
Interactive configurable virtual environment with Kinect
navigation and interaction

João Pinto1

jhpinto@ua.pt

Paulo Dias1,2

paulo.dias@ua.pt

Sérgio Eliseu3

s.eliseu@ua.pt

Beatriz Sousa Santos1,2

bss@ua.pt

1DETI/UA - Department of Electronics, Telecommunications and Informatics
2IEETA - Institute of Electronics and Telematics Engineering of Aveiro

3iD+ / i2ADS - Faculty of Fine Arts, University of Porto

Abstract
As a solution to immersive virtual museum visits, we propose an extension upon the platform we previously
developed for Setting-up Interactive Virtual Environments (pSIVE) that maintains all of the Virtual Environment
creation features of the platform as well as content association (PDF, Video, Text), but also allows gesture-based
interaction and one to one navigational input using skeleton tracking with a Kinect that is calibrated in the real
world space where the user is located in. In order to validate our new navigation and interaction methods,
a comparative study was performed, comparing our gesture-based interaction and positional tracking with a
controller button navigation and interaction method.

Keywords
Virtual Environment, Navigation and Interaction, User Study, Kinect, Virtual Reality

1. Introduction

With the rising popularity of high-end Virtual Reality (VR)
hardware in the entertainment market, immersive VR ap-
plications start to have wider expression due to cost reduc-
tion and software availability.

In 2013, as a response to the complexity of building a vir-
tual environment, the platform for Setting up Interactive
Virtual Environments (pSIVE) was developed as a master
thesis [Souza 13] to not only allow an easy configuration of
a virtual scene using a diversity of models, but also inter-
act with the environment using non-conventional hardware
such as trackers and head-mounted displays (HMDs).

Within that context, and as an expansion upon that project,
we have added the possibility of exploring a fully immer-
sive environment with one to one position mapping from
the real world to the virtual world, as well as gesture-
based interaction with menus and content within that vir-
tual world detected by a Kinect. What this means is that
the user can configure a virtual museum with custom con-
tent and navigate through it either hands-free by walking
in a real empty room, as shown in figure 1, or standing
still with a physical controller, while viewing the virtual
museum through an HMD.

In this paper, we discuss the platform’s architecture, its fea-

Figure 1: Virtual Museum concept

tures, how it is configured and the ways in which the users
can interact with the virtual content (menus and naviga-
tion).

2. Related and Previous Work

One of the most commonly used types of display in Virtual
Reality applications is the Cave Automatic Virtual Envi-
ronments (CAVE) [Burdea 03], shown in figure 2. It con-
sists of a room where the entire surface area is covered with
high resolution projections that generate rapidly alternat-
ing images for each eye, allowing any number of users in
the room to perceive the visual data. Stereoscopic shutter
glasses are synchronized with the projectors in order for
the user to only see the images for the correct eye, which
enables depth perception. The projectors are placed out-

Session: Virtual, Mixed and Augmented Reality

Org: Instituto de Sistemas e Robótica - Coimbra 63



side of the room, and are controlled by one or more com-
puters.

Figure 2: Multiple users in a CAVE [Craig 09]

Our work possesses some similarities to a CAVE system,
in regards to the usage of the physical space for navigation.
While in a cave the users are restricted to the empty room
they are situated in, with the walls acting as a ”screen” of
sorts, our work is adaptable to any room, and utilizes an
HMD as the user’s window into the virtual world.

The Empty Museum [Hernandez 03] is perhaps the appli-
cation in literature that most closely resembles ours, the-
matically and practically. It features a multi-user immer-
sive walkable and wireless system where users can navi-
gate a virtual environment with content such as audio, text,
images and video. The system set up (figure 3) consists
of a laptop computer in a backpack that renders the envi-
ronment according to the user’s per spective, connected to
a system that captures wireless movement [Foxlin 98] and
using virtual reality goggles.

Figure 3: Empty museum setup [Hernandez 03]

When compared to our system, The Empty Museum has
the advantage of supporting multiple users at the same
time, with 3D avatars within the virtual environment. Its
interaction, however, is solely determined by the user’s po-
sition, while we support button input for interaction, as
well as gestures, allowing for more complex interactions.
Their tracking system must also be mounted on the ceil-
ing, while ours is easy to mount and easily expandable by
setting up more kinects.

Brown University’s VENLab [Tarr 02] is an immersive vir-
tual reality space, with a 12m2 walkable area that uses an
IS-900 head tracker to measure the user’s position in real

time, and an 80 degree field of view HMD to fully immerse
the user in the virtual environment (figure 4).

Figure 4: User walking in the VENLab space [Tarr 02]

The KidsRoom’s (figure 5) [Bobick 99] aim is to explore
computer vision technologies in an augmented reality in-
teractive playspace for children. To do so, it recreates a
child’s bedroom composed of two real walls and two large
video projection screens where images are projected from
outside of the room, as well as ceiling mounted colored
lights, speakers, cameras and a microphone, all controlled
by a six-computer cluster. There are 4 cameras pointing at
the room, one for tracking people, two for action recogni-
tion of people in the room, and one to provide a view of
the room for spectators.

Figure 5: KidsRoom bedroom setup [Bobick 99]

pSIVE, a platform we previously developed, can be used to
set up a virtual scene using a diversity of models, and those
models can have a variety of content (PDF, Video, Text) at-
tached to them. It uses OpenSceneGraph [Wang 10] as a
graphical engine and VRJuggler [Bierbaum 01] as a mid-
dleware to interpret input from trackers and controllers,
which are used to define orientation within the scene and
interact/navigate, respectively.

Content can be accessed through a 2D linear menu that
pops up when the user presses a button on his controller
while looking at an object that has been configured with
content.

3. Platform

Taking advantage of the previous work done in pSIVE, and
still with its goals of easy configuration of the scene, sup-
port for content such as videos, PDF, text and images, and
versatility of hardware in mind, we have expanded and up-

22o Encontro Português de Computação Gráfica e Interação

64 12-13 November 2015 DEEC - U.C.



dated upon that platform. Support for the Oculus Rift1 was
added, as well as abandoning the VRJuggler library used
by pSIVE, which we found hard to set-up and hasn’t been
updated since 2013, in favor of osgVRPN2, a Virtual Real-
ity Periphery Network (VRPN) [Taylor 01] library for osg
that gives us lower level control of the input into our sys-
tem in addition to being easier to configure.

VRPN is a library that provides a network-transparent in-
terface between applications and physical devices used in
VR systems using a client-server approach (the client be-
ing the application, and the server being the interpreter of
input from the physical devices). It provides a layer of ab-
straction that classifies inputs into several categories (Ana-
log, Button, Dial, ForceDevice, Sound, Text, and Tracker),
which allows us to receive generic input from different de-
vices.

With these tools and features in mind, we have designed
a platform that lets the user experience a personalized vir-
tual museum, complete with interactive content accessed
through menus using gestures or a physical controller.

In the ideal use case scenario, the user carries a laptop con-
nected to an Oculus Rift and running the client application
on a backpack, while one or more computers run servers
sending, to the client computer, the user’s skeleton data
from kinects, calibrated to the empty room the user is in.

Another use case scenario lets the user navigate using a
physical controller, such as a WiiMote, removing the need
to physically navigate in an empty room and carry a laptop
on his/her back.

3.1. System Architecture

For the graphical engine, we have decided to continue us-
ing OpenSceneGraph (used in pSIVE), due to previous
work, its active community, and the availability of VR li-
braries such as osgVRPN, and osgOculusViewer3 (oculus
rift support). Using a well-known game engine such as
Unity4 would have been a plausible alternative, if not for
the pay-wall behind some features and the higher degree
of control and flexibility that a more generic open source
graphics engine such as OpenSceneGraph can provide.

The application’s architecture and workflow is detailed in
figure 6. It is configured with several XML files and re-
ceives input information from one or more VRPN Servers,
which is then interpreted by the osgVRPN library. That
information is then handled in one of two ways: interac-
tion with menus or content (Menu Handler), or navigation
(Camera Handler). The scene is then rendered for use with
the Oculus Rift using the osgOculusViewer library.

In order to provide a fully immersive VR experience
with skeleton tracked navigation in mind, the application
needed to be designed to be easily expandable in terms
of area covered by the Kinect5 sensor(s). As such, we

1https://www.oculus.com/
2https://github.com/VirtualMe/osgvrpn
3https://github.com/bjornblissing/osgoculusviewer
4http://www.unity3d.com/
5https://www.microsoft.com/en-us/Kinectforwindows/

Figure 6: Application Architecture

have decided to use a PC based client-server architecture
in which the client is responsible for all of the rendering of
the virtual world and handling of the Head Mounted Dis-
play (HMD) orientation tracking, and the VRPN servers
are used to communicate the user’s skeleton information
(positional data of head, hands and gripping gestures) to
the client using one or several Microsoft Kinect devices
collecting skeleton data with the Kinect SDK 1.86. This
arquitecture is shown in figure 7.

Figure 7: Client Server Architecture

osgVRPN is used in our client application with two pur-
poses:

• Receiving information from any trackers supported
by a standard VRPN server (WiiMote, Razer Hydra,
Keyboard, etc.).

• Receiving information from our custom VRPN server
with integrated Kinect support, something that was
not available in pSIVE.

3.2. Platform Configuration

The platform, composed by the client which renders the
scene and tracks the user’s head orientation, and the
server(s) which track(s) the user’s body or read input from
a physical controller, are configured through 3 XML files.

• Config.xml configures the scene, its objects and the
object’s contents with configurable scale, position and
rotation within the scene.

• Kinect.xml configures the custom VRPN Kinect
servers to listen to, using their server name and IP
address.

• Controls.xml configures the navigation input buttons,
allowing configuration of directional input and menu
activation input.

6https://www.microsoft.com/en-us/download/details.aspx?id=40278

Session: Virtual, Mixed and Augmented Reality

Org: Instituto de Sistemas e Robótica - Coimbra 65



3.2.1. Scene configuration

The Config.xml file consists of a list of models, their phys-
ical attributes (size, rotation, location), and their available
content.

• Filename: Path to the model.

• Label: Model description that is shown when an ob-
ject is interactive.

• Rotate/Translate: User defined object rotations and
translations in all axis.

• Context: Whether the object is interactive or not.

In that same file, each model has a list of available content
with the following properties:

• Type: From 0 to 3, Text, PDF, Video and Image data
types, respectively.

• Label: Menu entry label.

• userContent: In case of the Text data type, the text to
display. In all other data types, it is the path to the
content to be shown.

3.2.2. Server Configuration

In order to utilize the same library that is used for the
button input (osgVRPN), a custom VRPN server with 12
channels and 3 buttons was created to support the infor-
mation gathered by the Microsoft Kinect sensor. These
channels are, in order, the left hand’s x,y,z position, the
right hand x,y,z position, the head’s x,y,z position and the
Kinect x,y,z position within the virtual scene.

The buttons are used to convey three binary inputs:

• Left hand grip.

• Right hand grip.

• Skeleton detected.

The left and right hand grip inputs are detected using the
Kinect 1.8 SDK, and are used in most of the hands-free
interactions. The skeleton detection is necessary in order
for the client application to gather information from the
Kinects that are detecting the user among the many Kinect
servers the client application can be communicating with
at any given time.

All positional information is conveyed after being trans-
formed into virtual world coordinates using the calibration
method described in section 4.

4. Kinect Calibration

The servers need to be configured with a transformation
matrix in order to transform the Kinect coordinates (dis-
tance in meters from the Kinect camera) into our virtual
world coordinates.

Visualization ToolKit (VTK) [Schroeder 98] was used due
to previously developed work, familiarity, and easy access
to its Iterative Closest Point (ICP) algorithm, to develop
a program that grabs a 3D cloud from a Kinect sensor
(shown in figure 8) and allows the user to roughly posi-
tion it within a 3D model of the room (designed using
SketchUp) that the Kinect is in, using the keyboard to
translate and rotate the frame (roughly positioned frame
shown in figure 9).

Figure 8: Captured 3D cloud

Figure 9: Manually overlaid 3D cloud

In order to fine tune the position of the frame we use the
ICP algorithm [Besl 92] present in VTK, and the frame is
matched as closely as possible to the 3D model (the out-
come of this algorithm is shown in figure 10). The out-
put of the ICP algorithm is a transformation matrix that
we combine with the user manual positioning that when
applied to the data collected from the Kinect successfully
converts points from one coordinate system to the other.

That 4x4 matrix is finally exported from the calibration
program as a *.mtx file, ready to be read as a command
line parameter by the server that is collecting information
from the Kinect from which the matrix was calculated.

5. Interaction

When developing a VR application, and with the advent
of more advanced HMDs such as the Oculus Rift, VIVE
and Morpheus, some of the traditional approaches to user
interfaces and the display of information have to be recon-
sidered and at times re-purposed for use in a VR environ-
ment.

We took advantage of the use of an HMD with orientation
tracking in order to utilize a gaze directed method of se-

22o Encontro Português de Computação Gráfica e Interação

66 12-13 November 2015 DEEC - U.C.



Figure 10: 3D cloud after ICP algorithm

lecting objects within the virtual scene using a ray-tracing
technique. This method was tested and compared against
using a hand held selection tool with orientation and po-
sition, described as a ”laser pointer selection” method in
[Souza 14], and was proven to be both faster and less prone
to error regardless of distance to the selected object.

Interactive objects display a configurable label in the center
of the screen when looked at, which indicates that upon
activation a menu containing the object’s content will pop
up in front of the user.

Input in our system can be done in one of two ways:

• Gestures using a Microsoft Kinect (SDK 1.8).

• Button input using any kind of controller device sup-
ported by VRPN.

5.1. Navigation

There are two ways to navigate the virtual environment,
with different use cases in mind:

• Skeleton tracking based navigation using a custom
VRPN server with a connected Kinect.

• Physical controller based navigation that does not re-
quire the user to move in the physical space.

Navigation in this skeleton tracking mode is done by track-
ing the user’s head with a Kinect and positioning the cam-
era correctly within the scene using the tracking data, and
as such does not require navigational ”input” per se.

It is worth noting that while the user’s position in the scene
is being tracked by the Kinect sensor, the HMD does not
know the user’s correct initial head orientation. To solve
this issue, we require that the user initially performs a cal-
ibration gesture (grip with his/her right fist) while looking
at the closest real-world Kinect sensor in order to offset
the HMD orientation to look at the representation of that
Kinect in the virtual world.

Navigational input using a physical controller is gaze-
directed and reads button information from a generic
VRPN server as input to our application. In order to keep
the number of buttons needed to a minimum, the button to

exit a menu is the ”right” button. For that same reason (the
movement buttons are also used to navigate the menu sys-
tem), navigation in this mode is locked when the user has
a menu or content open, while in the gesture-based mode
the user can move freely while browsing menus or experi-
encing content. Table 1 shows button and gesture mapping
for navigation actions.

Action Gesture Button
Navigate forward Walk Up key

Navigate backward Walk Down key
Navigate left Walk Left key

Navigate right Walk Right key

Table 1: Navigation gesture/button mapping

5.2. Menus

Maintaining the standard used in pSIVE, we have imple-
mented two styles of adapted 2D menus in our applica-
tion. Adapted 2D menus are a representation of standard
2 dimensional menus rendered on 3D geometry within the
scene, and are the most prolific group of 3D system control
techniques [Bowman 04], and can be present in multiple
forms (linear, radial, etc.).

Things like the position, size and shape of menus have to
be taken into special consideration due to specifications
such as the fish-eye lens distortion in some HMD’s, and
particularly in the one used in our implementation, the
Oculus Rift, which makes text hard to read when close to
the edges of the screen. With those constraints in mind, we
made the decision to place the menus and content centered
on the user’s field of view, where his/her gaze is focused,
as well as avoiding the use of thin text as advised in the
Oculus best practises guide [VR 15].

The application supports two different types of adapted 2D
menus, illustrated in figure 11, namely linear and radial
menus.

Linear menus are typically displayed when using a physi-
cal controller to interact with the scene, and are a modified
version of the linear menus used in pSIVE due to an incom-
patibility with the previous implementation and the render
distortion needed in order to use the Oculus Rift.

(a) Linear menu (Left eye) (b) Radial menu (Left eye)

Figure 11: Menu types

Session: Virtual, Mixed and Augmented Reality

Org: Instituto de Sistemas e Robótica - Coimbra 67



When interacting using gestures, radial menus are dis-
played. We have implemented this format for our gesture-
based interaction due to faster selection times and lower
error rates [Callahan 88] [Chertoff 09] when compared to
linear menus.

Table 2 shows button and gesture mapping for actions re-
lated to menu interaction.

Action Gesture Button
Browse Menu Move right hand Up/Down key

Activate Option Grip right hand Activation key
Exit Menu Grip both hands Right key

Table 2: Menu browsing gesture/button mapping

5.3. Content

Content, such as images, videos (figure 12a) or PDF files
(figure 12b) are rendered on a quadrangular plane and
placed in front of the user. When the content is active,
if pertinent, certain interactions such as browsing the PDF
pages are possible.

Table 3 shows the button and gesture mapping for interac-
tion with content.

(a) Video content (Left eye) (b) PDF content (Left eye)

Figure 12: Content rendered on a quadrangular plane

Action Gesture Button
Previous page Grip left hand Left key

Next page Grip right hand Right key
Exit content Grip both hands Down key

Table 3: Content browsing gesture/button mapping

6. Demo Environment

For the demonstration and testing environment, we mod-
elled a meeting room in SketchUp after a real meeting
room in our department, and added several objects that are
not present in the real room. Each of those objects was
then configured to contain various text, video, pdf and im-
age contents.

In order to test the Kinect-based navigation method, we set
up and calibrated two Kinects in the room (set up seen on

figure 13, user interaction seen on figure 14), one running
on each laptop.

Figure 13: Room setup

Figure 14: User performing gesture

7. Comparison of Navigation and Interaction
Methods

In order to analyze and compare the two implemented
navigation and interaction techniques (Kinect-based or
controller-based), we ran an experiment with 12 volun-
teer participants from the Aveiro University’s Summer
Academy, which means that participants’ range of ages is
not very varied, ranging from 15 to 17 years.

7.1. Methodology

This experiment aimed to verify if the two methods of in-
teraction and navigation are equally usable in our demon-
stration environment. Our experiment had two input vari-
ables, namely the two different navigation and interaction
methods. In one method, the users walk in the room to
navigate, and use gestures to interact with the scene. In the
other method, the user utilizes a controller with buttons to
navigate and interact. Both methods display radial menus.
The output variables of our experiment are given in mea-
sures of time and number of mistakes made.

The experiment consisted of a simple test of navigation and
interaction: The participants had to navigate from one end
of the virtual room to the other, and interact with a plant pot
located on a table (shown in figure 15). Upon interaction,
a menu is shown, and the goal is for the users to select the
”Flower” option available on the menu.

22o Encontro Português de Computação Gráfica e Interação

68 12-13 November 2015 DEEC - U.C.



Participants were given an ID at the start of the experiment
(12 users, IDs ranging from 0 to 11). Even numbered par-
ticipants ran the experiment using the controller first, and
odd numbered participants used the Kinect first, in order
to attenuate possible bias due to learning effects. The par-
ticipants were given no time to practice and learn the sys-
tem beforehand. The participants were observed while per-
forming the experiment and were asked to answer a ques-
tionnaire regarding their satisfaction, difficulties and pre-
ferred method. It is worth noting that while 12 participants
ran the experiment, only 11 delivered the questionnaire.

Measurements were taken automatically during the exper-
iment, and consisted of the time the participant took to get
in front of the plant pot and activate the menu, the time
the they took to select the correct option, as well as any
incorrect options selected.

Figure 15: Experiment environment (interaction zone cir-
cled)

7.2. Results

Regarding the times measured, the differences in the
time taken to reach the plant pot are negligible with the
controller-based method averaging 35,25 seconds to reach
the plant pot versus the 35,41 seconds of the Kinect-based
method while the interaction was faster when using the
controller-based method, which averaged 16,6 seconds to
activate the correct option versus the 30,3s that the users
took with the Kinect.

Users also made more mistakes with the Kinect-based
method, with three participants out of twelve making one
mistake in selecting the right option, while nobody selected
the wrong option using the controller.

The questionnaire results are detailed in tables 4, 5 and 6.
Tables 4 and 5 indicate participant answers to several pa-
rameters, represented as a median of each index in a scale
of 1 (disagree) to 5 (agree), in regards to navigation and in-
teraction, respectively. Table 6 details the number of par-
ticipants that claim to prefer one method or the other, or
have no preference.

While tables 4 and 5 seem to indicate little difference be-
tween the two options, the Kinect-based method seems to
be predominantly preferred in both navigation and interac-
tion, as shown in table 6.

Kinect Controller
Ease of positioning 4 4

Intuitiveness 4 4
Has Annoying features 2 2

Requires training 5 5
Satisfaction 4 4

Table 4: Questionnaire results regarding navigation

Kinect Controller
Ease of positioning 4 4

Intuitiveness 4 4
Has Annoying features 3 2

Requires training 5 3
Satisfaction 4 4

Table 5: Questionnaire results regarding interaction

Navigation Interaction
Kinect 7 6

Controller 1 3
Indifferent 3 2

Table 6: Questionnaire results regarding preferences (in
number of participants)

With all this in mind, our results seem to show that even
though the Kinect-based method for navigation and inter-
action is slower on both accounts, participants seem to pre-
fer it, possibly due to the novelty factor.

8. Conclusions and future work

This paper presents an evolution and rework of pSIVE,
with the goal of providing the tools to enable immersive
museum visits in virtual reality. While pSIVE allowed for
easy creation of Virtual Environments without knowledge
of any programming languages, it lacked the tools for real
time positional and gesture tracking with a Kinect, as well
as the calibration tools necessary to tie the virtual world
coordinates to real world positions. We have also imple-
mented a new style of menu (radial), to accompany our
implementation of gesture-based interaction.

The results of our experiment with participants seem to in-
dicate a positive reaction, with the majority of users prefer-
ring to use the Kinect-based method of navigation and in-
teraction within the virtual environment. Navigation wise,
both methods seem to perform equally. When it comes to
interaction, gestures seem to be fairly slower than button
input. A proposed solution to make selection times faster
is the implementation of a gaze directed method with ges-
ture actuation selection.

Future work can involve multiple aspects, from imple-
menting new and more efficient styles of menus and in-
teraction methods, to finding a way of automating the cali-
bration process. An expansion upon this project is already

Session: Virtual, Mixed and Augmented Reality

Org: Instituto de Sistemas e Robótica - Coimbra 69



in the works, with plans to allow users to create their own
museum from a list of 3D models and using gestures to
place them in the environment, in real time, as well as sav-
ing and sharing their custom museum with other users.

Acknowledgements

This work is supported by National Funds through FCT
- Foundation for Science and Technology, in the con-
text of the projects UID/CEC/00127/2013 and Incen-
tivo/EEI/UI0127/2014.

References

[Besl 92] Paul J. Besl and Neil D. McKay. A
method for registration of 3-d shapes.
IEEE Trans. Pattern Anal. Mach. Intell.,
14(2):239–256, February 1992.

[Bierbaum 01] Allen Bierbaum, Christopher Just, Patrick
Hartling, Kevin Meinert, Albert Baker,
and Carolina Cruz-Neira. Vr juggler:
A virtual platform for virtual reality ap-
plication development. In Proceedings
of the Virtual Reality 2001 Conference
(VR’01), VR ’01, pages 89–, Washington,
DC, USA, 2001. IEEE Computer Society.

[Bobick 99] Aaron F. Bobick, Stephen S. Intille,
James W. Davis, Freedom Baird, Clau-
dio S. Pinhanez, Lee W. Campbell,
Yuri A. Ivanov, Arjan Schütte, and An-
drew Wilson. The KidsRoom: A
Perceptually-Based Interactive and Im-
mersive Story Environment, 1999.

[Bowman 04] Doug A. Bowman, Ernst Kruijff,
Joseph J. LaViola, and Ivan Poupyrev.
3D User Interfaces: Theory and Practice.
Addison Wesley Longman Publishing
Co., Inc., Redwood City, CA, USA,
2004.

[Burdea 03] G. Burdea and P. Coiffet. Virtual real-
ity technology. In Presence: Teleopera-
tors & Virtual Environments, volume 12,
pages 663–664, 2003.

[Callahan 88] J. Callahan, D. Hopkins, M. Weiser, and
B. Shneiderman. An empirical compari-
son of pie vs. linear menus. In Proceed-
ings of the SIGCHI conference on Hu-
man factors in computing systems - CHI
’88, pages 95–100, New York, New York,
USA, May 1988. ACM Press.

[Chertoff 09] Dustin B. Chertoff, Ross Byers, and
Joseph J. LaViola. Poster: Evaluation of
menu techniques using a 3D game input
device. In 2009 IEEE Symposium on 3D
User Interfaces, pages 139–140. IEEE,
2009.

[Craig 09] Alan B. Craig, William R. Sherman, and
Jeffrey D. Will. Developing Virtual Real-
ity Applications: Foundations of Effective
Design. Morgan Kaufmann, 2009.

[Foxlin 98] Eric Foxlin, Michael Harrington, and
George Pfeifer. Constellation. In Pro-
ceedings of the 25th annual conference on
Computer graphics and interactive tech-
niques - SIGGRAPH ’98, pages 371–378,
New York, New York, USA, July 1998.
ACM Press.

[Hernandez 03] L. Hernandez, J. Taibo, A. Seoane,
R. Lopez, and Rocio. Lopez. The empty
museum. Multi-user interaction in an
immersive and physically walkable VR
space. In Proceedings. 2003 Interna-
tional Conference on Cyberworlds, pages
446–452. IEEE Comput. Soc, 2003.

[Schroeder 98] Will Schroeder, Kenneth M. Martin, and
William E. Lorensen. The Visualization
Toolkit (2Nd Ed.): An Object-oriented
Approach to 3D Graphics. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1998.

[Souza 13] Danilo Souza. Platform for Setting up In-
teractive Virtual Environments, 2013.

[Souza 14] Danilo Souza, Paulo Dias, and Beatriz
Sousa Santos. Choosing a selection tech-
nique for a virtual environment. In Lec-
ture Notes in Computer Science, volume
8525 LNCS, pages 215–225. Springer
Verlag, 2014.

[Tarr 02] Michael J Tarr and William H Warren.
Virtual reality in behavioral neuroscience
and beyond. Nature neuroscience, 5
Suppl:1089–92, November 2002.

[Taylor 01] Russell M. Taylor, II, Thomas C. Hud-
son, Adam Seeger, Hans Weber, Jeffrey
Juliano, and Aron T. Helser. Vrpn: A
device-independent, network-transparent
vr peripheral system. In Proceedings
of the ACM Symposium on Virtual Real-
ity Software and Technology, VRST ’01,
pages 55–61, New York, NY, USA, 2001.
ACM.

[VR 15] Oculus VR. Best practices guide, Jan-
uary 2015. http://static.oculus.com/sdk-
downloads/documents/Oculus Best Pract
ices Guide.pdf.

[Wang 10] Rui Wang and Xuelei Qian. OpenScene-
Graph 3.0: Beginner’s Guide. Packt Pub-
lishing, 2010.

22o Encontro Português de Computação Gráfica e Interação

70 12-13 November 2015 DEEC - U.C.


