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Abstract

Recent trends in supercomputing towards massively threaded on-node processors to increase performance has also introduced
[fragmented software support. In response to this changing landscape, new scientific visualization packages have been developed
to provide a portable framework to exploit this on-node parallelism with data parallel primitives, while also providing a single
interface to multiple hardware backends. This necessitates adapting algorithms to the data parallel primitives paradigm. In
numerous cases the algorithm is serial, but other times the technique is tied to hardware and needs to be generalized to broadly
disseminate.

In this work, we present unsteady flow line integral convolution (UFLIC) using only data parallel primitives. Line integral
convolution (LIC) is a fundamental flow visualization technique in scientific visualization. LIC and its texture-based variants,
are used in fields such as meteorology and computational fluid dynamics to aid practitioners because of its efficient memory
usage, strong, visual flow characteristics, and efficient performance. However, in practice performant implementations are GPU
shader-based approaches, which limits deployment and adoption. By utilizing VTK-m, our approach is a performant, memory
efficient implementation, with the added benefit of portability, with a single implementation across many architectures.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Line and

curve generation

1. Introduction

The modern HPC world has induced a change in scientific visual-
ization and analysis. Accelerators such as Nvidia Tesla have lead
the way in increasing compute through massive on-node paral-
lelization for simulation codes. This increasingly heterogenous ar-
chitecture landscape has lead to a fragmented software ecosystem,
with various software infrastructure such as CUDA [NVIO7] or
Thread Building Blocks [Rei]. Unfortunately, developers are wary
of porting algorithms to various frameworks because of the time
needed to refactor and optimize per architecture.

Until recently, the state-of-the-art software frameworks did not
have support for this parallelism across the different types of pro-
cessors. For visualization, the multicore visualization toolkit, VTK-
m, was introduced, using data parallel primitives (DPP). DPP is
a paradigm that applies a set of functions, scan, map, reduce,
etc. to vectors of data [Ble90]. This allows for a write-once run-
anywhere approach where DPP, in conjunction with a visualization
data model, can be run on a myriad of parallel processors.

To exploit DPP in VTK-m, traditional techniques need to be
adapted. One such technique is line integral convolution (LIC),
which is a fundamental flow visualization technique in scientific
visualization [CL93]. LIC, and its unsteady variants [SK97,SK98],
are used in various fields such as meteorology and computational
fluid dynamics because of its efficient memory usage, strong, vi-
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sual characteristics, and performance. Many of the accelerated ap-
proaches were implemented with GPU shaders, which explicitly
ties it to the hardware and are not generally runnable on other hard-
ware.

In this paper, we introduce a data-parallel-primitives-based un-
steady flow line integral convolution (UFLIC) using VTK-m. By
using VTK-m, the UFLIC is portable across multiple software in-
frastructures while maintaining strong parallel performance. The
rest of this work is as follows: Sec. 2 is a review of the previous
works. A description of DPP is given in Sec. 3 and in Sec. 4 UFLIC
using DPP is stated. Finally, Sec. 5 is a discussion of performance
results on various platforms and Sec. 6 contains our conclusions.

2. Previous Works

In this section, a high level overview of parallel visualization is in
Sec. 2.1 and hardware accelerated unsteady flow visualization is
reviewed in Sec. 2.2.

2.1. Parallel Visualization

Historically, many visualization techniques were implemented in a
serial fashion, and with the adoption of manycore/multicore accel-
erators in HPC, a new paradigm is required to extract performance.
These manycore/multicore accelerators have potentially thousands
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of concurrent threads and have new APIs, such as CUDA [NVI07],
OpenCL [SGS10], and Thread Building Blocks (TBB) [Rei] that
enables that massive parallelism. Thrust [HB09] is a proprietary
parallel primitives [B1e90] API for programming on Nvidia hard-
ware based on CUDA. Along with parallel primitives, such as scan
or map, the API allows for “functors” to be applied to data in a
parallel manner.

To adapt to the heterogeneous, manycore/multicore landscape,
several visualization packages were developed: PISTON [LSA12],
Dax [MKMMI12], and EAVL [MAPSI12]. PISTON is built on
CUDA, and has a general parallel programming model. Dax hews
more closely to the data problems in scientific visualization and
creates parallelization over each element of a mesh. Finally, EAVL
tackles the problems of the modern visualization data model and
can handle increasing complex data models in a parallel fash-
ion. Recently, the three packages were merged into VTK-m, a
multicore, data parallel primitive toolkit for scientific visualiza-
tion [MSU*16].

2.2. Unsteady Line Integral Convolution

Flow visualization is an expansive topic, so it is limited here to
texture-based, LIC variants and hardware accelerated approaches.
For a more thorough overview, we suggest reading [LHD*04].

Line integral convolution (LIC), was introduced by Cabral and
Leedom [CL93]. To perform the LIC, for each pixel, bi-directional
streamlines are generated to gather the intensity values along the
streamline and a low-pass filter is applied to the resulting accumu-
lated values. Unfortunately, this gather is slow, which [SH95] ad-
dresses to speed-up LIC. Forssell and Cohen [FC95] adapted LIC
for curvilinear grid data, but has poor spatial patterns for unsteady
flow. Shen and Kao [SK97, SK98] focused on unsteady flow LIC
(UFLIC). Instead of gathering values for each pixel, UFLIC scatter
values along pathlines. Further, a circular queue is deployed instead
of a linked-list for accumulating intensity values.

For hardware accelerated approaches, Jobard, Erlebacher, and
Hussaini [JEHO1] performs backwards pathline integration. This
technique generates good temporal coherence, but is noisy spa-
tially. Similarly, van Wijk [vWO02] performs image advection and
alpha-blending, which also has good temporal coherence, but is
noisy. Finally, Li, Tricoche, and Hansen [LTHO06] exploited the
GPU for hardware acceleration for interactive, parallel UFLIC.
This emulates a multi-step pathline integration over the UFLIC ring
buffer [SK98]. Value depositing along pathlines is the most time
consuming aspect of UFLIC because much of the work is to de-
posit values into the future. To increase the performance, instead of
tracing pathlines throughout their entire life time, Li et al. [LTHO06]
use “pathlets,” advecting particles from their current position to the
next position. This way a ring-bucket per pixel is no longer re-
quired [SK98], rather only time-to-live (ttl) number of frames are
computed in each iteration.

3. Data Parallel Primitives

Data parallel primitives [Ble90] is the abstraction model used by
VTK-m to provide performant, portable code. VTK-m provides

four data parallel primitives. The map operator applies the same op-
erator to every element of a vector. The reduce operation computes
a single value from all the values of a vector, such as the sum of the
elements of a vector. The scan operation is similar to the reduce op-
eration, except instead of a single value, multiple partial reductions
are stored to an output vector. The gather/scatter operators perform
a parallel copy. A gather operation brings many values into a single
element of a vector. A scatter operation mirrors the gather opera-
tion, and distributes a single value into many different elements of a
vector. By using these operators as the basis for parallel operations
in VTK-m, it can target multiple architectural backends.
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Figure 1: An overview of the parallel primitives UFLIC.

4. Parallel Primitives UFLIC

The parallel primitives UFLIC method is similar to [LTHO06]. Fig. 1
is an overview of the algorithm. Initially, a particle is placed at the
center of every pixel. Further, a white noise is used to seed the
initial intensity values of the particles. The particles are advected
and the intensity of the particle is deposited along the pathline of
the particle.

Once all the particles have been advected, the accumulated inten-
sities are normalized, sharpened and jittered for the next iteration.
In the next iteration /, the previous particles continue from their
current position, and new particles are placed at the center of every
pixel with a new white noise, all the particles are advected, intensi-
ties deposited, normalized, sharpened, and jittered. This continues
for T iterations, where T is the “time to live”: this defines how long
the particle will live by number of iterations. Once the number of
iterations is larger than the time to live, the texture and particles are
reused.
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4.1. Particle Advection

For every iteration /, initially a particle, p; is placed at the center
of every pixel in the current texture of size M x N. The particle is
advected through the velocity field using a Runge-Kutta 4th order
integration, to the new position p?*". This unsteady vector field in-
tegrator is a DPP map function, which applies the integrator to each

particle in the data array. The path from p; to p® is the pathlet: a

l
portion of a pathline for that iteration’s time step.
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Figure 2: An example of particles advected and depositing their
values into the accumulation texture.

For unsteady flow, there is a “time to live” (7') which defines
how long the particle will live by number of iterations. Therefore,
there are M X N x T particles to compute the current iteration of
the UFLIC. Particles are advected from their current position and
continue to carry their initial ¢; intensity value to scatter along the
accumulation texture. Once a particle has surpassed its 7', it is killed
and no longer advected. In practice, the particles that are “killed”
are recycled and used again as newly released particles. An exam-
ple is in Fig. 2: the time to live is 7 = 4 and the three previous
iterations, ¢ — 3, t — 2, and ¢ — 1 all advect the particle from their
current position to the next position.

4.2. Value Depositing

To generate the UFLIC, the intensity values are scattered into an
accumulation texture. Initially, the intensity value o; for a parti-
cle p; is fetched from the current intensity texture, Texy, which is
derived from the previous intensity texture, Tex;_ 1. The initial tex-
ture, Tex is filled with a white noise. For each iteration /, for each
pathlet from p; to p'®", scatter the intensity value o; on the line
of the pathlet with a line algorithm [Bre65]. Further, the number of
deposits per pixel is stored in ;. For unsteady flow, all the pathlets
(M x N x T) write to the same output texture, the accumulation tex-
ture. Once all depositing is completed, the accumulation texture is
normalized by the ® number of deposits and the normalized values
are stored in Tex;.

4.3. Post-processing

The scatter process (Sec. 4.2) is diffusive, so the accumulation tex-
ture is sharpened with the Laplacian filter for the next iteration.
Further, the accumulation texture is “jittered” to increase the con-
trast, in time. Finally, this sharpened and jittered texture is used as
the intensity values of the next iteration. The sharpening and jitter-
ing filters are map operations, where a 2D stencil is applied to each
data array value.
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5. Results

This algorithm is implemented using C++ and VTK-m with an Intel
Core i7-5960X and an Nvidia GTX 980 GPU. Three datasets were
used to demonstrate the flexibility of the algorithm: a time-varying
double gyre (Fig. 3), the PSI dataset (Fig. 4(b)), and an XGC fu-
sion dataset [CKD*09] (Fig. 4(d)). The double gyre and PSI are
standard synthetic datasets for two-dimensional flow visualization
with the double gyre dataset used as a scaling test as well. The
XGC dataset is a fusion tokamak simulation code which generates
a twisting vector field. By visualizing the twisting field, scientists
can quickly determine whether the simulation is correct.

The timing results are in Table 1 and speed-up results are in
Table 2. VTK-m supports serial, TBB, and CUDA backends, and
for the double gyre dataset the scaling goes from 512 x 256 to
4096 x 2048. All tests were done with a ttl of 4, and a total iter-
ation count of 12. CUDA is up to 222x faster over the serial im-
plementation, which is a good speed-up result. Similarly, an up to
28 x speed-up of CUDA over multi-threaded TBB is reasonable in-
crease in performance. Finally, PSI and XGC (with an image size of
512 % 512) had similar speed-ups when comparing CUDA and Se-
rial (58.3x and 48.4 x, respectively), within expected performance
increase when comparing a multi-threaded CPU implementation to
a GPU implementation.

The original GPUFLIC was written in the Nvidia Cg shading
language which is no longer under active development. There-
fore, we implemented the UFLIC algorithm in CUDA (CUFLIC)
to compare the visual accuracy (Fig. 3 and 4) and performance of a
strictly CUDA/Thrust implementation against the VTK-m CUDA
(VCUFLIC) implementation. Visually, the double gyre, PSI, and
XGC LIC generated with VCUFLIC are strongly similar to the
LIC generated with CUFLIC, retaining the smooth line patterns.
For performance results, VCUFLIC is compared with CUFLIC in
Table 2 because it is the fastest of the VTK-m backends. With the
double gyre dataset, the speed-up of CUFLIC over VCUFLIC starts
at 3.0x with an image size of 512 x 256 but reduces to 1.3x at a
grid size of 4096 x 2048. This indicates that there is a overhead
cost to invoking the VTK-m library. The overhead cost includes
creation of the VTK-m worklet, which includes increased register
count for VTK-m. However, this overhead is a static cost, i.e. it
does not increase as the amount of work increase.

6. Conclusion

In this work we present an unsteady flow line integral convolution
using only data parallel primitives. By using data parallel prim-
itives, the UFLIC algorithm can be deployed to multiple architec-
tures, enabling performant flow visualization while maintaining the
high quality, smooth line patterns similar to previous solutions.

In the future we would like to expand this work to 2.5D surface
and 3D flow visualization. Further, we would like to explore an
adaptive time step integration.

The authors would like to thank the reviewers for their generous
feedback. This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S. Depart-
ment of Energy Office of Science and the National Nuclear Secu-
rity Administration.
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(a) CUDA Double Gyre
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(b) VTK-m Double Gyre

Figure 3: Figures 3(a) and 3(b) are the double gyre (512 x 256) implemented with CUDA and VTK-m, respectively.

(a) PST using CUDA.

(b) PSI using VTK-m.

(c) XGC using CUDA.

(d) XGC using VTK-m.

Figure 4: Fig. 4(a) is the PSI dataset using a CUDA implementation and Fig. 4(b) uses VTK-m. Similarly, Fig. 4(c) is the XGC dataset using
a CUDA implementation and Fig. 4(d) uses VTK-m.

Table 1: The timing results (in seconds) for the double gyre, PSI, and XGC datasets. The double gyre is scaled from 512 x 256 to 4096 x 2048.
The results are for VTK-m with a serial, TBB, and CUDA backend (VCUFLIC), as well as a CUDA with Thrust (CUFLIC) implementation.

Dataset

Double Gyre

PSI
XGC

Dimensions

512x256
1024x512

2048x1024
4096x2048

512x512
512x512

VTK-m CUFLIC

Serial TBB CUDA
2.131 0.412 0.033 0.011
8.622 1.225 0.065 0.033
33.392 4.754 0.185 0.119
132.839  16.676 0.596 0.452
2.320 0.467 0.040 0.025
1.896 0.433 0.039 0.016

Table 2: The speed-up results for the double gyre, PSI, and XGC datasets. The double gyre is scaled from 512 x 256 to 8192 x 4096. The
results are for VIK-m with a serial, TBB, and CUDA backend (VCUFLIC), as well as a CUDA with Thrust (CUFLIC) implementation.

Dataset

Double Gyre

PSI
XGC

Dimensions

512x256
1024x512
2048x1024
4096x2048
512x512
512x512

VTK-m
Serial vs TBB  Serial vs CUDA  TBB vs CUDA  VCUFLIC vs CUFLIC
5.175% 64.525x 12.468 x 3.009 x
7.038x 131.942 % 18.747 x 1.961 %
7.023 x 180.892x 25.756 x 1.553 %
7.966 x 222.800 % 27.969 x 1.320x
4.969 x 58.293 x 11.730x 1.585x
4.381x 48.813 % 11.141x 1.547 x
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