
Ray Reordering Techniques for GPU Ray-Cast Ambient Occlusion

Vasco Costa João M. Pereira Joaquim A. Jorge

Department of Information Systems and Computer Science

INESC-ID/Instituto Superior Técnico, University of Lisbon

Rua Alves Redol, 9, 1000-029 Lisboa, Portugal

vasco.costa@ist.utl.pt, jap@inesc-id.pt, jaj@inesc-id.pt

Abstract
Global illumination techniques, such as ambient occlusion, can be performed in a physically accurate way via

ray casting. However ambient occlusion rays are incoherent. This means their computation is divergent causing

a degradation of rendering performance. This problem is particularly acute on the GPU stream computing

architectures which have performance issues with thread divergence. We reorder the rays, prior to the rendering

step, to reduce this thread divergence issue. Rays which traverse the same region of space are reordered in bundles

in order to increase memory coherency. We demonstrate that ray reordering techniques enhance performance

while rendering scenes with ambient occlusion rays. The question is how to best perform this ray reordering. Ray

reordering for ambient occlusion requires the classification of millions of rays. Spending too much time reordering

these rays can negate any rendering performance benefits. Our work surveys and tests several techniques for ray

reordering. We achieved the best performance results using a compress-sort-decompress technique, which sorts

hashed rays, where the hash key has 32 bits of size.

Keywords
ray casting,ray reordering,gpu,ambient occlusion

1. INTRODUCTION

The availability of high performance hardware, namely

GPUs, enables the use of more realistic rendering schemes.

However GPUs have some limitations. These hardware ar-

chitectures feature small sized caches and have simplified

branch prediction hardware. Thus they are less tolerant of

algorithms which feature divergent program paths or that

have poor memory coherency. Unfortunately this is the

case for several global illumination rendering algorithms.

In our case we are interested in performing ray-cast ambi-

ent occlusion. This technique is used, for example, to gen-

erate the baked shadow textures used in computer games.

Other global illumination techniques have the same issues

with lack of coherency and branch divergence. The pro-

cessing of secondary rays while performing distributed ray

tracing [Cook 84] is one such example.

In order to mitigate coherency issues while performing ray-

casting we reorder the rays. Rays which traverse the same

region of space are processed together minimizing branch

divergence and improving memory coherency. This way

we can improve the overall rendering performance. This

work examines the performance of several techniques in

regards to the ray-casting of ambient occlusion rays.

We can determine the ambient occlusion term, for a given

point in the surface of an object, by ray-casting N random

ray samples (see Figure 1) across the hemisphere centered

p

Figure 1. Ambient occlusion sampling.

around that point p oriented towards the same direction as

the surface normal at that same point. These random ray

samples can be generated with the aid of an R2 Halton

quasi-random number sequence.

A simple and expedient way to order these rays would be

to group together rays with the same origin point. How-

ever as can be easily understood this does not guarantee the

rays will not diverge significantly further along their path.

Hence we need to take into account the ray directions as

well while performing ray reordering.

To determine the ambient occlusion term for a 1024×1024
image with 16 samples per pixel we need to process over

16 million rays. Performing reordering with sorting on

71



Figure 2. Fairy Forest, Serpentine City, Armadillo test scenes with ambient occlusion.

such huge lists, even in a GPU platform, can take tens

or hundreds of milliseconds depending on the sorting al-

gorithm and how accurate we want the ray sorting to be

done.

Rays have five degrees of freedom. Three degrees of free-

dom for the origin point. Two degrees of freedom for the

direction normal using spherical coordinates. If we repre-

sent each of these degrees of freedom with a 32-bit num-

ber then sorting these rays at full precision would at best

require sorting large 160-bit keys. Since we are doing the

sort operation just to maximize coherency it is possible to

sort these rays at less than full precision using an hash-

ing scheme. Thus speeding up the sorting process. To in-

crease sorting speed even further it is possible to employ

a compress-sort-decompress scheme, where adjacent rays

with the same hash values are bundled together and sorted

as a single unit, decreasing the size of the list which needs

to be sorted.

Our contributions include the evaluation of ray reordering

techniques in the context of GPU ray-casting. We have

measured a 1.73x speedup on the rendering of scenes, with

ambient occlusion rays, in our tests when using these tech-

niques. The ray reordering techniques discussed in this

work are independent of the ray tracing acceleration struc-

ture but should provide more of a performance boost in ac-

celeration structures which degrade less gracefully as the

ray coherence decreases.

The organization of this paper is as follows: we survey pre-

vious related work in detail, then we describe ray reorder-

ing techniques suitable for stream computing architectures.

Next, we describe the rendering pipeline, the testing meth-

ods we adopted and present performance figures. Finally

we discuss our results and present ideas for future work.

2. RELATED WORK

Arvo and Kirk [Arvo 87] described a ray tracing accelera-

tion scheme employing ray classification. In this scheme

a scene is partitioned in 5D ray space. To determine the

primitives intersected by a ray using this scheme we simply

consult the primitives list of the subspace which contains

that ray.

Moon et al [Moon 10] improved ray tracing performance

on huge out-of-core scenes by reordering rays according

to their hit point location. The technique computes an ap-

proximation of the hit point of each ray, i.e. the hit point

heuristic, against a decimated mesh which has a quarter of

the amount of triangles in the original mesh. This deci-

mated mesh can fit into main memory unlike the original

mesh at full resolution. These tentative hit points are then

reordered in Z-curve order. Since this technique requires

the construction of a decimated mesh it is hard to integrate

with existing real-time or interactive applications.

Boulos et al [Boulos 08] used a breadth-first bounding vol-

ume hierarchy (BVH) ray packet traversal scheme. Mul-

tiple rays can be processed at a time in order to make use

of SIMD parallelism. Their algorithm reorders rays when

the packet utilization, i.e. the amount of active rays in a

packet, drops below a certain threshold. Their algorithm

also reorders shading requests by grouping together rays

which intersect the same materials.

Barringer and Möller [Barringer 14] traverse a BVH using

a stream based approach where the traversal loop also can

process multiple rays at a time. Rays are reordered accord-

ing to their directions prior to processing by sorting them

into eight bins. One bin for each possible x, y, z ray sign

direction.

Both of the previous techniques are limited in that that they

are restricted to applications which use a bounding volume

hierarchy ray tracing acceleration structure. While these

approaches can be adapted for the traversal of other tree

based acceleration structures, namely kd-trees, they do not

map well to the traversal of grids and other non-tree based

acceleration structures. The focus of our work is on accel-

eration structure agnostic ray reordering. These particular

techniques are also highly tuned to the specific hardware

configuration. They require extensive recoding work in or-

der to map onto other compute architectures such as GPUs.

Aila and Laine [Aila 09] reorder secondary rays using 192-

bit keys in the CPU in order to improve memory coherency

and minimize divergence while performing the rendering

on the GPU.

Hoberock et al [Hoberock 09] showed how to reorder shad-

ing operations in order to avoid divergence in GPU archi-

72 EPCG 2014, Leiria, Nov 13–14



0

1000

2000

3000

4000

5000

6000

32 64 128 256 512

m
s

OpenCL work-group size

Fairy Forest Serpentine City Armadillo

Figure 3. Time required to render the test scenes de­

pending on the work group size.

tectures. The shading operation reordering is done with the

aid of prefix sum and radix sort operations.

Garanzha and Loop [Garanzha 10] describe a breadth-first

packet traversal algorithm for ray tracing which employs

fast ray sorting using a compress-sort-decompress scheme

to generate the ray packet bundles.

Blelloch [Blelloch 90] describes uses for the prefix sum

operation in parallel architectures. We use prefix sum in

our work in order to perform the compression and decom-

pression steps. Harris et al [Harris 07] describe how to im-

plement the prefix sum operation efficiently on GPU archi-

tectures.

Efficient GPU parallel sorting algorithms include bitonic

sort [Lang 10] and radix sort [Satish 09]. The bitonic

sort algorithm implementation we used has O(N log2 N)
time complexity. Radix sort implementations have O(kN)
complexity where k is the key size and N is the number of

elements in the list to be sorted. Bitonic sort has the ad-

vantage that it can sort any items which have a comparison

operator whether they are numbers or not. Radix sort is

faster while sorting large lists of numbers with small key

sizes.

Our work tests ray reordering techniques for ambient oc-

clusion rays with different key sizes. From the full preci-

sion 192-bit keys to the hashed 32-bit keys. We also exam-

ine the benefit of the use of the compress-sort-decompress

technique.

3. RAY REORDERING TECHNIQUES

In order to examine the performance advantage of ray re-

ordering techniques which employ ray sorting we estab-

lished a baseline set of techniques which do not employ

ray sorting. Ray reordering in that case is only done with

the use of the OpenCL [Munshi 11] work group construct

which states which and how many compute threads should

be executed in the same stream computing unit.

We devised a taxonomy for ray reordering techniques

which is as follows: static ray reordering techniques apply

a strictly fixed ray ordering scheme using the work group

construct; dynamic ray reordering techniques sort rays ac-

cording to their origin and direction values.

The ray reordering techniques we use are described in de-

tail in the next subsections.

3.1. Static

We use two different static ray reordering techniques.

These are named according to their work group arity.

The static 1D technique uses a 1D work group size. The

optimum work group size for running a compute kernel

is dependent on the characteristics of the hardware used

and how many machine registers the kernel uses. In or-

der to determine the optimum size of the work group for

our hardware we conducted tests where we ran the ambient

occlusion term computation algorithm with different work

group sizes. As can be seen in Figure 3 the optimum work

group size is 128 for all the test scenes as this provides the

smallest ambient occlusion computation time. Rays with

the same origin are processed together.

The static 3D technique uses the notion that rays with sim-

ilar directions should be processed at the same time in or-

der to maximize performance. This ray reordering tech-

nique does not require any ray sorting to be done either

because the ray directions are pseudo-randomly generated

using the same Halton sequence. We used a work group

size of 8 × 16 × 1 for a set of ambient occlusion rays of

dimensions width× height× nsamples. This technique

does not order the rays perfectly, since the pseudo-random

generator does not always generate rays in the same overall

direction for each nth sample as the object surface varies,

but in practice this provides better results than just group-

ing together rays with the same origin as we did in the

previous technique.

Both of these static techniques should also be applicable

to shadow rays. The dynamic ray reordering techniques

which use sorting should be much better suited for ren-

dering reflection and refraction rays. We describe these

dynamic techniques in the next subsection.

3.2. Dynamic

In the dynamic 32-bit technique [Garanzha 10] the 5D rays

are hashed into 32-bit unsigned integer keys. These keys

are then subsequently sorted. This reduces the amount

of time spent doing comparisons. Since sort precision is

reduced with this hashing scheme the sorted rays will be

less coherent than using an exact ray sorting scheme. The

HASHKEY32 function maps the 3D origin coordinates into

the lower 24-bits of the key and the 2D spherical coordi-

nates of the ray direction into the upper 8-bits of the key as

can be seen in Algorithm 1.

The dynamic 192-bit technique [Aila 09] sorts the rays at a

greater precision. The floating point ray coordinates are

converted into a 192-bit key which is then sorted. The

HASHKEY192 function first maps the ray origin and di-

rection into the range [0, 1], then scales the 3D origin coor-

dinates into 24-bits each, the 3D ray direction coordinates

into 21-bits each, and finally it interleaves the bits of each

component with COLLECTBITS into a 6D array of 32-bit

unsigned integer values. As we shall see later this tech-

EPCG 2014, Leiria, Nov 13–14 73



Algorithm 1 Ray hashing functions.

function TRANSLATE(aabb, point)

return← point−aabbmax
aabbmax−aabbmin

end function

function HASHKEY32(aabbrays, origin, direction)

ox,y,z ← TRANSLATE(aabbrays, origin)× 256 ⊲ 8 bits× 3
⊲ translates ray origin into ray bounding box coordinates [0,1]

θ ← ACOS(directionz)
φ← ATAN2(directiony, directionx)

dx, dy ←
φ+π

2π × 8, θ
π
× 8 ⊲ 4 bits× 2

return← HASH3(ox, oy, oz) ∨ (HASH2(dx, dy)≪ 24)
end function

function COLLECTBITS(hash, idx, x)

for all i ∈ 0 . . . 31 do
k ← (idx + i× 6)≫ 5
hash[k]← hash[k] ∨ ((x≫ i) ∧ 1)≪ ((idx + i× 6) ∧ 31)

end for
end function
function HASHKEY192(aabbrays, origin, direction)

ox,y,z ← TRANSLATE(aabbrays, origin)
dxy ← (direction + 1.0)× 0.5
hash[0 . . . 5]← 0
COLLECTBITS(hash, 0, ox × 256.0× 65536.0)
COLLECTBITS(hash, 1, oy × 256.0× 65536.0)
COLLECTBITS(hash, 2, oz × 256.0× 65536.0)
COLLECTBITS(hash, 3, dx × 32.0× 65536.0)
COLLECTBITS(hash, 4, dy × 32.0× 65536.0)
COLLECTBITS(hash, 5, dz × 32.0× 65536.0)
return← hash

end function

nique gives better rendering performance at a higher sort

time cost.

3.3. Compress-Sort-Decompress

The compress-sort-decompress technique [Garanzha 10]

compresses the rays using run-length-encoding. Adjacent

rays with the same hash values are grouped together. This

reduces the amount of elements in the list to be sorted. Af-

terwards compressed ray bundles are decompressed into a

final sorted list. This technique uses 32-bit ray hash keys.

If there is too much variance between the ray keys the run-

length-encoding scheme will not compress the rays well.

Prior to running the compress-sort-decompress algorithm

ray hashes are computed using HASHKEY32. The algo-

rithm works in the following order: compression via run-

length-encoding (RLE), sorting of the compressed rays,

decompression of the compressed rays. The overhead of

the compression and decompression steps is minor as we

can see in Figure 4. Once again this algorithm reduces the

time spent to sort the rays since the total number of RLE

blocks to sort is smaller than the total number of rays.

3.3.1. Compression

This is the run-length-encoding step. Here the header
array is computed. Each array element is an RLE block

which states the start position of the first ray of the block

in coordinates of the initial array of rays, the size which

stores the number of adjacent rays with an identical hash,

as well as the actual hash value for that ray block.

The header array is computed as follows. We create an

array H with size equal to the number of rays to process.

H[i] is initialized as 1 when the ray at position i differs

from the previous ray at i − 1 and is initialized as 0 in

other cases. We compute the exclusive prefix sum of H .

This initializes H with the start positions for each RLE

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fairy Forest

Serpentine City

Armadillo

Compress Sort Decompress

Figure 4. Percentage of total ray reordering time spent

on the compress, sort, decompress stages for each test

scene.

block. It also computes the total amount of blocks. We

can now assign the start, size, hash values to each block

where size at position i is computed via H[i + 1] −H[i].
The blocks have now been computed and are ready for the

sort step.

3.3.2. Sorting

In this step the RLE blocks are sorted by their hash values.

Our implementation uses a bitonic sort of O(N log2 N)
time complexity. Sorting tens of millions of 32-bit key

value pairs on our system, with this algorithm, takes hun-

dreds of milliseconds. We also tested the radix sort algo-

rithm with O(kN) linear time complexity. Radix sort takes

tens of milliseconds on the same system to sort the same

number of key value pairs.

3.3.3. Decompression

This is the final decompression step which returns a sorted

list of rays given the intermediate list of sorted RLE blocks.

We decompress these RLE blocks by first building an array

with the sorted positions for each ray and secondly copying

rays from their initial positions in the ray list to their final

positions in the sorted ray list.

We compute the sorted positions array as follows. We cre-

ate an array O with size equal to the number of RLE blocks

to process. O[i] is initialized with the size of the block at

position i. We compute the exclusive prefix sum of O in

order to determine the start positions, in the final ray list,

for each block. Then we create an H array which will con-

tain the final ray positions. H has the same size as the

number of rays we are processing with all its elements ini-

tialized as∞. We compute the ray positions by initializing

the ray positions array H thus. H[O[i]] is initialized with

the start ray position of a block. We do this for all the

RLE blocks. Then we compute the inclusive segmented

prefix sum of H which will generate the final offsets. The

segmented prefix sum works in intervals, delimited by the

non-∞ elements, where the ∞ elements are treated as if

they had a value of 1.

Thus we generate the final ray positions in consecutive or-

der for each block. Once we finish copying the rays from

the original list to the sorted list we can render the scene.

74 EPCG 2014, Leiria, Nov 13–14



Render Primary Rays

Generate Secondary Rays

Sort Rays

Intersection Tests

Shading

Figure 5. Rendering Pipeline.

4. RENDERING PIPELINE

The traditional ray tracing rendering pipeline works on

what is known as a megakernel approach [Laine 13]. It

uses an expensive, typically recursive, function aka ker-

nel which computes the color contribution at a given pixel.

This leads to an unbalanced rendering load since not all

pixels require the same computation time.

Factors which can influence the computation time include:

the time to traverse the ray tracing acceleration structure,

the time to test the polygons intersected along the ray path,

and the time to shade the materials. If the materials are

elaborate the shading may take more time to compute than

the time required for the polygon intersections task. In ad-

dition megakernels increase register pressure which, on a

SIMT architecture such as a GPU, leads to problems when

trying to issue enough concurrent threads to fully utilize

available compute resources.

In order to mitigate the load balancing issues of a megaker-

nel approach we devised a rendering pipeline which splits

the rendering computation into several pipeline stages, as

can be seen in Figure 5, at the cost of some additional

temporary memory, for storing all the rays, in each of the

intermediate stages. This allows us to optimize the load

balancing at each of the processing steps required to com-

pute the rendered image in a more fine-grained way lead-

ing to improved performance versus a megakernel. In the

case of secondary rays we are also interested in applying

ray reordering in order to improve coherency. This is not

something which can be done using a traditional megaker-

nel approach since, in that case, it is not possible to stop

the computation midway to globally reorder all the rays.

Each thread executes in a concurrent fashion and any two

threads may be in completely different rendering stages at

the same time.

To have acceptable rendering quality, in a modern inter-

active application, we require physically accurate shadows

and ambient occlusion term computation. Reflections and

refractions are more expensive to compute with more com-

plicated memory access patterns. Their applicability is

also much less than the previous global illumination effects

in typical scenes so we did not consider these in our cur-

rent rendering pipeline in order to simplify it and further

enhance performance. For example since we do not have

refractions we can apply the back-face culling technique.

Our rendering pipeline works by first generating the pri-

mary rays, also known as eye rays, traversing the acceler-

ation structure and computing the nearest intersection for

each of the primary rays. Then we generate the secondary

rays, which in the case of this work consist of ambient oc-

clusion rays. The secondary rays are sorted according to

their spatial distribution, where rays that traverse the same

region of space are grouped together, and intersection tests

are done in order to compute the ambient occlusion term.

Finally we compute the shading for all the pixels in the

screen taking into account the material, normal, uv coordi-

nates, ambient occlusion term, at each pixel.

Our application supports texture mapping but this was not

used for the test in this work since our main concern is pro-

filing the performance of each of the ray reordering tech-

niques and texture mapping would further unbalance the

rendering load thus complicating the results analysis.

5. TESTING METHODOLOGY

The test platform uses an AMD FX 8350 8-core CPU @

4.0 GHz powered machine with 8 GB of RAM. The graph-

ics card includes a NVIDIA GeForce GTX TITAN GPU

with 6 GB of RAM. The performance of the CPU is irrel-

evant, in our case, since all rendering and ray reordering

algorithms run on the GPU. The algorithms were imple-

mented in the OpenCL programming language.

All test images were rendered at 1024 × 1024 resolution

with one primary ray per pixel using dot-normal (i.e. Lam-

bertian) shading and sixteen ambient occlusion samples

per primary ray. Thus rendering an image requires ray-

casting 17.83 million rays.

We selected three test scenes (Serpentine City, Fairy For-

est, Armadillo) representative of typical 3D gaming appli-

cations which can be seen in Figure 2.

Ray-triangle intersection adopts the Möller-Trumbore

[Möller 97] algorithm since it does not have additional

memory or precomputation costs. Each triangle needs 36

bytes of memory to store vertexes. Triangles with normals

require an additional 36 bytes of memory. This is done

to ensure more coherent memory accesses than an indexed

vertex scheme would be able to provide. In our experi-

ence storing the triangles this way improves the rendering

performance by 10% over the indexed method.

Sorting is generally done using the O(N log2 N) bitonic

sort algorithm. In the cases where we used the O(kN)
radix sort this is stated in the text.

6. RESULTS DISCUSSION

The speedup obtained with ray reordering techniques in-

creases as the amount of incoherent rays as part of the

total work load increases. As can be seen on the left of

Figure 6 the Fairy Forest scene benefited the most from

ray reordering. This is because the camera parameters we

EPCG 2014, Leiria, Nov 13–14 75



0

500

1000

1500

2000

2500

3000

3500

Fairy Forest Serpentine City Armadillo

m
s

Static 1D Static 3D Dynamic 32-bit Dynamic 192-bit

128 256 512

penCL work-group size

Serpentine City Armadillo

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Fairy Forest Serpentine City Armadillo

m
s

Sort 192-bit Sort 32-bit Compress-Sort-Decompress 32-bit

Figure 6. The chart on the left displays the time to render the test scenes for each of the ray ordering methods. The chart on

the right displays the time required to reorder the rays for the dynamic reordering methods. The static reordering methods

do not require any additional ray reordering time.

used for that scene require more ambient occlusion rays to

be traced. In the Fairy Forest scene geometry covers the

whole screen space whereas for the Serpentine City and

Armadillo scenes a lot of the screen space is an empty

background. Ina addition Serpentine City and Armadillo

are manifolds so the computation of the ambient occlusion

term is much more cache coherent than for the Fairy For-

est scene which is more representative of a typical game

scene.

As expected the more accurate hashing schemes have bet-

ter rendering performance. The static techniques, which

use a fixed ordering scheme, lead to worse rendering times

than the dynamic techniques which compute actual ray

hash keys and group together those rays which traverse the

same regions of space.

On the right of Figure 6 we can see that the dynamic 192-

bit key technique takes a long time to sort the ambient oc-

clusion rays. In fact it takes longer to sort the 192-bit ray

keys, using the bitonic sort algorithm, than to render the

whole scene using the simplest static technique. When

we reduce the key size to a sixth of 192-bits i.e. 32-bits

the time required to sort the rays is reduced by a similar

amount. The total amount of memory operations and com-

parisons is much less. If we use radix sort instead of bitonic

sort the sort times are reduced from hundreds of millisec-

onds to tens of milliseconds thus making the dynamic ray

reordering methods the most viable choice to improve am-

bient occlusion ray rendering performance.

The compress-sort-decompress scheme further improves

sort performance for the Serpentine City and Armadillo

scenes. This is due to it grouping together the background

rays which take less time to render. In other words by si-

multaneously processing bundles of rays which take more

or less the same amount of time to finish we are reducing

the amount of bubbles in the GPU workload thus improv-

ing performance. This is an important fact which should

not be underestimated as this can also be applied to other

rendering tasks such as shading operations where not all

materials have the same computational complexity level.

The performance gap between the 192-bit and 32-bit key

dynamic techniques is large enough to see that there is still

more work to be done with the hash functions. One thing

which could also be improved is the way the ray origins are

hashed. The current hashing algorithm uses a virtual grid

with the same resolution in all x, y, z axis but the scene

geometry is seldom uniformly distributed across all axis.

The virtual grid should therefore be able to better adapt to

the distribution of geometry in the scene. Instead of using

this virtual grid for the ambient occlusion rays we could

use the acceleration structure (e.g. bvh, kd-tree, grid) cell

id which contains the ray origin instead as this is compact

and the acceleration structure cell id has previously been

computed when doing the prior rendering pass for the pri-

mary rays.

SERPENTINE CITY FAIRY FOREST ARMADILLO

(138.63 KTriangles) (173.98, KTriangles) (345.94 KTriangles)

RENDER TIME

static

1D 1561 ms 3242 ms 1744 ms

3D 1436 ms 2757 ms 1736 ms

dynamic

32-bit 1212 ms 2387 ms 1522 ms

192-bit 1133 ms 1873 ms 1403 ms

REORDER TIME

dynamic

sort 192-bit 4310 ms 3732 ms 4289 ms

sort 32-bit 752 ms 754 ms 753 ms

c.s.d. 32-bit 189 ms 798 ms 192 ms

Table 1. Performance results of the techniques for the

test scenes. The static techniques do not require a re­

ordering step prior to rendering. The dynamic tech­

niques perform ray reordering with bitonic sorting.

As can be seen in Figure 4 most of the time that is

spent with the compress-sort-decompress technique is sort

time. Despite neighboring rays with the same hash being

grouped together. When the hash function has more colli-

sions rays are compressed better resulting in less sort time

however hash functions with more collisions are more in-

accurate and result in worse ambient occlusion computa-

tion time. It is necessary to strike a fine balance between

the sort time and the render time to provide the best overall

performance.

76 EPCG 2014, Leiria, Nov 13–14



7. CONCLUSIONS AND FUTURE WORK

In this work we demonstrated that ray reordering speeds up

the rendering of incoherent rays on stream computing ar-

chitectures. We have measured a 1.73x speedup while ren-

dering scenes with a lot of incoherent rays where we had

16 ambient occlusion samples per pixel. Instead of sorting

the rays themselves it is much faster and more effective to

sort the 32-bit hashes of the rays reducing the time spent

on sorting. For interactive applications it is best to use a

sorting algorithm such as radix sort since bitonic sort does

not have enough performance to render scenes with tens of

millions of rays at interactive frame rates.

There is still a lot of work to be done regarding ray hash

functions in order to improve ray reordering performance.

There is a large rendering performance gap between the

32-bit and 192-bit hash functions which we intend to ex-

plore in the future by experimenting with different key

sizes and hash functions.

Since ray reordering is a task scheduling technique we

should in the future not only take into account memory

coherency, where neighboring rays are coalesced, but we

should also take into account the ray intersection times into

the hash function in order to guarantee better performance.

8. ACKNOWLEDGEMENTS

We thank the NVIDIA Corporation for the donation of the

GeForce GTX Titan used for this research.

This work was supported by national funds through FCT -

Fundação para a Ciência e Tecnologia, under project PEst-

OE/EEI/LA0021/2013.

We would like to thank the Utah Animation Repository

(Fairy Forest), Herminio Nieves (Serpentine City), and the

Stanford 3D Scanning Repository (Armadillo) for the test

scenes.

9. REFERENCES

[Aila 09] Timo Aila and Samuli Laine. Understanding the Effi-
ciency of Ray Traversal on GPUs. In Proceedings of the
Conference on High Performance Graphics 2009, pages
145–149, 2009.

[Arvo 87] James Arvo and David Kirk. Fast Ray Tracing by
Ray Classification. ACM SIGGRAPH Computer Graphics,
21(4):55–64, 1987.

[Barringer 14] Rasmus Barringer and Tomas Akenine-Möller.
Dynamic Ray Stream Traversal. ACM Transactions on
Graphics (TOG), 33(4), 2014.

[Blelloch 90] Guy E Blelloch. Prefix Sums and Their Applica-
tions. Technical report, Carnegie Mellon University, 1990.

[Boulos 08] Solomon Boulos, Ingo Wald, and Carsten Benthin.
Adaptive Ray Packet Reordering. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing 2008, pages
131–138, 2008.

[Cook 84] Robert L Cook, Thomas Porter, and Loren Carpen-
ter. Distributed Ray Tracing. ACM SIGGRAPH Computer
Graphics, 18(3):137–145, 1984.

[Garanzha 10] Kirill Garanzha and Charles Loop. Fast Ray Sort-
ing and Breadth-First Packet Traversal for GPU Ray Trac-
ing. Computer Graphics Forum, 29(2):289–298, 2010.

[Harris 07] Mark Harris, Shubhabrata Sengupta, and John D
Owens. Parallel Prefix Sum (Scan) with CUDA. GPU gems,
3(39):851–876, 2007.

[Hoberock 09] Jared Hoberock, Victor Lu, Yuntao Jia, and
John C Hart. Stream Compaction for Deferred Shading.
In Proceedings of the Conference on High Performance
Graphics 2009, pages 173–180, 2009.

[Laine 13] Samuli Laine, Tero Karras, and Timo Aila. Megak-
ernels Considered Harmful: Wavefront Path Tracing on
GPUs. In Proceedings of the Conference on High Perfor-
mance Graphics 2013, pages 137–143, 2013.

[Lang 10] HW Lang and FH Flensburg. Bitonic sort.
http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/
bitonic/bitonicen.htm, May 2010.

[Möller 97] T. Möller and B. Trumbore. Fast, Minimum Stor-
age Ray-Triangle Intersection. Journal of Graphics Tools,
2(1):21–28, 1997.

[Moon 10] Bochang Moon, Yongyoung Byun, Tae-Joon Kim,
Pio Claudio, Hye-Sun Kim, Yun-Ji Ban, Seung Woo Nam,
and Sung-Eui Yoon. Cache-oblivious ray reordering. ACM
Transactions on Graphics (TOG), 29(3):28, 2010.

[Munshi 11] Aaftab Munshi, Benedict Gaster, Timothy G Matt-
son, and Dan Ginsburg. OpenCL Programming Guide.
Pearson Education, 2011.

[Satish 09] Nadathur Satish, Mark Harris, and Michael Gar-
land. Designing Efficient Sorting Algorithms for Manycore
GPUs. In Proceedings of IEEE International Symposium on
Parallel & Distributed Processing 2009, pages 1–10, 2009.

EPCG 2014, Leiria, Nov 13–14 77


