
Eurographics/ ACM SIGGRAPH Symposium on Computer Animation (2014)
Vladlen Koltun and Eftychios Sifakis (Editors)

An Adaptive Virtual Node Algorithm with Robust Mesh
Cutting

Yuting Wang† Chenfanfu Jiang‡ Craig Schroeder† Joseph Teran†

†Department of Mathematics ‡Department of Computer Science
University of California, Los Angeles

Abstract
We present a novel virtual node algorithm (VNA) for changing tetrahedron mesh topology to represent arbitrary
cutting triangulated surfaces. Our approach addresses a number of shortcomings in the original VNA of [MBF04].
First, we generalize the VNA so that cuts can pass through tetrahedron mesh vertices and lie on mesh edges and
faces. The original algorithm did not make sense for these cases and required often ambiguous perturbation of the
cutting surface to avoid them. Second, we develop an adaptive approach to the definition of embedded material
used for element duplication. The original algorithm could only handle a limited number of configurations which
restricted cut surfaces to have curvature at the scale of the tetrahedron elements. Our adaptive approach allows
for cut surfaces with curvatures independent of the embedding tetrahedron mesh resolution. Finally, we present a
novel, provably-robust floating point mesh intersection routine that accurately registers triangulated surface cuts
against the background tetrahedron mesh without the need for exact arithmetic.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling;

1. Introduction

The virtual node algorithm was developed to model topolog-
ical changes defined by cuts in a tetrahedron mesh that do
not lie on mesh facet boundaries [MBF04]. Although simply
splitting a tetrahedron mesh along element faces is the sim-
plest means of changing mesh topology, it limits the paths of
cutting surfaces to be aligned with the facets of the original
grid. The VNA was designed to generalize this approach to
cuts that follow more arbitrary geometric paths. Avoidance
of expensive tetrahedral re-meshing approaches that rebuild
the mesh to respect propagating cuts was the primary moti-
vation. With the VNA, topological changes are achieved by
duplicating mesh elements that intersect the cut. Duplicate
copies of mesh elements then contain only a portion of the
material being modeled (often referred to as embedded ma-
terial), but all duplicate mesh elements are copies of original
elements and thus have predictable (and ideally high quality)
conditioning.

† e-mail: {yuting,craig,teran}@math.ucla.edu
‡ e-mail: cffjiang@cs.ucla.edu

However, as pointed out in [SDF07] the original algorithm
does have some obvious limitations. First, it is often desir-
able to allow a cut to pass through a mesh facet, but the orig-
inal VNA approach requires all cuts to pass through tetra-
hedron faces without intersecting the vertices of the mesh.
Thus, cuts cannot lie on tetrahedron faces or pass through
vertices and must be perturbed to satisfy this constraint. Fur-
thermore, a cut cannot cross a tetrahedron face more than
once, thus the resolution of the tetrahedral mesh limits the
types of allowable cuts, which is counter to the original mo-
tivation of the algorithm. We provide a new approach that
removes both of these limitations. First, we redevelop the
original VNA in a manner that allows cuts to pass through all
mesh facets including vertices, edges and faces. Second, we
develop an adaptive approach to the embedding and dupli-
cation processes that allows cuts to pass through mesh faces
an arbitrary number of times. This prevents limitations on
the cutting surface geometry imposed by the original VNA
from the requirement that a cut only cross a tetrahedron face
in one location. This adaptivity is only used to allow subse-
quent cuts to a simulation mesh; we do not adaptively refine
the elements of the simulation mesh.

c© The Eurographics Association 2014.

DOI: 10.2312/sca.20141125

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/sca.20141125

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 1: The maximally split configuration in 2D contains three types of cutting flags (top row). The red flag is set if inter-
sections are registered at the green location and one of the blue locations on the triangle. In the maximally split configuration
in 3D (top right), each color represents a different type of cutting face, which are shown individually on the bottom row. The
correspondence is, from bottom left to bottom right: green, red, yellow, and blue. For each of the four 3D cases (bottom), the
shaded flag is set if intersections are registered at the red location, one of the green locations, and one of the blue locations on
the tetrahedron.

Lastly, we provide a novel mesh intersection algorithm for
robustly defining the intersections of a cutting triangulated
surface against a tetrahedron mesh. This surface must be re-
solved against the geometric primitives used for the duplica-
tion process in the VNA, and it can be sensitive to rounding
errors. We provide a novel technique for robustly computing
the quantities in this process that are sensitive to rounding
errors.

2. Related work

Simulation of topological change in Lagrangian meshes was
introduced to computer graphics in the pioneering work of
[TF88]. [BSM∗02] and [WWD14] provide detailed surveys
of applications of such mesh cutting. Early approaches typ-
ically made use of simple separation along mesh element
boundaries [NTB∗91,MMA99,SWB01,MMDJ01,NvdS00]
or even element deletion [FG99, CDA00, JBB∗10, FDA02].
The available geometric detail in this type of approach was
increased somewhat by subdivision of elements in the mesh
prior to splitting [MK00, BG00]; however, this tended to in-
troduce elements with poor aspect ratios. More geometri-
cally rich cutting surfaces were generated by allowing sep-
aration along more arbitrary paths (albeit with the expense
of re-meshing) [NF99, OH99, OBH02]. Recently, such ap-
proaches have been used to create some very compelling re-
sults for a variety of materials [NKJF09, KMOD09, SSF09,

WRK∗10, CWSO13, WT08, WTGT09, GBO04, BWHT07].
Embedded methods have been developed to minimize the
complexity of re-meshing by embedding material surfaces
into the existing mesh [MG04, MBF04, BHTF07, SDF07,
GBT07, PO09, HJST13]. Although these works generalized
the approach to fracture, the embedding idea goes back at
least to free form deformations [SP86, FVDPT97, CGC∗02,
TSB∗05]. Also, particle-based methods can provide flexibil-
ity for topology change [PKA∗05]. Other interesting mod-
els for cut patterns were developed in [MCK13, IO06, IO09,
NF99].

3. Modified virtual node algorithm

The original VNA allows for a finite number of embedded
cuts in a given element. Specifically, individual tetrahedra in
the mesh can only be split into at most four embedded subre-
gions (one associated with each node). This implies a “max-
imally split” configuration of the mesh in which all possible
cuts have been made. In the original algorithm, each dis-
joint piece in this configuration consists of the elements in
the one-ring of the nodes in the original mesh. Every other
node in the piece is then a duplicated copy of the original
node. Although not originally described this way, the algo-
rithm can be conceived of via manipulations in the material
connections of these pieces in the maximally split configura-

c© The Eurographics Association 2014.

78

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Original Mesh Cutting surface Set cutting flags Find connected components

Duplicate elementsMerge elementsSubdivide material meshSimulation mesh evolves

Second cut Cutting flags Duplicate and merge Final subdivided result

Algorithm

Overview

Figure 2: Schematic overview of our cutting algorithm.

tion as in [SDF07]. We will provide this material connection
description of our modified algorithm here.

First, we modify the available splits of a tetrahedron from
the original four node-associated regions to 24 tetrahedra as
shown in the top right of Figure 1. This modification of the
maximally split configuration is designed to allow cuts to
pass through nodes of the embedding mesh, thus removing a
major limitation of the original VNA. We refer to the trian-
gle boundaries separating each of the tetrahedron subregions
as cut faces since they will ultimately represent the embed-
ded cut surface geometry. With this view, the first step in
the algorithm is to define which cut faces are active. An ac-
tive cut face means that material is separated along it. Active
cut faces for a tetrahedron are identified by considering the
way each element of the cutting surface intersects the tetra-
hedron. There are three cases in 2D and four in 3D, which are
summarized in Figure 1. We record this information using
cutting flags, which amounts to storing one bit for each pos-
sible cut face (12 bits in 2D, 60 bits in 3D) that could be ac-
tive. Then, we compute connected components of material in
the element, where sub-tetrahedra belong to the same com-
ponent if the flag corresponding to the face between them is
not set. Note that unlike in [SDF07], this process has only
a finite number of possible cases and is straightforward to
implement. Afterwards, a copy of the embedding element is
made for each connected component. Each copy has all four
of its own nodes distinct from any of the other copies.

Next, tetrahedron copies of an original element created in
the first phase are compared to copies of the face-adjacent

neighbors of the original element. If any of these copies
share a material connection through their neighboring face,
the six nodes on the copies of the face are condensed to three,
thus sewing the elements back together along the face. Ma-
terial connection can be established efficiently by virtue of
the small number of possible material configurations.

The original VNA did not allow for cut faces on the
boundary of the embedding element. However, we show that
simply including the faces of the 24 sub tetrahedra that lay
on the boundary of the embedding element as cut faces al-
lows the algorithm to let cuts pass through embedding nodes
and along embedding faces. This inability in the original al-
gorithm required error-prone perturbation of cut surfaces to
prevent these cases. Since we can handle degenerate cuts, we
do not require perturbation to avoid them. In fact, we show
in Section 5 that the ability to register degeneracies allows
intersections to be computed robustly.

4. Adaptive cutting

The maximally split configuration in VNA approach places
limitations on the possible geometries of the cutting sur-
faces. This causes the curvature of the cut surface to be at
most at the scale of the tetrahedron resolution in the embed-
ding mesh. This limitation was a large motivation for the
work in [SDF07]. However, the generality of the available
cutting surfaces in [SDF07] comes at the cost of significant
algorithmic complexity. We show that an adaptive approach
can be used to add more flexibility in cut surface geometry.

To clarify the steps in the process, we will refer to the

c© The Eurographics Association 2014.

79

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 3: Left: two points within the vertex-vertex tolerance and are registered as intersecting (red). Middle: the two points
separate, but the cutting segment remains within the edge-vertex tolerance and the edge-vertex pair is registered as intersecting
(green). Right: the cutting segment is far enough from degeneracies that face-vertex (yellow) and edge-edge (orange) intersec-
tions are registered.

original tetrahedron mesh as the simulation mesh. We will
resolve all material after cuts in another mesh that we refer
to as the material mesh. Initially these two meshes would
normally be the same. After performing a cutting step, we
perform a subdivision step on the embedded material geom-
etry without changing the underlying simulation mesh. We
subdivide the material in cut elements by creating an ele-
ment for each of its maximally split components. Note that
this does require that neighboring material mesh elements be
split, as shown in the bottom right of Figure 2. While such a
subdivision strategy does lead to material elements with un-
predictable conditioning, this is not problematic since it does
not effect the conditioning of the simulation mesh. This sub-
division could clearly have been performed with fewer ele-
ments, but this simple strategy worked well for our needs.

The subdivided material mesh is embedded in the simula-
tion mesh. To perform subsequent cuts, we simply cut the the
material mesh and then perform duplication and merge steps
as if it were the original simulation mesh. However, this pro-
cess is used to duplicate and merge the simulation mesh with
the logic being simply that if a simulation mesh element con-
tains a material element that is duplicated, it is duplicated.
Similarly, a merge between two material elements implies a
merge between their (duplicated) embedding simulation el-
ements. This can happen in two ways. First, if two material
elements with the same embedding simulation element are
merged, the corresponding duplicated simulation elements
are merged entirely. Second, if two material elements with
adjacent embedding simulation elements are merged, then
only the faces (determined by adjacency) of their embed-
ding elements are merged. With this adaptive approach, cuts
can traverse paths with curvatures arbitrarily higher than the
sizes implied by the simulation mesh.

Note that we perform the subdivision step after the cutting
step. This forces each cut to be resolved at the resolution of
the mesh and avoids creating an unnecessarily refined mesh

to resolve the details of a complex cutting surface. Rather,
the subdivision step afterwards allows cuts to be cut again
without introducing large deviations from the cutting sur-
face where cuts meet; deviations are instead limited by the
sizes of the tolerances used by the robust intersection rou-
tines, which are a small fraction of the size of an element.

When performing incremental cutting, we delay the sub-
division step until the entire cut has been made. When an
element is split due to the incremental cut, each copy re-
ceives a copy of the cutting flags. This allows cutting of the
element to resume as more of the incremental cut becomes
available while avoiding excessive subdivision on incremen-
tal cuts that consist of large numbers of small additions to
the cutting surface.

5. Robust intersection computation

Our robust intersection algorithm works by checking for
intersections in order of most degenerate to least: vertex-
vertex (VV), edge-vertex (EV), face-vertex (FV), edge-edge
(EE), face-edge (FE), and finally tetrahedron-vertex (TV).
All but the FE and TV cases are degenerate. (In 2D, the
cases are VV, EV, FV, and EE, with VV and EV being de-
generate cases.) When an intersection is found, it is stored in
a hashtable along with the barycentric weights of the clos-
est points on the primitives. A candidate intersection pair is
rejected if any degeneracy of the pair is found in the hashta-
bles. Thus, for example, an EV pair is rejected if either VV
pair was registered as a degeneracy. Examples of degenerate
intersections are shown in Figure 3.

Let F [f (x)] indicate that the computation of f (x) is being
carried out under floating point computation, and let E [f (x)]
be a bound on its error. That is, |F [f (x)]− f (x)| ≤ E [f (x)].
The intersection logic consists of two different types of tests.
The primary type of test consists of computing a criterion
and testing its sign. These sign checks must produce the

c© The Eurographics Association 2014.

80

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 4: An armadillo mesh with 380K tetrahedra is progressively cut with an “S” and then cut into three pieces.

same result as would be obtained under exact arithmetic.
Since we only perform intersection checks for a pair when
no degeneracy of the pair was found, we can assume the cri-
teria for such degeneracies are not met. The logic that we
use differs somewhat from case to case, but in general we
use these assumptions to prove | f (x)|> a for some appropri-
ate bound a and then show that E [f (x)]< a. This guarantees
that any value that might be computed under floating point
has the same sign as the exactly-computed quantity.

The second type of test that we require is to compare
some criterion f (x) to a tolerance τ or, equivalently, deter-
mine whether F [τ− f (x)] ≥ 0. In this case, we define two
bounding tolerances τ− and τ+, such that τ− < τ < τ+ and

τ−− f (x)≥ 0 =⇒F [τ− f (x)]≥ 0 =⇒ τ+− f (x)≥ 0. (1)

If E [τ− f (x)] < |τ− f (x)|, then the sign of F [τ− f (x)]
agrees with the corresponding exact comparison and (1)
holds trivially. Consider instead the choices x for which
E [τ− f (x)] ≥ |τ− f (x)|. For these x, we require the stricter
condition

τ−− f (x)≤F [τ− f (x)]≤ τ+− f (x), (2)

from which τ− and τ+ can be computed given a bound on
E [τ− f (x)]. Note that (2) implies (1). In this way, we ob-
tain guaranteed exact bounds on the criterion even though
the tolerance check was performed in floating point. In some
cases, we use τ− > 0 and a tolerance check against τ as an
effective means of checking the sign of f (x).

The two comparison strategies described above rely crit-
ically on the ability to bound the floating point error in

the computation of both the criteria and tolerances. The
tolerances are all computed in the same simple way, and
their floating point error is computed directly. The criteria
have much more complicated computations, making float-
ing point bounds tedious and error prone to compute. Here,
we instrumented our code to symbolically track conserva-
tive floating point error bounds through the computations
in our code. This produces floating point error guarantees
that we can use in our derivations. The requirement that the
logic above be correct and along with the floating point er-
ror bounds obtained symbolically from the code places con-
straints on the values that may be chosen for the tolerances.
The final step is to choose tolerances that satisfy all of the
constraints. We have done this in 2D and 3D. Pseudocode
for our intersection routines, along with suitable tolerances,
are presented in an appendix. If the routines are implemented
exactly as indicated in the pseudocode using the tolerances
provided, the resulting implementation will be provably ro-
bust under both IEEE float and double precision arith-
metic. A complete and detailed writeup, including detailed
instructions on tracking floating point error, proofs for cri-
terion bounds and correctness, and details on how the toler-
ance constraints were derived are provided as a supplemental
technical document.

6. Examples

In Figure 4, a stretched armadillo is first cut incrementally
along an S-shaped path before being diced into pieces. In
Figure 7, we peel the skin off a sphere, demonstrating the
ability to generate thin slices, even while cutting existing

c© The Eurographics Association 2014.

81

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 5: We demonstrate the ability to construct tetrahedralized volumes from triangulated surfaces using our cutting algo-
rithm. We cut a box by a cow surface and then cut it again with a bunny surface, resulting in two separate volumes. Details are
accurately resolved in both volumes, and the corners are sharp.

cuts. In Figure 6, we use shaped blades to cut letters into
a stretched thin sheet. The sheet fractures and deforms as the
blades pass through it.

Since our algorithm cuts tetrahedralized volumes using an
arbitrary cutting surface, we can use it to perform boolean
operations. In Figure 5, we cut a 20k-element cow surface
from a 208×128×68 box, where each cube is divided into
six tetrahedra. Our cutting algorithm accurately resolves the
delicate geometry of the cow surface, including its horn, ear
and tail. The cow volume is cut again by a bunny surface
mesh, resulting in two volumes.

7. Discussions

While our approach addresses a number of limitations of the
existing VNA, it is not without limitations. First, while our
adaptive definition of embedded material does improve the
ability to resolve cut surfaces at resolutions independent of
the embedding mesh, it does so with a considerable algo-
rithmic complexity compared to the original VNA. However,
this complexity is still significantly lower than the approach
in [SDF07]. Also, without this adaptive routine the algorithm
would have the same complexity as the original VNA while
adding the ability to pass through nodes, faces and edges.
Second, safe tolerances for the mesh intersection routines
are considerably larger in 3D than in 2D, which effectively
prevents the use of floats for 3D intersection calculations.
Lastly, while our adaptive approach does allow for cutting

surfaces with curvatures finer than the scale of the origi-
nal mesh, our incremental resolution of cutting surface can
constrain the cut surface curvature in some cases. However,
this could be prevented by initially subdividing the material
mesh to resolve curvatures of a desired scale.

8. Acknowledgments

All authors were partially supported by NSF (DMS-
0502315, DMS-0652427, CCF-0830554), DOE (09-LR-04-
116741-BERA), ONR (N000140310071, N000141010730,
N000141210834) and Intel STCVisual Computing Grant
(20112360).

References

[BG00] BIELSER D., GROSS M. H.: Interactive simulation of
surgical cuts. In Proc. Pac. Conf. Comp. Graph. App. (2000),
pp. 116–442. 2

[BHTF07] BAO Z., HONG J., TERAN J., FEDKIW R.: Fracturing
rigid materials. IEEE Trans. Vis. Comp. Graph. 13 (2007), 370–
378. 2

[BSM∗02] BRUYNS C. D., SENGER S., MENON A., MONT-
GOMERY K., WILDERMUTH S., BOYLE R.: A survey of interac-
tive mesh-cutting techniques and a new method for implementing
generalized interactive mesh cutting using virtual tools. Journal
Vis. Comp. Anim. 13 (2002), 21–42. 2

[BWHT07] BARGTEIL A., WOJTAN C., HODGINS J., TURK G.:
A finite element method for animating large viscoplastic flow.
ACM Trans. Graph. 26 (2007), 19–38. 2

c© The Eurographics Association 2014.

82

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 6: We cut letters out of stretched elastic sheet, demonstrating the ability to mix cutting, re-cutting, and simulation.

[CDA00] COTIN S., DELINGETTE H., AYACHE N.: A hybrid
elastic model for real-time cutting, deformations, and force feed-
back for surgery training and simulation. Vis. Comp. 16 (2000),
437–452. 2

[CGC∗02] CAPELL S., GREEN S., CURLESS B., DUCHAMP T.,
POPOVIĆ Z.: Interactive skeleton-driven dynamic deformations.
ACM Trans. Graph. 21 (2002), 586–593. 2

[CWSO13] CLAUSEN P., WICKE M., SHEWCHUK J. R.,
O’BRIEN J. F.: Simulating liquids and solid-liquid interactions
with lagrangian meshes. ACM Trans. Graph. 32 (2013), 17:1–15.
2

[FDA02] FOREST C., DELINGETTE H., AYACHE N.: Removing
tetrahedra from a manifold mesh. In Proc. Comp. Anim. (2002),
pp. 225–229. 2

[FG99] FRISKEN-GIBSON S. F.: Using linked volumes to model
object collisions, deformation, cutting, carving, and joining.
Trans. Vis. Comp. Graph. 5 (1999), 333–348. 2

[FVDPT97] FALOUTSOS P., VAN DE PANNE M., TERZOPOU-
LOS D.: Dynamic free-form deformations for animation synthe-
sis. IEEE Trans. Vis. Comp. Graph. 3 (1997), 201–214. 2

[GBO04] GOKTEKIN T., BARGTEIL A., O’BRIEN J.: A method
for animating viscoelastic fluids. ACM Trans. Graph. 23 (2004),
463–468. 2

[GBT07] GISSLER M., BECKER M., TESCHNER M.: Constraint
sets for topology-changing finite element models. In Virt. Real.
Inter. Phys. Sim. (2007), pp. 21–26. 2

[HJST13] HEGEMANN J., JIANG C., SCHROEDER C., TERAN
J. M.: A level set method for ductile fracture. In Proc. Symp.
Comp. Anim. (2013), pp. 193–201. 2

[IO06] IBEN H. N., O’BRIEN J. F.: Generating surface crack
patterns. In Proc. Symp. Comp. Anim. (2006), pp. 177–185. 2

[IO09] IBEN H., O’BRIEN J.: Generating surface crack patterns.
Graph. Mod. 71 (2009), 198–208. 2

[JBB∗10] JEŘÁBKOVÁ L., BOUSQUET G., BARBIER S., FAURE
F., ALLARD J.: Volumetric modeling and interactive cutting of
deformable bodies. Progress Biophs. Mol. Bio. 103 (2010), 217
– 224. 2

[KMOD09] KHAREVYCH L., MULLEN P., OWHADI H., DES-
BRUN M.: Numerical coarsening of inhomogeneous elastic ma-
terials. ACM Trans. Graph. 28, 3 (2009), 51:1–51:8. 2

[MBF04] MOLINO N., BAO Z., FEDKIW R.: A virtual node al-
gorithm for changing mesh topology during simulation. In ACM
SIGGRAPH (2004), pp. 385–392. 1, 2

[MCK13] MÜLLER M., CHENTANEZ N., KIM T.-Y.: Real time
dynamic fracture with volumetric approximate convex decompo-
sitions. ACM Trans. Graph. 32, 4 (2013), 115:1–115:10. 2

[MG04] MÜLLER M., GROSS M.: Interactive virtual materials.
In Proc. Graph. Int. (2004), pp. 239–246. 2

[MK00] MOR A. B., KANADE T.: Modifying soft tissue models:
Progressive cutting with minimal new element creation. In Proc.
MICCAI (2000), pp. 598–607. 2

[MMA99] MAZARAK O., MARTINS C., AMANATIDES J.: An-
imating exploding objects. In Graph. Int. (1999), pp. 211–218.
2

[MMDJ01] MÜLLER M., MCMILLAN L., DORSEY J., JAGNOW
R.: Real-time simulation of deformation and fracture of stiff
materials. In Proc. Eurographics Workshop Comp. Anim. Sim.
(2001), pp. 113–124. 2

[NF99] NEFF M., FIUME E.: A visual model for blast waves and
fracture. In Proc. Graph. Int. (1999), pp. 193–202. 2

[NKJF09] NESME M., KRY P. G., JEŘÁBKOVÁ L., FAURE F.:
Preserving topology and elasticity for embedded deformable
models. In ACM SIGGRAPH (2009), pp. 52:1–52:9. 2

[NTB∗91] NORTON A., TURK G., BACON B., GERTH J.,
SWEENEY P.: Animation of fracture by physical modeling. Vis.
Comp. 7 (1991), 210–219. 2

c© The Eurographics Association 2014.

83

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Figure 7: An apple is peeled demonstrating the ability to do incremental cuts and produce thin geometry, shown from the front
(left) and the side (right). The skin thickness is 1/60 of the diameter of the ball.

[NvdS00] NIENHUYS H.-W., VAN DER STAPPEN A. F.: Com-
bining finite element deformation with cutting for surgery simu-
lations. In Eurograph. Short Present. (2000), pp. 43–52. 2

[OBH02] O’BRIEN J., BARGTEIL A., HODGINS J.: Graphical
modeling and animation of ductile fracture. ACM Trans. Graph.
21 (2002), 291–294. 2

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling
and animation of brittle fracture. In ACM SIGGRAPH (1999),
pp. 137–146. 2

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ P.,
GROSS M., GUIBAS L.: Meshless animation of fracturing solids.
ACM Trans. Graph. 24 (2005), 957–964. 2

[PO09] PARKER E., O’BRIEN J.: Real-time deformation and
fracture in a game environment. In Proc. Symp. Comp. Anim.
(2009), pp. 165–175. 2

[SDF07] SIFAKIS E., DER K., FEDKIW R.: Arbitrary cutting of
deformable tetrahedralized objects. In Proc. Symp. Comp. Anim.
(2007), pp. 73–80. 1, 2, 3, 6

[SP86] SEDERBERG T., PARRY S.: Free-form deformation of
solid geometric models. In ACM SIGGRAPH (1986), pp. 151–
160. 2

[SSF09] SU J., SCHROEDER C., FEDKIW R.: Energy stability
and fracture for frame rate rigid body simulations. In Proceed-
ings of the 2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation (2009), pp. 155–164. 2

[SWB01] SMITH J., WITKIN A., BARAFF D.: Fast and control-
lable simulation of the shattering of brittle objects. Comp. Graph.
Forum 20 (2001), 81–90. 2

[TF88] TERZOPOULOS D., FLEISCHER K.: Modeling inelastic
deformation: viscolelasticity, plasticity, fracture. In ACM SIG-
GRAPH (1988), pp. 269–278. 2

[TSB∗05] TERAN J., SIFAKIS E., BLEMKER S., NG-THOW-
HING V., LAU C., FEDKIW R.: Creating and simulating skeletal
muscle from the visible human data set. IEEE Trans. Vis. Comp.
Graph. 11 (2005), 317–328. 2

[WRK∗10] WICKE M., RITCHIE D., KLINGNER B., BURKE
S., SHEWCHUK J., O’BRIEN J.: Dynamic local remeshing for
elastoplastic simulation. ACM Trans. Graph. 29 (2010), 49:1–
49:11. 2

[WT08] WOJTAN C., TURK G.: Fast viscoelastic behavior with
thin features. In ACM SIGGRAPH (2008), pp. 47:1–47:8. 2

[WTGT09] WOJTAN C., THÜREY N., GROSS M., TURK G.:
Deforming meshes that split and merge. ACM Trans. Graph. 28
(2009), 76:1–76:10. 2

[WWD14] WU J., WESTERMANN R., DICK C.: Physically-
based simulation of cuts in deformable bodies: A survey. In Eu-
rograph. State-of-the-Art Report (2014). 2

Appendix A: pseudocode

Figure 8 provides pseudocode for the routines we used in
2D and in 3D. They should be implemented as is, though
changes that do not affect the floating point computations
are of course fine (e.g., delaying computations so they will
only be computed if required). The EV cases involve a vec-
tor normalization, which is written as u← û

‖û‖ . Sufficient
floating point error has been assumed in the analysis so the
computation can instead be performed with a single division
as u← 1

‖û‖ û. The operation m2 ← ‖r‖2 in the 3D EE and

FV cases do not involve a square root; only m2 itself will be
required. The quantity ε is the machine epsilon, which will
be different for float or double precision.

c© The Eurographics Association 2014.

84

Yuting Wang, Chenfanfu Jiang, Craig Schroeder & Joseph Teran / An Adaptive Virtual Node Algorithm with Robust Mesh Cutting

Algorithm 1 Intersection routines for 2D
function COMPUTE_TOLERANCES(A,B)

La←maximum bound box edge length of mesh A
Lb←maximum bound box edge length of mesh B
s←
√

ε; L← 1+5ε

1−7s (La +Lb); t = sL
σ = 6.5t; τ = 4.5t; σ̂ = 5.5t; κ = 21εL2

end function
function VERTEX_VERTEX(A,B)

return ‖A−B‖2 ≤ σ
2

end function
function EDGE_VERTEX(A,B,P)

û← A−B; m←‖û‖; u← û
m

w← P−A; â← u ·w; ā← m− â
if m≤ σ̂ or |u×w|> τ or â < 0 or ā < 0 then

return (FALSE,0)
return (TRUE, â

m)
end function
function EDGE_EDGE(A,B,P)

aA← (A−P)× (Q−P); aB← (B−P)× (Q−P)
aP← (P−A)× (B−A); aQ← (Q−A)× (B−A)
if |aP| ≤ κ or |aQ| ≤ κ or sgn(aP) = sgn(aQ) or
|aA| ≤ κ or |aB| ≤ κ or sgn(aA) = sgn(aB) then
return (FALSE,0,0)

return (TRUE, aA
aA−aB

, aP
aP−aQ

)

end function
function TRIANGLE_VERTEX(A,B,P)

aA← (B−P)× (C−P); aB← (P−A)× (C−A)
aC← (B−A)× (P−A)
if |aA| ≤ κ or |aB| ≤ κ or |aC| ≤ κ or

sgn(aA) 6= sgn(aB) or sgn(aB) 6= sgn(aC) then
return (FALSE,0,0,0)

return (TRUE, aA
aA+aB+aC

, aB
aA+aB+aC

, aC
aA+aB+aC

)
end function

Algorithm 2 Intersection routines for 3D (part I)
function COMPUTE_TOLERANCES(A,B)

La←maximum bound box edge length of mesh A
Lb←maximum bound box edge length of mesh B
s←
√

ε; a←
√

s; L← 1+5ε

1−7a (La +Lb)

b← sa; c = aL; d = L2; e = bLd; f = εd2

σ = 6.5c; τ = 4.5c; δ = 2.25c; γ = 2.25c
σ̂ = 5.5c; µ = 24e; ρ = 56e; ζ = 1317 f
λ = 1215 f ; φ = 470 f ; ν = 6844.5 f ; ξ = 56e

end function

function VERTEX_VERTEX(A,B)
return ‖A−B‖2 ≤ σ

2

end function

Algorithm 3 Intersection routines for 3D (part II)
function EDGE_VERTEX(A,B,P)

û← A−B; m←‖û‖; u← û
m

w← P−A; â← u ·w; ā← m− â
if m≤ σ̂ or ‖u×w‖2 > τ

2 or â < 0 or ā < 0 then
return (FALSE,0)

return (TRUE, â
m)

end function
function EDGE_EDGE(A,B,P,Q)

u← B−A; v← Q−P; r← u×v; m2←‖r‖2

w← P−A; d̂← r ·w; n← r×w; â = n · v
b̂ = n ·u; ā = m2− â; b̄ = m2− b̂
if m2 ≤ λ or d̂2 > γ

2m2 or
â≤ φ or b̂≤ φ or ā≤ φ or b̄≤ φ then
return (FALSE,0,0)

return (TRUE, â
m2 ,

b̂
m2)

end function
function TRIANGLE_VERTEX(A,B,C,P)

u← B−A; v←C−A; r← u× v; m2←‖r‖2

w← P−A; d̂← r ·w; n← r×w; b̂ = n · v
ĉ =−n ·u; â = m2− b̂− ĉ
if m2 ≤ ν or d̂2 > δ

2m2 or
â≤ ζ or b̂≤ ζ or ĉ≤ ζ then
return (FALSE,0,0,0)

return (TRUE, â
m2 ,

b̂
m2 ,

ĉ
m2)

end function
function TRIANGLE_EDGE(A,B,C,P,Q)

a← A−Q; b← B−Q; c←C−Q
p← P−Q; vP← ((A−P)× (B−P)) · (C−P)
vA← (b× c) · p; vB← (c×a) · p
vC← (a×b) · p; vQ← (a×b) · c
if |vA| ≤ µ or |vB| ≤ µ or |vC| ≤ µ or

sgn(vA) 6= sgn(vB) or sgn(vB) 6= sgn(vC) or
|vP| ≤ ξ or |vQ| ≤ ξ or sgn(vP) = sgn(vQ) then
return (FALSE,0,0,0,0)

return (TRUE, vA
vA+vB+vC

, vB
vA+vB+vC

, vC
vA+vB+vC

, vP
vP−vQ

)

end function
function TETRAHEDRON_VERTEX(A,B,C,D,P)

vA← ((B−P)× (C−P)) · (D−P)
vB← ((P−A)× (C−A)) · (D−A)
vC← ((B−A)× (P−A)) · (D−A)
vD← ((B−A)× (C−A)) · (P−A)
s← vA + vB + vC + vD
if |vA| ≤ ρ or |vB| ≤ ρ or |vC| ≤ ρ or |vC| ≤ ρ or

sgn(vA) 6= sgn(vB) or sgn(vB) 6= sgn(vC) or
sgn(vC) 6= sgn(vD) then
return (FALSE,0,0,0,0)

return (TRUE, vA
s ,

vB
s ,

vC
s ,

vD
s)

end function

Figure 8: Algorithms for robust intersection under floating point.

c© The Eurographics Association 2014.

85

