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Abstract
In this paper, we give a very simple and purely topological condition for two surfaces to be isotopic. This work is motivated by
the problem of surface approximation. Applications to implicit surfaces are given, as well as connections with the well-known
concepts of medial axis and local feature size.

1. Introduction and related works

Finding approximations of given surfaces certainly is one of the
core problems in the processing of 3-dimensional geometry. When
seeking for an approximation S � of a surface S, in addition to ge-
ometric closeness, one usually requires that S � should be topolog-
ically equivalent to S. While much work has been done on home-
omorphic approximation, in particular in the context of surface re-
construction [AB], only a few recent articles tackle the more dif-
ficult problem of ensuring isotopic approximation [APR, SP]. Let
us recall that two surfaces are isotopic whenever they can be con-
tinuously deformed one into the other without introducing self-
intersections. Isotopy is thus a finer relation than homeomorphy,
since for instance a knotted torus is not isotopic to an unknotted
one, though both are homeomorphic. Rather than homeomorphy,
isotopy is what one should look for, since it completely captures
the topological aspects of surface approximation.

The main result of [SP] is that S and S � are isotopic whenever the
projection on S defines a homeomorphism from S � to S. In [APR],
it is shown that a specific piecewise linear approximation of S is
isotopic to S, using indirectly the same condition as the one consid-
ered in [SP]. Note that this condition involves not only the topol-
ogy of the surfaces, but also their geometry, as the projection on S
is involved. In particular, it cannot be met when S is not smoothly
embedded, as the projection is then undefined in the vicinity of sin-
gular areas. Also, checking this condition usually requires to bound
the angle between the normals to S and S � carefully, which is useful
for other purposes, but may seem irrelevant for strictly topological
purposes.

In this work, we show that if S � and S are homeomorphic, then a
simple and purely topological condition is sufficient to ensure the
existence of an isotopy between them. When S is connected, the
condition is merely that S � is contained in some topological thicken-
ing of S and separates the two boundary components of that thick-
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ening. We also show that if in addition S separates the boundary
components of some topological thickening of S � , then the homeo-
morphy condition can be dropped with the same conclusion.

Note that the smoothness of S is not required any more. Tedious
analysis of the deviation between normals is also avoided. Finally,
the condition is easy to check, and as we will see, various interest-
ing corollaries can be obtained according to the kind of thickenings
considered. The proof of our theorem is based on several results
of 3-manifold topology. To begin with, we state the theorem pre-
cisely (section 2), and give some applications (section 3), including
a quantitative version of an existential result proved in [SP] about
interval solids. Furthermore, an isotopy criterion involving medial
axes is derived, and the case of implicitly defined surfaces is dis-
cussed. Before proving our result (section 5), we give some mathe-
matical preliminaries (section 4).

2. Main results

Throughout the paper we use the following notations. For any set X ,
X , Xc, and ∂X denote respectively the closure of X , the complement
of X , and the boundary of X . Also, S and S � denote two compact
orientable surfaces embedded in R3.

Definition 2.1 (Isotopy and ambient isotopy)
An isotopy between S and S � is a continuous map F : S ��� 0 � 1 	�
 R3

such that F ���� 0 � is the identity of S, F � S � 1 ��� S � , and for each
t ��� 0 � 1 	 , F ���� t � is a homeomorphism onto its image. An ambient
isotopy between S and S � is a continuous map F : R3 ��� 0 � 1 	�
 R3

such that F ���� 0 � is the identity of R3, F � S � 1 ��� S � , and for each
t ��� 0 � 1 	 , F ���� t � is a homeomorphism of R3.

Restricting an ambient isotopy between S and S � to S ��� 0 � 1 	 thus
yields an isotopy between them. It is actually true that if there exists
an isotopy between S and S � , then there is an ambient isotopy be-
tween them [Hi], so that both notions are equivalent in our case. If
X � R3, we will say that S and S � are isotopic in X if there exists an
isotopy between S and S � whose image is included in X . Isotopies
between sub-surfaces of other 3-manifolds than R3, which we will
consider in the proof of the theorem, are defined in the same way.

Definition 2.2 (Topological thickening)
A topological thickening of S is a set M � R3 such that there exists

c
�

The Eurographics Association 2004.

http://www.eg.org
http://diglib.eg.org


F. Chazal & D. Cohen-Steiner / A condition for isotopic approximation

a homeomorphism Φ : S � � 0 � 1 	 
 M satisfying Φ � S � �
1 � 2 � ���

S � M.

Our definition actually is a special case of what is usually called
a thickening in the algebraic topology literature. The boundary of
a topological thickening M of S thus is the union of Φ � ∂S � � 0 � 1 	 �
and two surfaces, Φ � S � 0 � and Φ � S � 1 � , which will be referred to as
the sides of M. Our main theorem is the following :

Theorem 2.1 Suppose that :
1. S � is homeomorphic to S.
2. S � is included in a topological thickening M of S.
3. S � separates the sides of M.
Then S � is isotopic to S in M.

Here “separates” means that any continuous path in M from one
side of M to the other one intersects S � . Proving that two surfaces
are homeomorphic is not straightforward in general. The next theo-
rem shows that if the assumptions 2. and 3. of theorem 2.1 also hold
when S and S � are exchanged, then homeomorphy is not needed :

Theorem 2.2 Suppose that :
1. S � is included in a topological thickening M of S.
2. S is included in a topological thickening M � of S � .
3. S � separates the sides of M.
4. S separates the sides of M � .
Then S and S � are isotopic in M and in M � .

3. Applications

This section gives several applications of theorems 2.1 and 2.2.

3.1. Isotopy between implicit surfaces

For implicitely defined surfaces, dedicated topological thickenings
are provided by Morse theory (we refer to [MIL, HAR] for some
background on Morse theory). Recall that if f is a Morse function
defined on R3, a real number c is said to be a critical value of f if
there exists a point p � R3 such that � f � p � � 0 and f � p � � c. Such
a point p is called a critical point. Recall that f is said to be proper
if for any compact set K � R, f � 1 � K � is a compact subset of R3.
In particular, if f is proper, any level set f � 1 � a � of f is compact.

Theorem 3.1 (Morse) Let f be a proper Morse function defined on
R3 and I a closed interval containing no critical value of f . Then
for any a � I, f � 1 � I � is diffeomorphic to f � 1 � a � � � 0 � 1 	 .

Let us denote by m f the magnitude of the critical value of f of
minimum magnitude: m f � min

���
f � c � � : c is a critical point of f � .

Together with theorem 2.2, the previous theorem gives the follow-
ing :

Theorem 3.2 Let f and g be two proper Morse functions defined
on R3. If sup

�
f � g

�
	
min � m f � mg � , then the zero-sets of f and g

are isotopic.

Proof Set m � min � m f � mg � and take S � f � 1 � 0 � , M �
f � 1 � ��� m � m 	 � , S � � g � 1 � 0 � , and M � � g � 1 � � � m � m 	 � in theorem
2.2.

In order to approximate the level-sets of a function f by the ones
of a function g in a topologically correct way, it is thus sufficient to
control the supremum norm of f � g and the critical values of g.

3.2. Isotopy criteria involving medial axis

Let us first recall the definitions of tubular neighbourhood and me-
dial axis. In this section we assume that S is � 2-smooth and closed.
The medial axis Sk of S is defined as the closure of the set of points
in Sc, the complement of S, which have at least two closest points
on S:

Sk � closure
�
x � Sc :  y � z � S � y �� z � d � x � y � � d � x � z � � d � x � S ���

Note that this set is sometimes called the skeleton of S while the
notion of medial axis stands for the set of points which have at
least two closest points on S. For ε � 0, one denotes by Sε � �

x �
R3 : d � x � S ��� ε � the tubular neighbourhood of S, which is some-
times called the ε-offset of S. If Sk is the medial axis of S, l f s � S �
denotes the number l f s � S � � infx � S d � x � Sk � . S being � 2, one has
l f s � S ��� 0 (see [Wo] or [APR]). It can be shown that if ε is smaller
than l f s � S � then Sε is diffeomorphic to S � � � ε; � ε 	 , so that tubular
neighborhoods are topological thickenings. Also, R3 � Sk is known
to be homeomorphic to S � R.

3.2.0.1. Topological criteria

Corollary 3.1 Suppose that S � is homeomorphic to S and that each
connected component of S � encloses exactly one connected com-
ponent of Sk. Then S � is isotopic to S.

Proof This result follows almost immediately from theorem 2.1.
All we need to do is to shrink R3 � Sk slightly in order to get a
topological thickening of S. More precisely, denote by h : S � R 

R3 � Sk a homeomorphism. Because S � is compact, the Hausdorff
distance between S � and Sk is non zero. There exists a real K �
0 such that S � � h � S � � � K ��� K 	 � . Taking M � h � S � ��� K ��� K 	 �
gives the desired result. Indeed, S � separates the sides of M since
the components of S � enclose the bounded side of M but not the
unbounded one.

Note that from a practical point of view, if S � is a triangulated
surface, it is sufficient to compute the Euler characteristic of S � of
each of its components to decide whether it is homeomorphic to S.
If S � is also C2 and Sk � denotes the medial axis of R3 � S � , the same
argument as above used with theorem 2.2 yields :

Corollary 3.2 If each connected component of S � encloses exactly
one connected component of Sk and each connected component of
S encloses exactly one connected component of Sk � , then S and S �
are isotopic.

3.2.0.2. Metric Criteria We denote by d � X � �X � the “half Haus-
dorff distance” from a subset X � � R3 to another subset X � R3,
that is :

d � X � � X � � sup
x � X

inf
x ��� X � d � x � x � �

Note that d � X � � X � is the minimum value of ε such that X � X � ε.
Also, d � X � X � � � max � d � X �

X � � � d � X � � X � � denotes the Hausdorff
distance between X and X � . By using offsets as topological thick-
enings, one obtains the following results :

Corollary 3.3 If S � is homeomorphic to S and d � S � S � � 	
min � l f s � S � � l f s � S � � � , then S � is isotopic to S. Moreover, the isotopy
F can be chosen in such a way that the half Hausdorff distance from
S to F � S � � t � never exceeds the initial half Hausdorff distance.
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Proof We apply theorem 2.1 with M � Sε, where ε �
min � l f s � S � � l f s � S � ��� . The only condition that is not trivially satis-
fied is that S � separates the sides of M. We now prove it by contra-
diction, in the connected case. Let S1 and S2 be the sides of M. First
remark that for any x � S1 there exists a unique point, f � x � � S2
such that the segment � x � f � x � 	 is included in M and meets S per-
pendicularly (see figure 1). Suppose that S � does not separate S1
and S2. Then for any x � S1 if the segment � x � f � x � 	 intersects S � ,
then it intersects in at least two points (if it is not the case, one can
construct a path from x to f � x � which does not intersect S � and the
union of this path with the segment � x � f � x � 	 is a closed path which
meets S � in only one point : a contradiction).

S1

S2

S
S �

y

y �

ϕ � y �

f � ϕ � y ���

Figure 1: Proof of corollary 3.3.

Now for any point y � S � there exists a unique point ϕ � y � � S1
such that y � �ϕ � y � � f � ϕ � y � � 	 . Let y � S � be such that the distance
between y and ϕ � y � is the largest among all the points in S � . Thus
the segment �ϕ � y � � f � ϕ � y � � 	 is also normal to S � at point y. Let now
y � �� y be another intersection point between � ϕ � y � � f � ϕ � y � � 	 and S � .
The ball with diameter � y � y ��	 is tangent to S � at y and meets S � in at
least two points : the segment joining its center and y has to contain
a point of Sk � . But such a point is at distance less than ε from S � ,
which is a contradiction.

The argument used in the preceding proof applied the other way
around leads to :

Theorem 3.3 If d � S � S � � 	 min � l f s � S � � l f s � S � ��� , then S � is isotopic
to S. Moreover, the isotopy F can be chosen in such a way that the
Hausdorff distance between F � S � � t � and S never exceeds the initial
Hausdorff distance.

3.2.0.3. Interval Solid Models Another consequence of theorem
2.1 is related to the notion of Interval Solid Models studied in [SSP]
and [SP]. Roughly speaking, an interval solid S � associated to a
smooth � 2 surface S embedded in R3 is a finite covering of S by
rectangular boxes whose edges are parallel to the co-ordinate axes
which satisfy some additional contitions (see [SSP] for precise def-
inition). It is proven in [SSP] that the two boundary components
S1 and S2 of this covering are homeomorphic to S. Moreover, [SP]
recalls the notion of ε-isotopy which is stronger than the notion
of isotopy: points cannot move outside of an ε-neighbourhood of
their initial position during the isotopy. T. Sakkalis and T.J. Peters
prove in [SP], section 5, that if the boxes are small enough then S1
and S2 are ε-isotopic to S. Note that this result is existential, that
is it does not provide any particular bound on the maximum box
size allowed to guarantee that isotopy holds. In our setting, one can
slightly generalize their result.

Corollary 3.4 If S � does not intersect the medial axis of S, then its
two boundary components are isotopic to S.

So one can relax the hypothesis about the size of the boxes in
[SP] : here, the diameter of the boxes should merely be smaller
than l f s � S � . The major drawback is that one does not obtain that
S1 and S2 are ε-isotopic to S any more. Indeed, one has that the
boundary components of S � can be isotoped to S within S � , so that
the Hausdorff distance is controlled, but each particular point may
move arbitrarily far from its initial position during the isotopy.

4. Mathematical preliminaries

4.1. Surface topology: Euler characteristic and coverings

This section is dedicated to some basic recall about topology of
compact orientable surfaces which are widely used in the follow-
ing. Let S be a compact orientable surface with possibly non empty
boundary ∂S. Denote by b the number of connected components of
∂S. If � is a triangulation of S, denote by f the number of its faces,
by e the number of its edges and by s the number of its vertices.
The Euler characteristic χ � S � of S is defined as

χ � S � � f � e � s 
It is well known that such a number does not depend on the choice
of the triangulation � (see [Ma] for example). It is also well known
that S always admits a triangulation (see [Re]). So Euler character-
istic is well defined for compact surfaces and two homeomorphic
surfaces have the same Euler characteristic. The genus, g � S � of S is
defined as

g � S � � 1
2
� 2 � χ � S � � b � 

The genus and the number of boundary components (or equiva-
lently the Euler characteristic and the number of boundary compo-
nents) are sufficient to classify compact connected orientable sur-
faces.

Theorem 4.1 (see [Ma] for a proof) Two connected compact ori-
entable surfaces are homeomorphic if and only if they have the
same genus and the same number of boundary components.

In the following of this paper, we will also use the notion
of topological covering between surfaces (see [Ma]). A map
p : S � 
 S is a topological covering of S if there exists a non empty
discrete set F (finite or infinite denumerable) satisfying the follow-
ing property: for any point x � S, there exists a neighbourhood V
of x and an homeomorpism Φ between p � 1 � V � and V � F such
that p1 � Φ � p where p1 : V � F 
 V is the canonical projection.
If F is finite, the cardinality of F is known as the number of sheets
of the covering. In other words, a topological covering is a map
p : S � 
 S such that every x � S has an open neighborhood V
such that p � 1 � V � is a disjoint union of (countably many) open
sets, each of which is mapped homeomorphically onto V by p.
The simplest examples of topological coverings are canonical
projections p1 : V � F 
 V ; such coverings are called trivial. Let
us now give a more interesting example : consider the map from
the torus S � S1 � S1 to itself defined by p � θ � ϕ � � � 2θ � ϕ � . It is an
easy exercise to prove that p is a 2-sheeted covering of torus S by
itself. Important facts are, that a 1-sheeted covering between two
compact surfaces is an homeomorphism and that if p : S � 
 S is a
n-sheeted covering of S, then χ � S � � � nχ � S � .
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Finally, in the proofs of our main theorems, we will use an argu-
ment resorting to singular homology theory. This theory is beyond
the scope of this paper and we refer the reader to [G] for an intro-
duction to the subject.

4.2. 3-manifold topology

The proof of theorem 2.1 is based upon the following theorem
([JS], [Wa], see [H] p.16 for a proof), which we explain below.

Theorem 4.2 Let M̃ be a connected compact irreducible Seifert-
fibered manifold. Then any essential surface � � in M̃ is isotopic to
a surface which is either vertical, i.e. a union of regular fibers, or
horizontal, i.e. transverse to all fibers.

Let us explain the various terms involved in this theorem. A 3-
manifold M̃ is said to be irreducible if any 2-sphere embedded in
M̃ bounds a 3-ball in M̃. A Seifert manifold is a 3-manifold that de-
composes into a union of topological circles, the fibers, satisfying
certain properties. The simplest example of Seifert manifold is the
cartesian product of a surface � and a circle S1, the fibers being the
circles

�
x � � S1, x ��� . In what follows, we shall only deal with

Seifert manifolds of that kind. We will not explain what a regular
fiber is because in our case all the fibers are regular. An oriented
surface embedded in a 3-manifold M̃ is incompressible if none of
its components is homeomorphic to a 2-dimensional sphere and if
for any (topological) disk D � M̃ whose boundary is included in � ,
there is a disk D � ��� such that ∂D � ∂D � . Any disk D for which
there is no such D � is called a compressing disk for � (see figure
2). Intuitively, � is incompressible when it has no extra handle with
respect to M̃. An essential surface in a 3-manifold M̃ is an incom-
pressible surface, satisfying certain additional conditions related to
∂M̃. In particular, when M̃ has no boundary, any incompressible
surface is essential. We will actually see that all the incompressible
surfaces considered in this paper are essential, even in the case with
boundary. Finally, two sub-manifolds of M̃ are said to be transverse
if in any point x where they intersect, the (vectorial) sum of their
tangent space spans the tangent space of M̃ at x. The intersection of
two transverse sub-manifolds � 1 and � 2 is again a sub-manifold,
with codimension the sum of the codimensions of � 1 and � 2 (see
[Hi]). In particular, a surface of a Seifert 3-manifold transverse to a
fiber meets that fiber in a discrete set of points. Also, two surfaces
in a 3-manifold are transverse if and only if they are not tangent at
any point.

5. Proofs

In sections 5.1 and 5.2, we prove theorem 2.1 in the case where
S is connected. Section 5.3 completes the proof of theorems 2.1
and 2.2 in the case where S has several connected components. Let
M be a topological thickening of S, and suppose that S, S � and M
fulfill the assumptions of theorem 2.1. From now on, we identify M
with S � � 0 � 1 	 , using the map Φ associated with M (see definition
2.2). Let M̃ be the Seifert 3-manifold S � S1 obtained from M by
identification of its sides S � �

0 � and S � �
1 � . We denote by �

the surface corresponding to the sides of M in M̃, and by � � the
surface corresponding to S � in M̃. Note that in M̃, S corresponds to
the surface S � �

1 � 2 � . As S � �
1 � 2 � and � � S � �

0 � � S � �
1 �

are obviously isotopic in M̃, it will be sufficient to prove that � � is
isotopic to � in M̃ to prove our result.

By the assumptions of theorem 2.1, � and � � are homeomorphic
and disjoint. Also :

Lemma 5.1 M̃ � � � is connected.

Proof By assumption, the two sides of M lie in two different com-
ponents of M � S � , say C1 and C2. To prove that M̃ � � � is connected,
it is sufficient to prove that M � S � has no other component than C1
and C2, since these two components are merged upon identification
of the two sides of M. The boundary of say C1 intersects S � along a
closed non empty subset of S � . This subset is also an open subset of
S � for the induced topology. Since S � is connected, we get that S � is
included in the boundary of C1. The same is true for C2. Now sup-
pose that M � S � has another component C3. By a similar argument,
the boundary of C3 would contain S � , so that a point x � S � would
lie in the closure of C1, C2 and C3. But this is not possible since
x has arbitrarily small neighborhoods that S � separates in only two
components.

Note that since we do not assume that S is closed (a closed sur-
face is a surface without boundary component), � , and thus � �
and M̃ may have non-empty boundaries. Although it is possible to
prove directly the proposition in the general case, one first gives the
proof in the case where S is closed in order to avoid some technical
difficulties. The additional technicalities occuring in the case with
boundary are detailed in section 5.2.
Any compact topological surface which admits a thickening is iso-
topic to a ��� smooth surface. So from now on, we suppose (with-
out loss of generality) that � and � � are � � smooth surfaces.

5.1. The case of a surface without boundary

Note that the case where � � S2 is a 2-dimensional sphere, M̃ �
S2 � S1 is not irreducible ([H] prop 1.12 p.18) , so it has to be
considered separately. Fortunately, isotopy holds when � � S2 is
a sphere, since it follows from Schoenflies theorem (see [Ro] P.34
for a statement of it and [Br] for a proof) that there is no smooth
knotted 2-sphere in R3. From now on, we assume that � is not a
sphere.

We first prove that M̃ and � � fulfill the hypothesis of theorem 4.2
and then deduce that � � is isotopic to � . Since � is not a sphere,
M is an irreducible manifold ([H] prop 1.12 p.18). Hence, we just
have to prove the following

Proposition 5.1 � � is an essential surface in M̃.

Proof Since M̃ has no boundary, it is sufficient to prove that � �
is incompressible. Suppose � � is compressible. So one can find a
simple curve γ on � � which is not null homotopic in � � and which
bounds an embedded disc D in M̃. Do the following surgery: cut
� � along γ and glue a disk homotopic to D along each of the two
boundary components of � � � γ (see fig 2). In this way, one obtains
a new surface with Euler characteristic greater than χ ��� � � � χ ��� � .
The previous surgery does not change the homology class: the new
surface is homologous to � � . The surface � � (with well choosen
orientation) is homologous to � ( � and � � form the boundary of
an open subset in M̃), and it follows from Künneth formula (see
[G] p.198 for example) that the homology class of � in M̃ is not
zero. So one of the connected components ˜� � of the new surface
in M̃ is not homologous to zero. Moreover, ˜� � has a smaller genus
than the one of � . Indeed, suppose it is not the case. As the new
surface has a larger Euler characteristic than χ ��� � � and has at most
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2 connected components, the only possibility is that this surface is
the disjoint union of ˜� � and a sphere. Indeed, the sphere is the only
closed orientable connected surface with positive Euler character-
istic. Considering the complement of the compressing disk in the
sphere component shows that ∂D bounds a disk in � � , which is a
contradiction.

D

γ
S � S̃ �

Figure 2: Surgery along a compressing disk

Lemma 5.2 It is possible to choose D such that D
� ����� .

Proof Consider the embedded disks having γ as boundary and
which meet � transversally. Each of these disks meets � in a union
of n closed loops. Take as D the disk such that this number n is
minimum. Suppose that n is not zero. Among all these curves there
is one, denoted by α, which bounds a disk in D � ��� � D � (when
the curves are nested, consider any innermost curve on D, see fig.
3 on the right). The surface � is incompressible: indeed, the injec-
tion of � in M̃ induces an injection between corresponding funda-
mental groups (see [H] p. 10). So α also bounds a disk in � . The
3-manifold M̃ being irreducible, the sphere defined by these 2 disks
bounds a 3-ball. One can then make an isotopy to obtain a disk D �
such that D � � � � � D � � � � α. This contradicts the minimality of
n (see fig. 3).

DS

α

α

D

Figure 3: Decreasing the number of components of D
� �

The previous surgery cannot be iterated an infinite number of times,
since the genus of ˜� � decreases each time. Upon termination, one
obtains a surface, called ˜� � again, which is incompressible or the
sphere S2, and which does not intersect the surface � because we
chose compressing disks that do not meet � . If ˜� � is a 2-sphere, it
does not bound a 3-ball because its homology class in H2 � M̃ � is not

zero. This implies that M̃ is not irreducible : a contradiction. So ˜� �
is an incompressible surface. Applying theorem 4.2, one deduces
that ˜� � is isotopic to either a horizontal or a vertical surface.
Claim: ˜� � is not isotopic to a vertical surface.
Proof: Suppose it is. Then there exists a surface ˜� � � which is an
union of fibers of M̃ and which is isotopic to ˜� � . Choose one fiber
ϕ included in ˜� � � . Its intersection number with � is equal to 1 and
has to remain constant during the isotopy. So ˜� � contains a sim-
ple closed curve whose intersection number with � is equal to 1,
namely the image of ϕ under the isotopy. But ˜� � does not intersect
� : contradiction.
Hence ˜� � is isotopic to a horizontal surface, which is a covering of
� under the canonical projection of M̃. But this is not possible since
genus � ˜� � � 	 genus ��� � . So, � � is incompressible, which concludes
the proof of proposition 5.1.

Now, it follows from theorem 4.2 that � � is isotopic to either a
horizontal or a vertical surface. � � does not intersect � , so it cannot
be isotopic to a vertical surface, by the same argument as above. So
� � is isotopic to a horizontal surface. This surface is a covering of �
under the canonical projection of M̃. Because M̃ � � � is connected,
it follows from [H] p.17-18 that the covering is trivial. Hence, � � is
isotopic to a horizontal surface � � � which meets each fiber in one
point. It is now a classical fact that this horizontal surface can be
“pushed along the fibers” to construct an isotopy to � (see Fig. 4).
Note that, using the same argument as the one used previously to
prove that one can construct ˜� � such that it does not intersect � ,
the isotopy Ft � t � � 0 � 1 	 between � � � and � can be chosen so that
Ft ��� � � � � t � 	 0 � 1 	 never intersects � . So � � is isotopic to � in M.

S St � ft � S � S”

Figure 4: Pushing � � � to � along the fibers of M̃

5.2. The case of surfaces with boundary

The proof of theorem 2.1 for a surface S with non empty boundary
is almost the same as the previous one. The few changes are out-
lined in this section.
As in the case where ��� S2, there is no smooth knotted disk in R3

and theorem 2.1 holds if � is a disk. So consider the case where � is
not a topological disk. Let us begin with a few remarks. First, note
that if ∂ � ���� , then M̃ is irreducible (see [H] p.18 or [JS] p.13). Sec-
ond, since the boundary components of � are simple closed curves,
the boundary of M̃ is a finite union of tori T1 ������� Tk. Moreover, the
boundary components of � are meridians of T1 ������� Tk respectively.
Let γ1 � T1 ������� γk � Tk be these meridians.
Each torus Ti contains exactly one boundary component γ �i of � �
and γi

� γ �i ��� . Since M̃ � � � is connected, γ �i is not null homotopic
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in Ti. So, γ �i is also a meridian of Ti and it is then isotopic to γi (see
figure 5).

γi
γ �i

Ti

Figure 5: Torus on the boundary of M̃

So, since � is not a topological disk, the boundary components
of � � are not null-homotopic in M̃. Now, proposition 5.1 remains
valid.

Proposition 5.2 � � is an essential surface in M̃.

Sketch of proof. � The framework of the proof is the same as in
proposition 5.1. Each boundary component of M̃ being a torus, it
follows from lemma 1.10 p.15 in [H] that if � � is incompressible,
then � � is essential. So it is sufficient to prove that � � is incom-
pressible.
In order to deal with the boundary of M̃, one has to consider the
relative homology of M̃ mod ∂M̃ instead of the homology of M̃.
Suppose that � � is compressible. One can do the same surgery
along a compressing disk D as in the proof of proposition 5.1. Such
a surgery does not change the homology class relative to ∂M̃: the
surface obtained after the surgery is homologous (mod ∂M̃) to � �
which is itself homologous to � (mod ∂M̃). Thus, one of the con-
nected component ˜� � of the new surface is non homologous to 0.
Unlike in the case without boundary, the surgery on � � may have
2 different consequences on the topology of ˜� � . The genus of ˜� �
either decreases or its number of boundary components decreases
(see figure 6). So one has to consider the genus plus the number
of boundary components of ˜� � as the decreasing quantity during
the surgery. As in above section, the compressing disk D may be
choosen so that it does not intersect � .
By iteration one obtains a surface, denoted ˜� � again, which is
incompressible or the sphere S2 or a disc with boundary on the
boundary of M̃. As in previous section, because M̃ is irreducible, ˜� �
cannot be a sphere. The boundary components of ˜� � are boundary
components of � � so they are not null-homotopic in M̃. It follows
that ˜� � cannot be a disk and then it is incompressible and hence it is
isotopic to either a vertical or an horizontal surface. As in previous
section, this surface cannot be vertical so it is horizontal. It follows
that ˜� � is a topological covering of � : its genus and its number of
boundary components must be at least as large as the one of � . This
is not the case. So, � � is incompressible and it is then isotopic to
an horizontal or vertical surface. The proof of proposition then con-
cludes in the same way as in the case of a surface without boundary.

The proof of theorem 2.1 now ends as in previous section.

5.3. Case of several connected components

Once we showed theorem 2.1 in the connected case, the general
case follows easily by repeated application of the pigeonhole prin-

S �

γ

γSurgery

Genus decreases

Surgery

S �

components decreases
Number of boundary

Figure 6: The effects of a surgery on � �

ciple. Indeed, since S and S � are homeomorphic, they have the same
number of connected components. Moreover, as S � is included in M
and separates its sides, each component C of M contains at least one
component of S � . As a consequence, C

�
S � is a connected surface.

Similarly, S and S � have the same number of boundary components.
Also, for each boundary component B of S, B ��� 0 � 1 	 has to contain
at least one boundary component of S � , otherwise S � would not sep-
arate the sides of M. Thus, B � � 0 � 1 	 contains exactly one boundary
component of S � , that is C

�
S � and C

�
S have the same number of

boundary components. They also have the same genus. Indeed, the
proof of theorem 2.1 in the connected case shows that the genus of
a surface separating the sides of a topological thickening of a con-
nected surface has to be larger or equal than the one of the surface.
If equality would fail for any component of M, then the genus of
S � would be larger than the one of S, a contradiction. We thus de-
duce that C

�
S � and C

�
S are homeomorphic by the classification

of compact connected orientable surfaces, and conclude by apply-
ing the connected case separately to each component of S.
The proof of theorem 2.2 follows similar lines : for each compo-
nent C of M, C

�
S � has at least as many components, boundary

component, and handles as C
�

S � . Since the same holds for M � , we
deduce that all these inequalities are equalities : S and S � are thus
homeomorphic, and the conclusion follows by theorem 2.1.

Conclusion

We have presented two general conditions ensuring the existence
of an isotopy between two surfaces embedded in R3, and given
several applications of them in some widely considered particu-
lar situations. These conditions are a versatile and easy to use tool
for proving that two surfaces are topologically equivalent, and we
hope that they will prove useful in other applications than the ones
mentioned in this paper. Though the formulation of our conditions
directly extend to hypersurfaces of any dimension, the proof tech-
niques used in this paper are typically 3-dimensional, and there is
little hope that they extend in higher dimensions. It would be in-
teresting to know which part of our results still hold in arbitrary
dimension.
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