
volumes efficiency. However, both techniques still have drawbacks,
which leads to search for different solutions.
In this respect, Gerhards et al. have recently proposed a
novel approach, the Partitioned Shadow Volumes (PSV) algo-
rithm [GMAG15]. This method relies on an old idea [CF89] which
was completely different from the original Shadow Volumes algo-
rithm proposed by Crow [Cro77]. Thanks to a specific partition-
ing strategy, PSV have many advantages and allow real-time and
pixel-accurate shadows. This makes the algorithm an interesting
option which has been little explored, contrary to shadow mapping
or shadow volumes.
Thus, in this article, we study the PSV technique to find issues that
could still hinder practical applications. We identify two main prob-
lems. Firstly, PSV can struggle with some specific geometric con-

figurations. Secondly, the PSV implementation uses a stack whose
size need to be carefully tuned to garantee a correct output. We
propose three solutions to improve both robustness and efficiency.
More precisely, our contributions are:

• We add a depth constraint to improve the PSV stability, whatever
the geometric configuration.

• We propose a new stackless algorithm to eliminate all the draw-
backs related to the former stack-based algorithm.

• We propose a hybrid algorithm (a short stack-based query com-
bined to a stackless one) which benefits from both techniques.

We provide an extensive performance evaluation to highlight the
algorithms behavior and their efficiency.
This paper is organized as follows: Section 2 recalls previous works
related to real-time shadows; Section 3 briefly analyses the PSV
algorithm and presents our contributions; Section 4 reports all our
experiments and comparisons to the former PSV algorithm as well
as a z-pass implementation of Shadow Volumes.

2. Related works

For a comprehensive survey of real-time shadows, we refer the
reader to the book by Eisemann et al. [ESAW11].

Shadow mapping [Wil78] is a mature technique which has be-
come a standard for real-time shadows. Shadow maps are very

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/sre.20161212

Eurographics Symposium on Rendering - Experimental Ideas & Implementations (2016)
E. Eisemann and E. Fiume (Editors)

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sre.20161212

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

fast but they are not without drawback. They are not pixel accu-
rate and the shadow quality strongly depends on the texture res-
olution. Aliasing or jagged shadows appear if the shadow map
resolution does not match the eye-space samples. A depth bias
has te be tuned to avoid self-shadowing. At grazing angles, it is
barely impossible to avoid artefact without dramatically increasing
the map resolution. Many works have focused on these problems
and different solutions were proposed such as adaptive shadow
maps [FFBG01] or irregular z-buffer [JLBM05, WHL15]. But
adaptative or irregular structures are less GPU friendly. Cascaded
shadow maps [Eng06, ZSXL06] are often preferred because they
rely on traditional shadow maps. However several shadow maps
at different resolutions have to be rendered. In practice, a shadow
map often exceeds the screen resolution to guarantee shadow qual-
ity. But the resolution increases year after year, and 4K monitors
are already available as high-end products. Today, 4096×4096 is a
very common map resolution and 8192×8192 is not exceptional.
The memory cost becomes a concern. Scandolo et al. [SBE16] are
interested in compressing shadow maps because some situations
already exceed the available memory on commodity GPUs. More-
over, six shadow maps are usually required to support one omni-
directional light source.

Shadow volumes were introduced by Crow [Cro77]. Contrary
to shadow maps, it is an object based and pixel-accurate technique.
Heidmann [Hei91] has provided the first hardware implementation,
known as Z-PASS. A shadow volume appoints the region of space
hidden from the light by an object. Silhouette edges are extruded
from the light to create quads bounding the shadow volumes. The
shadow quads are rasterized from the camera to count if image
points are covered by more front-facing quads than back-facing
ones. This is like comparing how many times a ray cast from the
camera enters and exits a shadow volume, until it reaches an im-
age point. Shadow volumes support directional as well as omni-
directional light sources without any modification. They also have
well-known drawbacks. The mesh connectivity is required to com-
pute silhouette edges. And silhouette computation is not straight-
forward using general meshes [AW04]. The "eye-in-shadow" posi-
tion is a well known issue of the Z-PASS implementation, because
the counters need to be initialized to the number of shadow vol-
umes containing the camera. A solution is to count shadow quads
from a point at infinity instead of from the camera [BS99, Car00].
But, this process, known as Z-FAIL, is usually slighty less efficient
than Z-PASS. Shadow volumes do not scale well with the geomet-
ric complexity, because more and more shadow quads are created
and rasterized. Useless shadow casters [LWGM04,SWK08] can be
culled to limit this problem to a certain extent. More importantly,
according to the camera and light positions, large shadow quads
may be rasterized, saturating the fill-rate. This leads to significant
time variations, which are not acceptable for real-time applications,
unless the geometric complexity is restricted. This explains why
shadow mapping is still widely prefered to shadow volumes in
game engines, where the computation stability is essential. How-
ever shadow volumes are still investigated because they are pixel-
accurate.
For example, Sintorn et al. [SOA11, SKOA14] have proposed an-
other approach and implementation. They compute per triangle
shadow volumes eliminating the need for connectivity. Instead of

rasterizing shadow quads, each shadow volume traverses a 3D hi-
erarchical cluster built over image points to determine their visibil-
ity from the light. The method consistently outperforms a shadow
volume hardware implementation.

In 1989, Chin and Feiner [CF89] have proposed the Shadow Vol-
umes Binary Space Partitioning (SVBSP) tree. This technique is
completely different from the former approach provided by Crow.
It builds a BSP tree over the shadow volumes cast by each triangle.
Thus the silhouette computation is not needed. A shadow volume is
considered as an open and oriented convex bounded by four planes.
Each shadow volume is filtered down and merged in a BSP tree us-
ing polyhedral set operations [NAT90]. Next points are located in
the SVBSP tree to find if they are inside a shadow volume. An
extension to support dynamic environments [CS95] of moderate
complexity was also proposed. The SVBSP algorithm has several
advantages: Like the original shadow volumes, it is pixel-accurate
and supports naturally omni-directionnal light sources. In addition,
mesh connectivity is not needed and the "eye-in-shadow" position
is not a problem. Nevertheless, the SVBSP algorithm was left aside
because of a major limitation: It lacks robustness and efficiency be-
cause it uses polygon clipping operations, which are prone to nu-
merical inaccuracy. Since the number of clipping operations is not
predictable, the memory footprint of the tree can not be predicted
either.
Recently, Gerhards et al. [GMAG15] introduced the Partitioned
Shadow Volumes. This methods inherits all the advantages of the
SVBSP algorithm but not the disadvantages. PSV uses a different
partitioning strategy and replace the BSP tree by a Ternary Ob-
ject Partitioning (TOP) tree. Its construction only requires to com-
pute the triangle positions with respect to a shadow volume plane,
without any clipping. This eliminates the robustness issues, and im-
proves memory efficiency. A TOP tree has a predictable and fixed
memory footprint in O(n), for n triangles. It can be built in par-
allel in O(nlog(n)), and locating a point in the ternary structure
costs O(log(n)). Thanks to these algorithmic properties, PSV al-
lows real-time shadows.

In spite of many works in the literature, Shadow Mapping and
Shadow Volumes retain several drawbacks. Innovative approach
such as PSV are interesting because they offer new options. How-
ever PSV have been little explored. Thus, in the next section, we
analyse this technique and identify two issues that may limit prac-
tical applications.

3. Analysis and solutions

This section starts with a brief overview of the PSV. Next, we focus
on the TOP tree query. As noticed by the authors [GMAG15], this is
the most computational part of the technique with models up to one
million triangles. We deepen our analysis to explain why PSV can
struggle with lit points in some situations. We also recall the prob-
lem related to the stack used in the original implementation. Then,
the section presents our three solutions to solve these problems. At
first, we add to the TOP tree nodes a depth value allowing to accel-
erate the most computational visibility queries. Next we introduce
a new stackless algorithm to query a TOP tree. At last, we define a
hybrid query, as the combination between a short stack query and a
stackless query, to take advantage of both solutions.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

74

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

3.1. PSV overview

The PSV method relies on the TOP tree which stores the visibil-
ity information from a light source. For each frame, PSV uses two
steps. The first one builds the TOP tree over the shadow volumes
cast by each triangle from the light. The TOP tree is stored in a
buffer on the GPU. The second step queries the TOP tree to com-
pute the shadows (see Figure 1). The technique runs completely on
the GPU: the first step is done in a Compute Shader, the second one
in a Fragment Shader. A TOP tree node contains a plane and three

!
"
#
$%

&
%
$

'
(
)
*
&
+
'
$

!"#$%#&'()*+,(

(

-.,(*/++(0.&)*/"01.&(#&(2(

3.4,"*+(562%+/(

(

562%#&'()*+,(

(

7.#&*($.021.&(#&(*6+(-87(*/++(

")#&'(2(9/2'4+&*(562%+/(

:.","*(;($#'6*+%(./(#&()62%.<=(

-87(-/++(

-/#2&'$+)().",(

>(

?#'6*(,.)#1.&(

@42'+(,.#&*)(

:ABC"D+/=(

Figure 1: Per frame overview of the PSV method: In a Compute

Shader, a TOP tree is built over the shadow volumes cast by the

triangles. Next a Fragment Shader is applied to filter down each

image point in the TOP tree and to find if it is visible from the light.

children:

• A positive child containing all the geometry completely in the
positive side of its plane.

• A negative child containing all the geometry completely in the
negative side of its plane.

• An intersection child containing all the geometry intersected by
its plane.

Shadow volume representation: Each shadow volume is repre-
sented by a TOP subtree as illustrated by Figure 2. The negative leaf
is the volume in shadow, while the positive leaves are outside the
shadow. Since the intersection leaves contain geometry that overlap
the positive and negative half-space of a plane, this geometry may
intersect the shadow volume boundaries.

!"
#"

#"

#"

#" $"

!"

!"

!"

%&'"()*+,-".,/01' """""""""""""""""""" """""""""""""""""""""""2"3%4"56''"&,+'("

Figure 2: Left: a shadow volume seen from the light. Right: the

corresponding TOP subtree. The three first nodes contain a shadow

plane defined by the light position and one triangle edge. The fourth

node contains the supporting plane of the triangle.

Building step: The TOP tree is built in a Compute Shader. Each
instance filters down a triangle from the TOP tree root, initially
empty. At each node, the triangle descends in one of the 3 children

according to the triangle position with respect to the node plane.
When a leaf is reached, it is replaced by the subtree representing
the shadow volume cast by the triangle.

Algorithm 1 PSV query: It locates a point in a TOP tree to find if
it is inside at least one shadow volume.

1: PSV_query(Node root, Point p)
2: NodeStack stack

3: Node n = root

4: while n is not null do

5: int location← sign(n.plane, p)
6: // if the intersection child needs to be visited, it is

7: // pushed on the stack to be processed later

8: if n.inter is not a leaf AND isInsideWedge(n.inter, p) then

9: push(stack, n.inter)
10: end if

11: if location > 0 then

12: if n.pos is not a leaf then

13: n = n.pos // continue in the positive child

14: else

15: // n.pos is a leaf, pop the stack to search for occlusion

16: n = stack is empty ? null : pop(stack)
17: end if

18: else

19: if n.neg is not a leaf then

20: n = n.neg // continue in the negative child

21: else

22: return 0 // early termination case: p is in shadow

23: end if

24: end if

25: end while

26: return 1 // the stack is empty, p is outside any shadow volume

Shading step: Once the TOP tree is built, the shadows are com-
puted using a Fragment Shader. Each image point is located in the
TOP tree to find if it is inside a shadow volume. For the clarity
of the presentation, Algorithm 1 recalls this query without detail-
ing the so called "wedge optimization" proposed by Gerhards et

al. [GMAG15]. While we still use it, we will not make any refer-
ence to this optimization since our work does not depend on it.
Starting from the root node, the query continues in the positive or
negative child (line 5) according to the point position with respect
to the plane. However, since the intersection child overlaps, it may
be pushed on a stack (lines 8-9) to be processed later. As soon as
the point reaches a negative leaf (line 22), it is in shadow. But if the
point reaches a positive leaf (line 16), the query keeps searching for
an occlusion among the intersection nodes remaining on the stack.

3.2. PSV analysis

We now focus on the TOP tree query used in the shading step.
Algorithm 1 highlights a first problem: As soon as the point is
found inside a shadow volume, the query ends (line 22). This
is an early termination case. But if the point is not inside any
shadow volumes, it is only when the stack has been exhausted
that the point can be claimed visible from the light (line 26). As a
consequence, the query is better at finding points in shadow than
lit points. To visualize this behavior, we have calculated heat maps
illustrating the number of visited nodes per query (i.e. per image
points). These heat maps are shown in the PSV column in Figure 6.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

75

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Clearly, lit points are much more expensive than points in shadow.
And surprisingly, the most expensive ones are often closer to the
light than any other geometry. Obviously, those points can not be
occluded. In section 3.3, we propose to limit this behavior by using
a depth value per node: the minimum distance of a subtree to the
light source.
A second problem is related to the PSV query implementation,
especially on a parallel architecture. As noticed by Gerhards et al.,
it uses a stack whose size is problematic. It must be large enough
to avoid a stack overflow, but as small as possible to alleviate the
register pressure. In section 3.4, we define a stackless algorithm
by connecting the TOP tree nodes to their common intersection
node ancestor. Then, in section 3.5 we explain why it is worth
combining both stackless and stack-based queries.

3.3. Adding depth

Among the two problems emphasized by Section 3.2, the first one
concerns the computational cost of lit point queries. To prove that a
point is in shadow, it is sufficient to find at least one shadow volume
containing the point. But to show that the point is lit, the query
has to determine that it is outside all the shadow volumes. Such
a behavior is well-known in logic programming: to demonstrate
a theorem consists in invalidating all the negation cases. Then a
theorem failure is answered faster than the theorem proof. In such
a case, a solution is the constraint logic programming: it consists
in adding some constraints to avoid exploring all the possible cases
[JL87].

In the same spirit, we propose to add a depth constraint on each
nodes to avoid visiting subtrees which only contain geometry fur-
ther from the light than the queried point. Figure 3 explains why
the PSV query struggles with lit points, especially those in front
of many triangles with respect to the light source. In this case, a
depth information is missing which would allow an early detection
that no occlusion can be found in a subtree. Hence, we add to each
PSV node its depth from the light: Since a TOP tree is a partition of
the shadow volumes cast by a set of triangles, its depth is defined
as the shortest distance between those triangles and the light. This
requires a minor modification to the TOP tree construction as de-
tailed in Algorithm 2. Thanks to this depth information, it becomes
possible to compare the point distance to a subtree distance. If the
point distance is smaller than the subtree distance, it is outside all
the shadow volumes contained in the subtree. For example, on Fig-
ure 3, point p would be found lighted from the start, at the root
node.

Notice that this modification is compatible with all our query
algorithms presented in this paper (stack-based, stackless and hy-
brid). This optimization is included in Algorithm 3 (blue lines)
which presents our stackless query.

3.4. Stackless query

To our best knowledge, no stackless algorithm for TOP tree exists
so far. In a ray-tracing context, stackless ray traversals were pro-
posed for binary data structures. Indeed, traditional stack-based ray
traversals require a stack for each ray with an increase in memory,

!"

#"

$"

%"

&"

'"

!("

!!"

!#"
)"

*"

+"

PUSH)"

PUSH !("

POP)"

POP !("

LIGHTED

!"

#"
$"

)"

*"

+"

!("

!!"
!#"

%" &"'"

p

Figure 3: Left: A 2D example with line segments instead of trian-

gles. Obviously, the point p can not be shadowed since it is closer to

the light than any other occluders. Right: a TOP tree correspond-

ing to this geometric configuration, and the path followed by the

PSV query to compute the visibility of p. The data structure does

not contain any depth information from the light. Thus the query

can not quickly detect that p is in front of all the occluders. In this

example, the tree is entirely scanned to determine that p is lighted.

Algorithm 2 Modified TOP tree construction. It enables depth test
and stackless query and it is still compatible with a stack-based
query. The first change (in green) adds a depth value to each node,
i.e. the shortest distance from the light to the geometry in the sub-
tree (see 3.3). The second change (in blue) allows the TOP tree to
support our stackless query (see 3.4).

1: TOP_mergeSV(Node root, Triangle t, Light l)
2: Node node = root

3: // [depth] shortest distance from the light to the triangle

4: float d = minDistance(t, l)
5: // [stackless] null is a sentinel value

6: Node ancestor_parent = null

7: while node is not a leaf do

8: // [depth] t belongs to the subtree whose root is node. The subtree

9: // distance is updated if the triangle distance is smaller.

10: node.distance = min(node.distance, d)
11: float location = position(node.plane, t)
12: if location > 0 then

13: node = node.pos

14: else if location < 0 then

15: node = node.neg

16: else

17: // [stackless] t goes in an intersection subtree.

18: // We set "node" as the parent node of this subtree.

19: ancestor_parent = node

20: node = node.inter

21: end if

22: end while

23: Node sv = initSubtreeRepresentation(t, l, ancestor_parent)

24: replaceLeafBySubtree(node, sv)

especially on parallel architectures. For sparse trees, parent pointers
are required in each node to ascend in the trees [HDW∗11]. An ar-

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

76

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

!"

#"

$"

%"

&"

'"

("

)"

*"

LIGHTED

!"

"

#"

"

$"

"

#"

#"

#"

+"

&"

&"

&"

+"

+"

JUMP TO &"

JUMP TO #"

p

Figure 4: Stackless query example. Left: A 2D simple geomet-

ric configuration using line segments instead of triangles. Right:

A corresponding TOP tree. The green and the blue segments are

intersected by the shadow plane 2, thus they belong to the intersec-

tion subtree of node 2. Similarly, the blue segment is intersected by

the shadow plane 5 and thus it belongs to the intersection subtree

of node 5. Each node points to the parent of the intersection subtree

which it belongs to. To locate p in this TOP tree, the stackless query

starts from the root node 1. The query descends at first in the inter-

section child, if needed. When the query reaches the positive/visible

leaf of node 9, it jumps directly to the node 5. Since it is the second

time that node 5 is tested, we know that the intersection subtree has

already been checked, and so the query continues in the positive

or negative subtree. Similarly, when the query reaches the positive

leaf of node 6, it jumps to node 2 to test its positive and negative

children. Finally the query locates p in a positive leaf with a null

link since it does not belong to any intersection subtree. Thus p is

visible from the light.

ray of bits may also be used to keep track of the traversal [BAM13].
Another solution uses a short stack and encodes a restart trail in a
bit mask [Lai10]. However, a TOP tree is a ternary data structure,
not a binary one. This means that the solutions using an array of
bits are not applicable. More importantly, the PSV query and a ray
traversal are two different problems. The first one locates a point
and outputs a boolean (lit/shadow), thus the scan order is not rele-
vant. The second one uses a ray and searches for its first intersec-
tion, thus the scan order is important. In this section, we proposed
two stackless queries tailored for a TOP tree. While some similar-
ities exist with the previous works on stackless ray-traversals, our
algorithms are not directly comparable.

Using the stack-based query, if the intersection child of a node
n needs to be visited, it is pushed on the stack to be processed
later. Without a stack, the query will have to backtrack until n after
its positive or negative child have been explored. As mentionned
above, a common solution to enable backtracking is to add a par-
ent pointer to each node. Our first experiments used this solution,
but they achieve very poor performances, below real-time render-
ing requirements. When such a query ascends in the tree, it visits
too many nodes, and too many memory accesses are made, lead-
ing to a memory bandwidth overhead. Instead, we can take advan-

tage of the TOP tree structure. We observe that the probability for
a triangle to be intersected by a plane is low, especially with fine
tessellated models. Thus, the probability for a node to be the inter-
section child of its parent is also small. We can save the memory
bandwidth by jumping from a node to its first intersection ancestor
instead of backtracking node by node. Figure 4 gives an example,
assuming that each node is marked with a pointer to the parent of
its first intersection ancestor.

In practice, we need to slightly modify the TOP tree building
algorithm to mark each node with the appropriate link. This is de-
tailed in Algorithm 2. To merge a given shadow volume cast by
a triangle, the construction algorithm starts from the root node
(line 2) which has no ancestor. Thus the ancestor link of the root
is initialized with a sentinel value (line 6). Next the algorithm is
similar to [GMAG15]. The triangle position is tested against the
node plane (line 11). According to the test, the triangle continues
in the relevant subtree. When the triangle is intersected by the plane
(line 16), its ancestor link is updated (line 19). When the triangle
reaches a leaf, the TOP tree representation is computed (line 23),
marking its nodes with the parent of the intersection subtree which
the triangle belongs to. At last the shadow volume cast by the tri-
angle is merged to the data structure (line 24).

Algorithm 3 describes the stackless query using such a TOP tree.
A state variable (line 3) indicates if a node is visited for the first
time. In such a case, the intersection child is tested (line 16) and,
if required, the query descends in the intersection subtree (line 17).
When the node is visited for the second time (the query has just
jumped following an ancestor link), we know that the intersection
child has been tested already. Then, the query continues either in
the positive child (line 24) or in the negative child (line 32). When
a positive leaf is reached, the query ends visiting a subtree without
finding any occlusion (line 25). Thus, following the ancestor link
in the node (line 27), it jumps to the parent of the current intersec-
tion subtree. Eventually, the ancestor link is null, meaning that the
subtree root is actually the TOP tree root, and so the point is lit
(line 40). For shadowed point, the query still ends as soon as the
point is located inside a shadow volume (line 34).

Notice that our stackless query does not visit the same sequence
of nodes as the stack-based one. Indeed, the latter descends at first
in the positive or negative subtree and next, it eventually visits the
intersection subtree. Our stackless query does the opposite. We
have experimented a modified stack-based query to use the same
traversal order as our new stackless query. We did not noticed
any significant performance differences. Thus we kept the origi-
nal stack-based query as a reference for our comparisons.
In addition each node whose intersection subtree has to be visited
is accessed twice: Once to descend in the intersection child, and
once to descend in either the positive or the negative child. As a
consequence, our stackless query is expected to visit more nodes
than the stack-based query. The stackless algorithm requires more
memory-bandwidth while the stack-based query has a higher regis-
ter pressure. At first glance, a combination of the two methods does
not seem to be a good idea. The following section explains why it
is worth trying.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

77

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Algorithm 3 Stackless query algorithm (see 3.4). Blue lines cor-
respond to the depth optimization (see 3.3).

1: TOP_stacklessQuery(Node root, Point p, Light l)
2: // Variable state: first (false) or second (true) visit to current node

3: bool twice = f alse

4: Node node = root

5: float d = distance(p, l) // Distance from the light for depth test

6: while node 6= null do

7: // Depth test: point distance vs subtree distance

8: if d < node.distance then

9: // p is closer to l than any shadow volumes in the subtree

10: // Leave this intersection subtree, jump to the parent of its root

11: node = node.ancestor_link

12: twice = true

13: continue

14: end if

15: // First visit: intersection child test

16: if twice == f alse AND node.inter is not a leaf then

17: node = node.inter // Descend in the intersection subtree

18: continue

19: end if

20: // At this point, the intersection subtree is already checked

21: // The algorithm continues in the positive or negative subtree

22: twice = f alse

23: int location = sign(node.plane, p)
24: if location > 0 then

25: if node.pos is a leaf then

26: // No occlusion found in this intersection subtree.

27: node = node.ancestor_link // Jump to its parent node.

28: twice = true // This will be the second visit for node

29: else

30: node = node.pos

31: end if

32: else

33: if node.neg is a leaf then

34: return 0 // p is inside a shadow volume

35: else

36: node = node.neg

37: end if

38: end if

39: end while

40: return 1 // p is outside any shadow volume

M
ax

.s
ta

ck
us

ag
e

32

0
Figure 5: Stack usage per image points. This heat map shows that

the stack usage remains low for most image points. However it can

get close to the maximum (32) (inside the red circles).

3.5. Hybrid query

Figure 5 shows a heat map that represents the maximum stack us-
age per image point, using the former stack-based query proposed

in [GMAG15]. This example is representative of the general be-
havior. For most queries, the stack usage does not exceed half of its
size. As a consequence, using a short stack is enough in most cases.
And this would also alleviate the register pressure. However, the
red circles on the heat map draw attention to few locations where
the stack is almost full. This leads us to combine the two methods,
using a short stack and switching to the stackless query when this
stack is full.

Ideally on parallel architectures, switching between two algo-
rithms should be avoided, because it can generate SIMD divergence
in thread groups. But as illustrated in Figure 5, most of the threads
should only keep executing the short-stack based query. In addi-
tion to their small number, the "pathological" image points are not
spread over the image but always grouped together. Thus when a
thread switches to the stackless query, it is probably not the only
one in its group, limiting the divergence cost.

The combination of the stack-based and stackless queries is quite
straightforward. The result is a hybrid query defined as follows:
As long as it is possible to push nodes on the stack, the hybrid
query runs the stack-based query. When the intersection child of a
node n can not be pushed, the intersection subtree is immediately
visited using the stackless query. When it jumps back to node n, the
hybrid query switches back to the short stack query to visit either
the positive or the negative subtree of n.

3.6. Implementation

Our implementation relies on the former PSV code, available at
https://github.com/PSVcode/EG2015, and compatible with
OpenGL 4.3 and above. Let us recall that, for each frame, the TOP
tree is constructed using a Compute Shader and stored in a Shader
Storage Buffer Object. The TOP tree queries are implemented as
Fragment Shaders applied to a deferred image buffer.

Memory layout: A TOP tree is stored in an array of nodes. The
depth information is added to the TOP tree nodes without increas-
ing the node size. Indeed, the former PSV implementation uses 32
bytes per node and stores a shadow volume as 4 consecutive nodes.
Thus their negative children are always the node index plus one.
Hence, we can spare 16 bytes per shadow volume.
Compared to the PSV memory layout, we need to add a distance
and an ancestor link to enable both our depth test and our stackless
query. We can notice that a triangle depth holds for the four nodes
of its shadow volume. Similarly, a shadow volume belongs to one
intersection subtree, so its four nodes share the same ancestor link.
Thus it is sufficient to store the depth and the link information once
every four nodes. This required 8 of the 16 bytes available without
increasing the memory cost.

Compute Shader: Each Compute Shader instance merges one tri-
angle into the tree. To solve concurrency, Gerhards et al.’s build-
ing algorithm relies on atomic operations. Our modified construc-
tion creates new concurrent accesses between instances to update
the depth values. We solve this using an atomic minimum. As ex-
plained in the next section, this generates a small overhead com-
pared to the former construction.

Fragment Shader: Our depth, stackless and hybrid queries are

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

78

https://github.com/PSVcode/EG2015

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Model PSV [GMAG15] D-PSV D-Stackless D-Hybrid
> 160

> 160

> 200

> 250

> 250

Figure 6: Heat maps visualizing the number of visited nodes per pixel/query, using the former PSV method, and our three new algorithms.

implemented in Fragment Shaders. Since the depth is unique per
shadow volume, our depth test is only done when the query de-
scends in a positive or an intersection child and thus, when it en-
counters a new shadow volume.

Our modified Compute Shader and our Fragment Shaders
implementing the stackless queries are also available at
https://github.com/PSVcode/EGSR2016.

4. Results

Our experiments are done using a NVIDIA GTX 980 at a resolution
of 1920×1080. Five models are used. The PLAYGROUND scene
(131K triangles) is the smallest one but casts shadows of various
complexities. The EPIC CITADEL scene (393K triangles) is a game
level from the Epic UDK. The CLOSED CITY model (623K trian-
gles) is a large open scene including large scale and detailed fea-
tures. The SHIP model (956K triangles) has many fine details cast-
ing complex shadows. The EXCAVATOR model (1130K triangles)
is a complex modeling of a Lego R© bricks excavator-bulldozer.

We compare different methods. Our reference method is PSV:
It refers to the former PSV algorithm using the source code pub-
licly available. D-PSV is the same algorithm, but using our depth
test. This allows to evaluate the impact of the depth test regardless
of the stackless query. D-Stackless is our stackless query including
depth test. D-Hybrid refers to our hybrid algorithm with depth test.

PSV and D-PSV use a stack size of 32 nodes, as in [GMAG15], ex-
cept for EXCAVATOR which uses a stack size of 48. Indeed, stack
overflows occur with a smallest value, creating visual artifacts. D-
Hybrid uses a short stack of 12 nodes (we discuss this value in sec-
tion 4.4). Front face culling is always enabled, and we also add a
frustum culling test, defined as the convex hull of the view frustum
plus the light. Triangles outside this volume can not cast shadows
visible from the camera. Notice that this test is done in the compute
shader on the GPU, triangles are never culled before being sent to
the graphics card. The frustum culling test is only useful when all
the geometry does not contribute to the picture.
At last, we have also implemented a second state of the art tech-
nique: A z-pass implementation of the traditional Shadow Volumes
referred as Z-PASS. All our experiments are done using 2500 ani-
mation frames per scene.

4.1. Memory

As explained in Section 3.6, the memory consumption does
not change compare to the former PSV implementation. Thus,
the memory cost is the same whatever the query algorithm.
For each scene with n triangles, an array of 32 × 4 × n nodes
is allocated (each triangle generates 4 nodes and each node
costs 32 bytes). Thus the memory consumption for our mod-
els are: 16MB (PLAYGROUND), 48MB (EPIC CITADEL), 76MB
(CLOSED CITY), 117MB (SHIP), and 138MB (EXCAVATOR).

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

79

https://github.com/PSVcode/EGSR2016

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Playground 131K△ Epic Citadel 393K△ Closed Citadel 623K△

Ship 956K△ Excavator 1130K△

V
is

it
ed

no
de

s
(m

il
li

on
)

T
im

e
(m

s)
V

is
it

ed
no

de
s

(m
il

li
on

)
T

im
e

(m
s)

PSV
Implementation of [GMAG15]

D-PSV
Our depth test (sec. 3.3) added to [GMAG15]

D-Stackless
Our stackless query (sec. 3.4) with our depth test (sec.3.3)

D-Hybrid

Our hybrid query (sec. 3.5) with our depth test (sec.3.3)

D-CS
Time to build the TOP tree with support for stackless query
and depth test

CS

Time to build the data structure with PSV

Z-PASS

z-pass implementation of shadow volumes

↑ 47 ↑ 55

↑ 52 ↑ 47 ↑ 62↑ 112

Figure 7: Number of visited nodes and computation times measured over 2500 frames animations, using our new query algorithms, and

compared to former PSV method and a Z-PASS implementation.

4.2. Algorithmic comparison

Our first experiments measure the number of nodes visited per
query and per frame. Figure 6 presents the representative heat maps
for each scene. The difference between the PSV and the D-PSV
columns illustrates the depth test impact. For shadowed points, the
number of visited nodes does not seem to change. But for lit points,
it is significantly reduced. As expected, D-Stackless visits more
nodes than D-PSV but less than PSV due to the depth test. At last D-
Hybrid is comparable to D-PSV. However, the former uses a short
stack of 12 nodes and switches to the stackless query to prevent any
stack overflow, while D-PSV does not provide any guarantees.

Figure 7 provides a more detailed insight. For each scene, the
upper graph (light orange background) corresponds to the number
of nodes visited by each query per frame. It confirms that the be-
havior described above is consistent throughout all the animations.
Notice the view frame associated to a peak for the PSV query: the
light is behind and close to the camera. This generates a configu-
ration similar to the pathological example given by the Figure 3 in
section 3.3. PSV struggles with the lit points because it is unable
to find that they are closer to the light than the triangles. On the
contrary, our new queries benefit from the depth test in the same
situation. While D-PSV and D-Hybrid always visit less nodes than
PSV, D-Stackless can test more nodes. As mentioned in section 3.4,

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

80

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Average number of visited Nodes Average computation time (σ) in ms
Percentage of PSV worst / average / best acceleration factors compared to PSV

PSV D-PSV D-Stackless D-Hybrid PSV D-PSV D-Stackless D-Hybrid Z-PASS
Playground 61 43 52 43 5.53 (1.66) 4.89 (1.04) 4.88 (1.0) 4.66 (0.91) 6.79 (2.8)

- 71 86 71 - 0.95 / 1.13 / 1.31 0.89 / 1.13 / 1.36 0.93 / 1.19 / 1.43 0.43 / 0.81 / 2.36

Epic Citadel 167 104 141 103 9.95 (6.57) 7.08 (4.40) 6.67 (3.98) 6.42 (3.79) 9.38 (6.93)
- 62 84 62 - 0.93 / 1.41 / 2.67 0.98 / 1.49 / 2.96 1.06 / 1.55 / 3.05 0.30 / 1.06 / 2.54

Closed Citadel 85 60 72 60 7.61 (1.79) 6.60 (1.32) 6.53 (1.22) 6.34 (1.20) 24.6 (8.98)
- 71 85 70 - 0.83 / 1.15 / 1.41 0.81 / 1.17 / 1.48 0.90 / 1.20 / 1.53 0.13 / 0.31 / 0.84

Ship 142 100 161 93 17.58 (6.62) 13.56 (4.22) 13.95 (4.40) 13.92 (3.72) 25.99 (16.34)
- 71 114 66 - 0.81 / 1.30 / 1.81 0.45 / 1.26 / 1.86 0.78 / 1.26 / 1.82 0.13 / 0.68 / 3.19

Excavator 116 87 125 83 27.87 (9.09) 18.83 (1.51) 18.66 (1.57) 17.52 (1.49) 57.19 (33.29)
- 75 106 72 - 0.99 / 1.48 / 2.15 1.02 / 1.49 / 2.10 1.13 / 1.59 / 2.17 0.13 / 0.49 / 2.64

Figure 8: Number of visited nodes (on the left) and computation times (right) using our new queries, and using the previous implementation

of PSV, and a classical Z-PASS. σ is the standard deviation of the average computation times per frame.

this was expected. The depth test slightly hides this behavior on the
first three models. It is more noticeable on SHIP and EXCAVATOR,
our two most complex models.

Figure 8 summarizes our results and gives the average perfor-
mances. The left part (light orange background) of the table corre-
sponds to the number of visited nodes. D-Hybrid has the best av-
erage behavior and visits 62% to 72% of the nodes visited by PSV,
while D-Stackless visits 84% to 114%.

4.3. Performance comparison

Figure 7 provides the computation times for each method, in the
lower graphs (light blue background). Notice that Z-PASS aside,
all the computation times include the TOP tree construction done
for each frame. The time exclusively spent by the Compute Shaders
to build the TOP trees are represented by the CS and D-CS plots.
The former is the Gerhards et al.’s algorithm, while the latter is
our modified algorithm to enable depth test and stackless queries.
These two plots variations illustrate the contribution of the frus-
tum culling test. Our modified construction has a small (but accept-
able) overhead because it requires an additional atomic operation.
Computation times for D-Hybrid, D-PSV and D-Stackless are very
closed. They consistently outperform PSV, especially in the patho-
logical cases discussed above. We could have expected D-Stackless
to be slower particularly on the EXCAVATOR model, where it vis-
its more nodes than any other query. D-Stackless has the minimum
register pressure. In this case, it appears to balance the increase in
visited nodes.

Computation times for Z-PASS vary widely and can become
very important as the number of triangles increases. Shadow Vol-
umes does not scale well with the geometric complexity. Compar-
ing the Z-PASS behavior to the other methods, we notice a kind
of duality. The two view frames from the EXCAVATOR animation
are representative: The first one corresponds to a pathological case
for the other methods, contrary to Z-PASS which is faster in the
same situation. Indeed, when the light is behind the camera, the
shadow quads projection get smaller and are processed efficiently
by the hardware rasterizer. The second view frame is conversely
a pathological case for Z-PASS, because it creates large and elon-
gated shadow quads increasing the fill rate. The other methods re-
main efficient because many points are in shadows, leading to an

early termination as explained in section 3.2. Shading a point in-
volves a camera and a light. Z-PASS solves the problem from the
camera, PSV solves the problem from the light. This duality is no-
ticeable in our experiments.

With the SHIP model, we can notice that the original PSV query
is slighty faster at the begining of the second part of the anima-
tion. This corresponds to frames where shadows are visible, but not
the shadow casters (the camera focuses on the shadow of the ship
cast on the ground, but the ship is outside the view frustum). In this
specific configuration, the image points are all further from the light
than the geometry. This means that the depth test in our new queries
always fails: D-PSV or D-Hybrid visit exactly the same nodes than
the original PSV query. This is shown by the upper graph for the
corresponding frames. Thus, the small computation overhead for
D-PSV and D-Hybrid is the cost of the depth test during the build-
ing step and the shading step. The same holds true for D-Stackless,
although the number of visited nodes is slighty more important due
to the different traversal order. However, all queries remain very ef-
ficient in such configurations, because most of the image points are
in shadow, leading to an early termination.

Figure 8 provides the average computation times throughout the
animation and different statistics in its right part (light blue back-
ground). Except for SHIP (we discuss this exception in the next sec-
tion) D-Hybrid has the best performance on average, with a smaller
standard deviation: It is the fastest and the most stable, which is
also important in real-time rendering. Compared to PSV, the max-
imum acceleration factors recorded during the animations corre-
spond also to D-Hybrid (from 1.43 on PLAYGROUND to 3.05 on
EPIC CITADEL). However we can notice that D-Stackless and D-
PSV have very close computation times.

Finally this experiments illustrate that our depth test improves
significantly the PSV algorithm. This is true for the three query
algorithms which use the depth test, regardless of their stack-based
or stackless nature. They provide fast and close computation times
with an advantage to D-Hybrid. Moreover D-Hybrid is also better
for two other reasons: it visits less nodes than D-Stackless, and it
cannot generate a stack overflow contrary to PSV and D-PSV.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

81

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

Stack size

A
vg

ti
m

e
(m

s)

Figure 9: Average times using D-Hybrid with different stack sizes.

4.4. Limitations

For comparison purposes, our experiments with D-Hybrid use the
same short stack size (12) with all the models. However we have
also done the same experiments, increasing the stack size from 4
to 48. For each scene, Figure 9 shows the average time according
to the stack size. While a size of 12 leads to the best results for
our first three models, a size of 16 is more relevant for SHIP while
a size of 20 will improve again the results on EXCAVATOR. With
SHIP the average time per frame is 13.92 with a size of 12 (see
Figure 8) but drops to 12.99 with a size of 16, improving over D-
PSV (13.56). For EXCAVATOR, the average time is 17.52 with a
size of 12 and 16.66 with a stack of 20. Obviously, more complex
models require a more important stack usage. Using a fixed size of
12, D-hybrid has a loss of efficiency because it switches too many
times in stackless mode. Hence the stack size needs to be increased
to benefit from the best balance point. As a drawback, the register
pressure increases and at some point, it will become equivalent to
D-PSV. Nevertheless, D-Hybrid has always the advantage to pre-
vent any stack overflow. Finally its stack size can also be used to
favor either memory or computation time.

Our results illustrates the depth test efficiency. One may won-
der if a similar or even better result could be achieved if triangles
are inserted in the TOP tree following their depth order from the
light source. Currently this is not compatible with the TOP tree
construction proposed by Gerhards et al., since it is randomized
and can not support a constraint insertion order. In addition, this
randomized insertion order of the triangles prevents the TOP trees
from being completely unbalanced [GMAG15]. A constraint order
will call into question this important property.

5. Conclusion

PSV is a recent algorithm allowing pixel-accurate and real-time
shadows. While it has been little explored, it is an interesting op-
tion with respect to mature techniques such as shadow volumes or
shadow maps. In this article, we have studied the PSV algorithm
in order to improve it. We have underlined two drawbacks and we
have provided several solutions.
At first, we have explained why PSV is by nature less efficient to
process lit points than points in shadow. In some situations, this
behavior can cause a significant computation overhead. Thus, we
have proposed a modified algorithm to add a depth information to
the TOP tree used by PSV. Thanks to this depth value, the algo-
rithm is able to detect when a point is closer from the light than the

geometry in a TOP subtree. In such a case, the point can not be oc-
cluded by the geometry and the algorithm can skip over the subtree.
Our experiments show that this modification improves consistently
the performances, especially in the most difficult situations for the
original PSV.
Next, we have focused on the original PSV query implementation
that requires to tune carefully a stack size. Instead, we have slighty
modified the TOP tree nodes to enable stackless queries, without
increasing the memory cost. We have proposed a stackless query
and a hybrid query which takes advantage of the stackless query
combined to a short stack one. It provides generally the best results
in our tests.
Finally, PSV is more efficient and more stable using our improve-
ments.

As a future work, it would be interesting to focus on the TOP tree
construction. Since it is randomized, it does not allow any control
over the process. Thus a different algorithm may introduce some
heuristics to improve the data structure quality. The challenge will
be to improve the quality without slowing down the TOP tree con-
struction.

6. Aknowledgments

The PLAYGROUND and EXCAVATOR models are from the 3D
Warehouse under the General Model License. The SHIP scene is
available at Blend Swap under the creative commons license, and
was modeled by Chris Kuhn and Greg Zaal. The EPIC CITADEL

scene is distributed with the Unreal Development Kit by Epic
Games. The CLOSED CITADEL is courtesy of Erik Sintorn.

References

[AW04] ALDRIDGE G., WOODS E.: Robust, geometry-independent
shadow volumes. In Proceedings of the 2Nd International Conference

on Computer Graphics and Interactive Techniques in Australasia and

South East Asia (New York, NY, USA, 2004), GRAPHITE ’04, ACM,
pp. 250–253. 2

[BAM13] BARRINGER R., AKENINE-MÖLLER T.: Dynamic stackless
binary tree traversal. Journal of Computer Graphics Techniques (JCGT)

2, 1 (March 2013), 38–49. 5

[BS99] BILODEAU W., SONGY M.: Real time shadows. In Creative

1999, Creative Labs Inc. Sponsored game developper conferences (Los
Angeles, California and Surrey, England, 1999). 2

[Car00] CARMACK J.: Z-fail shadow volumes. Internet Forum, 2000. 2

[CF89] CHIN N., FEINER S.: Near real-time shadow generation using
bsp trees. In Proceedings of the 16th Annual Conference on Computer

Graphics and Interactive Techniques (New York, NY, USA, 1989), SIG-
GRAPH ’89, ACM, pp. 99–106. 1, 2

[Cro77] CROW F. C.: Shadow algorithms for computer graphics. SIG-

GRAPH Comput. Graph. 11, 2 (July 1977), 242–248. 1, 2

[CS95] CHRYSANTHOU Y., SLATER M.: Shadow volume bsp trees for
computation of shadows in dynamic scenes. In Proceedings of the 1995

Symposium on Interactive 3D Graphics (New York, NY, USA, 1995),
I3D ’95, ACM, pp. 45–50. 2

[Eng06] ENGEL W.: Shader X5: Advanced Rendering Techniques.
Charles River Media, Inc., 2006. 2

[ESAW11] EISEMANN E., SCHWARZ M., ASSARSSON U., WIMMER

M.: Real-Time Shadows. A.K. Peters, 2011. 1

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

82

F. Mora & J. Gerhards & L. Aveneau & D. Ghazanfarpour / Deep Partitioned Shadow Volumes Using Stackless and Hybrid Traversals

[FFBG01] FERNANDO R., FERNANDEZ S., BALA K., GREENBERG

D. P.: Adaptive shadow maps. In Proceedings of the 28th annual con-

ference on Computer graphics and interactive techniques (2001), ACM,
pp. 387–390. 2

[GMAG15] GERHARDS J., MORA F., AVENEAU L., GHAZANFARPOUR

D.: Partitioned shadow volumes. Computer Graphics Forum 34, 2
(2015), 549–559. 1, 2, 3, 5, 6, 7, 8, 10

[HDW∗11] HAPALA M., DAVIDOVIČ T., WALD I., HAVRAN V.,
SLUSALLEK P.: Efficient stack-less bvh traversal for ray tracing. In
Proceedings of the 27th Spring Conference on Computer Graphics (New
York, NY, USA, 2011), SCCG ’11, ACM, pp. 7–12. 4

[Hei91] HEIDMANN T.: Real shadows real time, 1991. 2

[JL87] JAFFAR J., LASSEZ J.-L.: Constraint logic programming. In Pro-

ceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles

of programming languages (1987), ACM, pp. 111–119. 4

[JLBM05] JOHNSON G. S., LEE J., BURNS C. A., MARK W. R.: The
irregular z-buffer: Hardware acceleration for irregular data structures.
ACM Trans. Graph. 24, 4 (Oct. 2005), 1462–1482. 2

[Lai10] LAINE S.: Restart Trail for Stackless BVH Traversal. In High

Performance Graphics (2010), Doggett M., Laine S., Hunt W., (Eds.),
The Eurographics Association. 5

[LWGM04] LLOYD D. B., WENDT J., GOVINDARAJU N. K.,
MANOCHA D.: Cc shadow volumes. In Proceedings of the Fifteenth

Eurographics Conference on Rendering Techniques (2004), EGSR’04,
Eurographics Association, pp. 197–205. 2

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.: Merging bsp
trees yields polyhedral set operations. SIGGRAPH Comput. Graph. 24,
4 (Sept. 1990), 115–124. 2

[SBE16] SCANDOLO L., BAUSZAT P., EISEMANN E.: Compressed mul-
tiresolution hierarchies for high-quality precomputed shadows. Com-

puter Graphics Forum (Proc. Eurographics) 35, 2 (May 2016). 2

[SKOA14] SINTORN E., KÄMPE V., OLSSON O., ASSARSSON U.: Per-
triangle shadow volumes using a view-sample cluster hierarchy. In Pro-

ceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on

Interactive 3D Graphics and Games (New York, 2014), I3D ’14, ACM,
pp. 111–118. 2

[SOA11] SINTORN E., OLSSON O., ASSARSSON U.: An efficient alias-
free shadow algorithm for opaque and transparent objects using per-
triangle shadow volumes. In Proceedings of the 2011 SIGGRAPH Asia

Conference (New York, USA, 2011), ACM, pp. 153:1–153:10. 2

[SWK08] STICH M., WÄCHTER C., KELLER A.: Efficient and ro-
bust shadow volumes using hierarchical occlusion culling and geome-
try shaders. In GPU Gems 3, Nguyen H., (Ed.). Addison-Wesley, 2008,
pp. 239–256. 2

[WHL15] WYMAN C., HOETZLEIN R., LEFOHN A.: Frustum-traced
raster shadows: Revisiting irregular z-buffers. In Proceedings of the

19th Symposium on Interactive 3D Graphics and Games (New York,
NY, USA, 2015), i3D ’15, ACM, pp. 15–23. 2

[Wil78] WILLIAMS L.: Casting curved shadows on curved surfaces. SIG-

GRAPH Comput. Graph. 12, 3 (Aug. 1978), 270–274. 1

[ZSXL06] ZHANG F., SUN H., XU L., LUN L. K.: Parallel-split shadow
maps for large-scale virtual environments. In Proceedings of the 2006

ACM international conference on Virtual reality continuum and its ap-

plications (2006), ACM, pp. 311–318. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

83

