
ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Handling Degeneracies in Exact Boundary Evaluation

Koji Ouchi and John Keyser

Department of Computer Science, 3112 Texas A&M University
College Station, TX, 77843-3112

Abstract

We present a method for dealing with degenerate situations in an exact boundary evaluation system. We describe the possible
degeneracies that can arise and how to detect them. We then present a numeric perturbation method that is simpler to implement
within a complex system than symbolic perturbation methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling G.4 [MATHEMATICAL SOFTWARE]: Reliability and robustness

1. Introduction

1.1. Motivation

Degenerate configurations of solids are an unavoidable part of solid
modelers. Solids are often specified, either accidentally or inten-
tionally, in degenerate configurations. Degenerate configurations
are a fact of nature, for example, a sphere sitting on a table in-
tersects the table tangentially at a point.

Unfortunately, many algorithms, at least in their initial forma-
tion, make an assumption that input will be given in general posi-
tion. Roughly, this assumption states that no minor perturbation of
the data will cause the solids to intersect in a manner that is topo-
logically different. In order to deal with degenerate configurations
of solids, a system must be able to accurately detect and handle
the degenerate cases. Often this additional code is overwhelming,
taking far more work than the basic algorithm alone would.

For solid modelers, degeneracies remain a problem. One solution
is that designers using a solid modeling system can be trained to
avoid placing objects in such degenerate configurations. However,
such an approach is likely to fail in many instances, and one would
like a program to still produce usable output in such a situation.
Another option is to systematically add degeneracy detection and
handling code to a modeler. While this can be very useful (and can
allow a wider variety of objects to be represented), it also creates
more complexity in algorithms and representations, e.g. by needing
to handle and work with non-manifold representations. A final ap-
proach (and the one we follow here) is to perturb the data so that all
computation is done on objects in general position. It is important
in these cases, however, that the perturbation results in objects that
are physically realizable and maintain the designer’s intent.

1.2. Exact Computation

The method presented here assumes an exact computation [DY95]
framework for the solid modeling system. Exact computation elim-
inates the problems that can arise with numerical error. Handling
numerical error is a necessary precondition for any attempt to deal
with degeneracies. This is because inexact computation and numer-
ical error can both create degeneracies (e.g. two numbers could be
rounded to the same number) and remove degeneracies (e.g. two
numbers that should come out to the same value actually come
out differently). Note that exact computation (where enough preci-
sion is used to guarantee that every decision made is correct) does
not necessarily mean exact arithmetic (where every computation is
done to full precision). Using techniques such as lazy evaluation
and filtering can also allow exact computation, at much less com-
putational cost.

Our work is based on the exact solid modeler, ESOLID
[KCF∗04]. To our knowledge, this is currently the only system that
supports exact boundary evaluation for solids with curved surfaces.
ESOLID uses exact representations for all solids, and performs ex-
act computations to evaluate the boundary of the solids. Input is
taken from a CSG-style tree, and output is a boundary represen-
tation of the final solids. Primitive solids include polyhedra, ellip-
soids, generalized cones, and tori. ESOLID has been successful at
exact boundary evaluation for solids (with low algebraic degree
surfaces) in general position. However, the algorithms ESOLID
uses are specifically designed assuming general position. ESOLID
therefore fails for almost all degenerate situations.

1.3. Goal

Overall, the problem we are addressing can be stated as follows:
Given a CSG tree and a physical tolerance within which we are

c© The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org

K. Ouchi & J. Keyser / Handling Degeneracies in Exact Boundary Evaluation

free to adjust the surfaces of the input solids, compute a boundary
representation robustly, maintaining the designer’s intent.

We emphasize that we are using exact computation and han-
dling degeneracies to achieve greater robustness and consistency.
The goal is not necessarily to have an exact solution to the input
problem—in the real world it is very rare that the output solids
would need to be found with absolute precision. However, with-
out accounting for numerical error and degeneracies, programs are
subject to crashes or inconsistent output, neither of which is a de-
sirable condition. We would like to have a program that can reliably
produce a set of valid output, for a wide variety of input.

1.4. Main Results

We present a method for dealing with degeneracies in an exact
computation-based solid modeler. First, we classify the types of
degenerate configurations possible between objects. Then, we de-
scribe a numerical perturbation scheme that can be used to handle
degenerate situations. This approach requires very little modifica-
tion to existing exact solid modeling, yet eliminates the problems
associated with degeneracies.

2. Previous Work

Dealing with robustness issues has been an active area of work for
quite some time, now. Much of the need for robustness was high-
lighted by the work of Hoffmann et al. [HHK89].

Exact computation as a method for dealing with numerical error
has been addressed within the solid modeling community. Much of
the earliest work focused on polyhedral solids, with only limited
work on curved solids. Among the work on exact computation in
solid modeling is that of Sugihara and Iri [SI89], Yu [Yu91], Be-
nouamer et al. [BMP94], Sugihara [Sug94], and Fortune [For97].
The work presented here builds off of previous work on exact solid
modeling [KCMK00, KCF∗04]. More general work supporting ex-
act computation includes the development of the LEDA [MN99],
CORE [KLY99] and CGAL [FGK∗00] libraries.

For dealing with degeneracies, special-case code has been pre-
dominant. Examples can be seen in both solid modeling textbooks
[Hof89] and research papers [Yu91]. For curved solids, degenera-
cies become more complicated. A great deal of effort has focused
just on handling the intersections of quadric surfaces, such as in
Farouki et al. [FNO93] and Geismann et al. [GHS01].

Perturbation methods have arisen as a more general way of deal-
ing with degenerate situations. These approaches use a symbolic
perturbation to move the surfaces by an infinitesimal amount. The
major drawbacks are that the schemes must either use symbolic
computation, which is extremely expensive, or define every predi-
cate directly from the input, which may be impractical. The earliest
perturbation scheme was probably that of Edelsbrunner and Mucke
[EM90]. Emiris and Canny varied the perturbation used to a simpler
one, and applied it to a wider variety of cases [EC91, ECS97]. Yap
provided an even more generalized perturbation approach [Yap90].
Seidel provides a summary of these techniques, along with a cri-
tique of the general perturbation scheme [Sei94]. Fortune actually
describes the use of symbolic perturbation for linear solids [For97].

3. Classifying Degeneracies

Degeneracies can be classified into three categories. These are:

1) Input degeneracies: degenerate configurations of input data,
where a minor change in the solid changes the nature of the output.
For example, two objects might meet tangentially at a point.

2) Arbitrary degeneracies: degenerate situations arising from
arbitrary algorithmic decisions. For example, an algorithm might
choose to shoot a ray in an arbitrary direction.

3) Intentional degeneracies: degeneracies constructed as a part
of the algorithm, and that must be maintained. For example, an
algorithm might create a point that is the midpoint between two
others. Later computations might assume that the three points are
collinear (a degenerate configuration of the three points).

Intentional degeneracies are correctly dealt with if exact compu-
tation is used; we will not discuss them further except to note that
the intentional degeneracies at one stage can appear as input degen-
eracies at the next. Arbitrary degeneracies in general are difficult to
predict and avoid, and are not dealt with here directly. Randomiza-
tion can usually be used to avoid these situations, but possibly at a
cost in efficiency. Falling between input and arbitrary degeneracies
are “borderline” cases where the algorithm uses a technique that
exposes a degenerate case, but for which another algorithm might
not encounter difficulty. For example, two surfaces might meet in
a degenerate configuration, but outside of the trimmed region of
the patches they belong to—some algorithms might encounter this
degeneracy, others might not.

3.1. Enumerating Input Degeneracies

Possible input degeneracies are enumerated by considering how
surfaces, curves and points interact.

A solid is composed of objects of various orders: points (order
0), curves (order 1) and surfaces (order 2). Generically, two sur-
faces meet at curves and three surfaces meet at points. Four or more
surfaces cannot meet generically.

When objects are in general position, only two different types of
mutual interactions are possible: 1) two surfaces meet transversely
along a set of curves, and 2) a surface and a curve meet transversely
at a set of points. Degeneracies occur in two ways: 1) when two
objects interact that should not (e.g. a surface intersects a point),
and 2) when an interaction is between a valid pair of objects but is
tangential instead of transverse. The types of possible degeneracies
are summarized in Table 1.

4. Detecting Degeneracies

Degeneracies are detected during boundary evaluation by checking
for occurrences of the irregular interactions classified in Section 3.
While the description below is broad, it may be helpful to be famil-
iar with the exact boundary evaluation approach used in ESOLID
[KCF∗04] in order to understand how these cases arise specifically.
ESOLID finds and represents points in the 2D domain, using the
MAPC library [KCMK00]. MAPC represents points (with real al-
gebraic coordinates) using a set of bounding intervals, guaranteed
to contain a unique root of the defining polynomials.

Objects are represented in terms of polynomials (with rational

c© The Eurographics Association 2004.

322

K. Ouchi & J. Keyser / Handling Degeneracies in Exact Boundary Evaluation

Surface Curve Point

Surface
2 Surfaces overlap
1 Surfaces tangent along a curve
0 Surfaces tangent at a point

1 A curve lies on a surface
0 A curve is tangent at a point 0 A Point lies on a surface

Curve
1 Curves overlap
0 Curves intersect tangentially 0 A Point lies on a curve

Point 0 Points coincide.

Table 1: Types of degeneracies. The entries show degeneracies between surfaces, curves and points. The order of each degenerate intersection
involved is in bold: points (0), curves (1), surfaces (2).

coefficients). Thus, degeneracy detection often can be thought of as
discovering when systems of polynomials interact in non-generic
ways.

1) Surfaces Overlap: If surfaces overlap then their implicit rep-
resentation must have a non-trivial common factor. Thus, a degen-
eracy is detected when substitution of the parametric form of one
surface into the implicit form of the other surface causes the im-
plicit form to vanish.

2) Surfaces Tangent along a Curve: There are two possible re-
alizations of this degeneracy. If the tangency is at a point then the
intersection curve has a cusp or self-intersection at the point of tan-
gency. Such singularities appear when analyzing the topology of
the intersection curve. If the tangency is along the entire intersec-
tion curve of the two surfaces (i.e. they never cross) then the de-
generacy is not obvious from within the patch domain. For this one
instance only, the degeneracy cannot be detected by local polyno-
mial evaluations. Fortunately, the overall boundary evaluation al-
gorithm can be easily modified to handle such cases smoothly at a
higher level, without causing any potential problems in the polyno-
mial computations. The details of this are omitted here.

3) Surfaces Tangent at a Point: If surfaces are tangent at a point
then the intersection curve of two surfaces shrinks to a single point,
which is a singularity.

4) A Curve Tangent to a Surface: Within the patch domain, this
appears as an intersection curve intersecting a trimming curve tan-
gentially.

5) Three (or More) Surfaces Meet at a Curve: This case include
two subcases A Curve Lies on a Surface and Curves Overlap. In
both cases, in at least one patch domain, the degeneracy will ap-
pear as the intersection curve overlapping the trimming curve. In
other words, the intersection curve and trimming curve intersect in
a positive dimensional component.

6) Four Surfaces Meet at a Point: This includes four subcases:
A Point Lies on a Surface, Curves Intersect Tangentially, A Point
Lies on a Curve and Points Coincide. In any of these cases, the
intersection curves intersect the trimming curves at an endpoint or
previously found intersection point.

To summarize, barring the trivial cases Surfaces Overlap and the
second realization of Surfaces Tangent along a Curve that are han-
dled through other mechanisms, degeneracies are detected when
one of the following happens in 2D:

A) Three or more curves intersect at a single point. This includes

the cases of singularities (where the curve and its two derivative
curves intersect at a common point), B) two curves intersect tan-
gentially and C) two curves share a positive-dimensional compo-
nent.

To detect these cases, we need an exact polynomial system
solver that works under any condition. We have developed and im-
plemented a method based on the Rational Univariate Reduction
which allows this. The details are omitted here.

5. Numerical Perturbation

A perturbation method is a general approach for dealing with de-
generacies. The idea is to perturb the input data slightly such that
one is guaranteed to have no degeneracies.

There are two types of perturbation methods: symbolic and nu-
meric. It is important to note that exact computation is a neces-
sity for both symbolic and numeric perturbation, since otherwise
the perturbation scheme will not guarantee even a consistent result.
Symbolic perturbations modify the input data by symbolic amounts
and then take their limit to zero, whereas numerical perturbations
change the actual input data. Thus, the resulting solid is different
than that of the original input.

The validity of numerical perturbation is supported by the idea
of existence of a global tolerance. That is, there is an assumption
that the input data is correct within some amount, ε, which may be
expressed in relative or absolute terms. Any perturbation of the in-
put data within ε is allowed, as that data could potentially be a valid
input. The input data can be perturbed how ever much is necessary
to allow the program to run as long as the perturbation is less than
ε.

There are two potential problems with numerical perturbations.

First, there is a chance that a specific numerical perturbation will
not eliminate the degeneracies, or even worse, will create another.
If the perturbation is chosen randomly, it is extremely unlikely that
such an event will happen. Assuming we can detect degeneracies,
we can always find when this has occurred and use another pertur-
bation instead.

A second problem is that, by perturbation, the bit length of data
could be drastically increased. For example, the number 1 might be
perturbed to the number 1.000001. Longer bit lengths can lead to
much longer running times. From first-hand experience with real-
world data, however, tolerance values are often of the order a num-
ber is specified to (e.g. 3.141595± 0.000005), so the perturbation
often does not increase bit length significantly.

c© The Eurographics Association 2004.

323

K. Ouchi & J. Keyser / Handling Degeneracies in Exact Boundary Evaluation

We also note that even if bit lengths are increased, the use of
floating-point filters can eliminate many of the numerical efficiency
problems in all computations except near the original degeneracy.
That is, aggressively filtering means that little additional time needs
to be spent, except to actually resolve the area around the degener-
acy (where the filters are likely to fail).

5.1. Expanding and Contracting Primitives

Expansion and contraction of primitives offers the opportunity
to capture design intent. The expanding and contracting follows
the principles proposed first by Sugihara and Iri [SI89], and later
adapted by Fortune [For97], where the surfaces of input solids are
symbolically perturbed inward or outward in order to remove de-
generacies. The topological complexity issues are avoided, how-
ever, by only perturbing input primitives, and allowing computation
to proceed as normal (this follows Sugihara and Iri). Our approach
differs from that of Sugihara and Iri in that it can be applied to non-
polyhedral solids, and in that we propagate our information through
the tree only to resolve specific degeneracies, and in such a way as
to better capture the designer’s intent.

Solids are expanded or contracted depending on the operation
applied to those solids. For a union, both solids should be expanded.
For an intersection, both solids should be contracted. For a differ-
ence operation A−B, solid A should be contracted and solid B ex-
panded. This approach is far more likely to capture a designer’s
intent, as shown in Figure 1.

Figure 1: Examples of expansion and contraction of primitives.
The first column shows the input, the second the perturbed solids,
and the last the final solids. From top to bottom are shown a union,
an intersection, and a difference.

+1/4

+1/3

+1/3

−1/4+1/3+1/3 +1/4−1/3+1/3

+1/3

A B C D E F

Figure 2: The perturbation information at the top node is propa-
gated to the leaf nodes.

It is important to note that a small amount of perturbation applied
to input surfaces may result in a larger perturbation of the eventual
solid. When perturbing surfaces, slight changes in a surface can
cause large changes in edges and points formed by intersections
with that surfaces, particularly when the intersections are nearly
tangential.

By perturbing only the surfaces of the input primitives, we
avoid the problems of perturbing curved surfaces in general, and

the complex topological issues that can arise in more complicated
solids. All standard CSG primitives (boxes, generalized cones, el-
lipsoids, and tori) can be perturbed “outward” or “inward” easily
and cleanly, usually by just changing a few parameters.

We determine that a perturbation needs to be applied only when
we encounter a degeneracy. Since this may occur at a high level
in a CSG-tree, we need to propagate this perturbation information
down to the leaves (i.e. the input primitives). Assume without loss
of generality that we wish to propagate an expansion down the tree.
Each union or intersection node would also propagate an expansion
downward. That is, if A∪ B or A∩ B need to be expanded, both
A and B would be expanded. With a difference operation A− B,
however, A would be expanded, and B would be contracted. See
the examples in Figure 2.

5.2. Shortcomings of Numerical Perturbation

There are a few shortcomings to the numerical perturbation ap-
proach, which we list here.

a b

Figure 3: a. Examples where perturbing inward and outward does
not remove the degeneracy. b. Examples where numerical expan-
sion and contraction lead to small undesirable faces.

First, there are a limited number of cases for which expansion or
contraction will not work. An example of this is shown in Figure
3a. It is likely that a slight adjustment in the perturbation, including
translation, would eliminate this deficiency.

Second, it is possible with perturbation schemes to create small,
unintended features in objects. While these will indeed be small,
and should not affect the overall topology of the solid, they can be
annoying to deal with in subsequent computation. An example is
shown in Figure 3b.

Regardless of these cases, first-hand experience with real-world
degenerate data has shown that the cases similar to those presented
in Figure 1 are far more likely to occur than those in Figure 3.

Finally, it should be noted that if there are multiple degeneracies
in a tree, it is possible that different degeneracies might require a
primitive to be expanded in different directions. In this case, by
allowing perturbations of different orders of magnitude for the dif-
ferent operations, both operations can be satisfied. Since one de-
generacy must precede the other in the tree, the perturbation from
the higher level affects both input solids at the lower-level degener-
acy. As long as the solids are perturbed by an amount sufficient to
resolve their own degeneracy, but not so much as to change the per-
turbation direction required by the higher degeneracy, the numeri-
cal perturbation will work. This is likely to lead to much higher bit
complexity, however.

c© The Eurographics Association 2004.

324

K. Ouchi & J. Keyser / Handling Degeneracies in Exact Boundary Evaluation

a b c

Figure 4: Real-world examples. a. Cargo hatch, b. Commander
hatch, c. Engine

6. Implementation

6.1. A System Overview

We have implemented a solid modeler with numerical perturba-
tion. Our modeler is build on top of ESOLID [KCF∗04], the exact
solid modeler. It takes the set of CSG primitive solids as an input
(as ESOLID), perturbs them, and performs binary operations. CSG
primitives are perturbed by scaling inward or outward by a speci-
fied amount. The centroid of any type of primitive solid is fixed.

6.2. Real-World Examples

We show the result from examples taken from a model of a Bradley
Fighting Vehicle that is developed by the Army Research Lab with
their BRL-CAD solid modeler [DM89]. ESOLID is used to con-
vert parts from CSG format to an exact B-rep format. Whenever
a degeneracy is detected, ESOLID either aborts or loops. If ES-
OLID aborts then numerical perturbation is applied. Perturbation
is propagated through the entire CSG tree and eventually all the in-
put primitive solids are perturbed. Then, the computation restarts.

The experiments are performed on three parts shown in Figure 4
using a 3.0 GHz Intel Pentium CPU with 6 GB of memory.

Tables 2 to 4 show experiments on the examples in Figure 4.
Rows 3 and 4 give the number of times the basic bivariate and
univariate root-finding routines were invoked while computing.
MAPC performs root isolation and sign evaluation (of a polyno-
mial at a given value) by using floating point filters. When the filter
fails, exact methods are invoked. The number of such root isola-
tion and sign evaluations is shown, along with the percentage of
the time that the floating point filter fails (and thus exact methods
must be used). Column 1 shows the result when ESOLID (i.e. with-
out perturbation) is used for operations on solids not in degenerate
configuration, while column 2 shows the performance of ESOLID
on a perturbed version (by 1

1024) of those same solids. Column 3
gives the results for the entire part, including the perturbed solids
that have removed the degeneracies.

The part cargo hatch is obtained by joining 11 solids. ESOLID
fails to model 4 of them because of degeneracies. The part comman-
der hatch is obtained by joining 5 solids. ESOLID fails to model
1 of them because of a degeneracy. In both examples, all the de-
generacies can be eliminated by numerical perturbation. The part
engine is obtained by joining 14 solids. One of them has a degen-
eracy that makes ESOLID loop. Thus, we ignore this part. Among
the other 13 solids, ESOLID fails on 3 of them because of the de-
generacies.

w/o pert. w/ pert. all solids

time (msec) 36570 50487 141474

CSG boolean op’s 17 17 34

bivariate root-finding 25137 25764 50902
univariate root-finding 23809 26344 56800

root isolation 32616 36879 82024
% of exact computation 6.30 3.88 7.33

sign evaluation 486139 573022 1288838
% of exact computation 6.37 7.37 11.33

Table 2: Experiments on cargo hatch

w/o pert. w/ pert. all solids

time (msec) 95658 701096 722385

CSG boolean op’s 6 6 12

bivariate root-finding 5331 4103 6636
univariate root-finding 12354 4772 8635

root isolation 19889 8761 13032
% of exact computation 18.87 17.62 11.85

sign evaluation 359768 136517 208196
% of exact computation 3.66 7.85 6.15

Table 3: Experiments on commander hatch

w/o pert. w/ pert. all solids

time (msec) 224803 279560 1233390

CSG boolean op’s 15 15 33

bivariate root-finding 18252 17827 36456
univariate root-finding 30222 29154 51079

root isolation 49370 48878 86664
% of exact computation 14.46 16.42 20.38

sign evaluation 826664 821022 1501026
% of exact computation 3.59 4.49 7.95

Table 4: Experiments on engine

In summary, on these real-world cases, we note first that numer-
ical perturbation allows us to compute the result while maintaining
designer’s intent. The perturbed versions do, indeed, run slower
than the unperturbed versions and require a higher percentage of
sign evaluations of polynomials using exact arithmetic, rather than
floating-point filters (due to increases in bit-length). For two exam-
ples these are only modest increases. For one example, however,
the time requirement was more significant. We believe that with
more aggressive floating-point filters, we can reduce this time in-
crease (for the non-degenerate cases) to within a very small factor,
especially for the one extreme example.

c© The Eurographics Association 2004.

325

K. Ouchi & J. Keyser / Handling Degeneracies in Exact Boundary Evaluation

7. Conclusion

We have presented a method for handling degeneracies in an exact
boundary evaluation scheme. We have described an enumeration of
degeneracies, along with a method for detecting each of these de-
generate situations. We have also proposed a numerical perturba-
tion scheme that can be used to eliminate the computational prob-
lems associated with a degeneracy, in a way that is likely to be
consistent with a designer’s intent. We have presented the results of
our implementation on a number of example cases, to show that it
works. In the implementation, we use an initial version of our exact
polynomial system solver.

7.1. Future Work

Among our directions for future work are the following:

Currently, we have not integrated the locate degeneracy/perturb
approach into an automated loop. This integration would be neces-
sary for a complete system for handling degeneracies.

Again, as mentioned earlier, there are a few cases where numer-
ical perturbation does not solve the problem. We need to address
these cases in a different way. Data cleanup must be done. Finally,
we have not addressed the situation where multiple degeneracies
cause conflicting information in perturbation directions. Determin-
ing a good way to handle such cases will be important in dealing
with very large scale examples.

Acknowledgements

This work was funded in part by NSF/DARPA CARGO award
DMS-0138446 and NSF ITR Award CCR-0220047. The Bradley
Fighting Vehicle was provided courtesy of the Army Research Lab.

References

[BMP94] BENOUAMER M. O., MICHELUCCI D., PEROCHE

B.: Error-free boundary evaluation based on a lazy
rational arithmetic: A detailed implementation. Com-
puter Aided Design 26, 6 (1994), 403 – 416.

[DM89] DYKSTRA P. C., MUUSS M. J.: The BRL-CAD Pack-
age An Overview. Tech. rep., Advanced Computer
Systesms Team, Ballistics Research Laboratory, Ab-
erdeen Proving Ground, MD, 1989.

[DY95] DUBÉ T., YAP C.: The exact computation paradigm.
In Computing in Euclidean Geometry, Du D., Hwang
F., (Eds.), 2nd ed., Lecture Notes on Computing.
World Scientific, 1995, pp. 452 – 492.

[EC91] EMIRIS I. Z., CANNY J. F.: A general approach to
removing degeneracies. In Proc. 32nd FOCS (1991),
IEEE, pp. 405 – 413.

[ECS97] EMIRIS I. Z., CANNY J. F., SEIDEL R.: Efficient per-
turbations for handling geometric degeneracies. Algo-
rithmica 19, 1/2 (1997), 219 – 242.

[EM90] EDELSBRUNNER H., MÜCKE E.: Simulation of sim-
plicity: A technique to cope with degenerate cases in
geometric algorithms. ACM Transactions on Graphics
9, 1 (1990), 66 – 104.

[FGK∗00] FABRI A., GIEZEMAN G.-J., KETTNER L.,
SCHIRRA S., SCHÖNHERR S.: On the design of
cgal a computational geometry algorithms library.
Software – Practice & Experience 30, 11 (2000),
1167 – 1202.

[FNO93] FAROUKI R. T., NEFF C. A., O’CONNOR M. A.:
Automatic parsing of degenerate quadric-surface in-
tersections. ACM Transactions on Graphics 8, 3
(1993), 174 – 208.

[For97] FORTUNE S.: Polyhedral modeling with multipreci-
sion integer arithmetic. Computer-Aided Design 29, 2
(1997), 123 – 133.

[GHS01] GEISMANN N., HEMMER M., SCHÖMER E.: Com-
puting a 3-dimensional cell in an arrangement of
quadrics: Exactly and actually! In Proc. 17th SoCG
(2001), ACM, pp. 264 – 273.

[HHK89] HOFFMAN C. M., HOPCROFT J. E., KARASICK

M. S.: Robust set operations on polyhedral solids.
IEEE Computer Graphics and Applications 9, 6
(1989), 50 – 59.

[Hof89] HOFFMAN C. M.: The problems of accuracy and ro-
bustness in geometric computation. IEEE Computer
22, 3 (1989), 31 – 41.

[KCF∗04] KEYSER J., CULVER T., FOSKEY M., KRISHNAN

S., MANOCHA D.: ESOLID - a system for exact
boundary evaluation. Computer-Aided Design 36, 2
(2004), 175 – 193.

[KCMK00] KEYSER J., CULVER T., MANOCHA D., KRISHNAN

S.: Efficient and exact manipulation of algebraic
points and curves. Computer-Aided Design 32, 11
(2000), 649 – 662.

[KLY99] KARAMCHETI V., LI C., YAP C.: A Core library for
robust numerical and geometric computation. In Proc.
15th SoCG (1999), ACM, pp. 351 – 359.

[MN99] MEHLHORN S., NÄHER M.: LEDA - A Platform
for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[Sei94] SEIDEL R.: The nature and meaning of perturbations
in geometric computing. In Proc. 11th STACS (1994),
LNCS 775, Springer, pp. 3 – 17.

[SI89] SUGIHARA K., IRI M.: A solid modelling system
free from topological inconsistency. Journal of Infor-
mation Processing 12, 4 (1989), 380 – 393.

[Sug94] SUGIHARA K.: A robust and consistent algorithm
for intersecting convex polyhedra. In Proc. of EU-
ROGRAPHICS ’94, Dæhlen M., Kjelldahl L., (Eds.),
Computer Graphics Forum, Vol. 13, No. 3. Blackwell
Association, 1994, pp. C–45 – C–54.

[Yap90] YAP C.: Symbolic treatment of geometric degenera-
cies. Journal of Symbolic Computation 10, 3/4 (1990),
349 – 370.

[Yu91] YU J.: Exact Arithmetic Solid Modeling. Ph.D. thesis,
Department of Computer Science, Purdue University,
West Lafayette, IN, 1991.

c© The Eurographics Association 2004.

326

