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Abstract

In situ visualization has become a popular method for avoiding the slowest component of many visualization
pipelines: reading data from disk. Most previous in situ work has focused on achieving visualization scalability
on par with simulation codes, or on the data movement concerns that become prevalent at extreme scales. In this
work, we consider in situ analysis with respect to ease of use and programmability. We describe an abstraction
that opens up new applications for in situ visualization, and demonstrate that this abstraction and an expanded
set of use cases can be realized without a performance cost.

Categories and Subject Descriptors (according to ACM CCS):

1. Introduction and related work

The growing size of simulation data and the problems this
poses for subsequent analysis pipelines has driven simula-
tion authors to integrate visualization and analysis tasks into
the simulation itself [CGS∗13]. The primary advantage of
this approach is to perform operations on data while they
are still in memory, rather than forcing them through disk,
thereby eliminating the most expensive component of the
majority of visualization and analysis pipelines.

Scientists and engineers have developed many differ-
ent approaches to in situ. DART uses RDMA to stage
data from supercomputer to potentially separate analysis-
focused resources [DPK10], and a system performs com-
putations on the data as they are in transit from one re-
source to another [MOM∗11]. The dominant approach is
to use the same supercomputer that is running the simula-
tion for visualization, though potentially on just a subset of
cores, in the manner of Damaris/Viz [DSP∗13]. Damaris/Viz
can provide a wealth of visualization and analysis oppor-
tunities due to its ability to act as a front end to both
VisIt’s [CBW∗12] libsim [WFM11] as well as ParaView’s
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Catalyst [FMT∗11, BGS13]. Biddiscombe et al. proposed
an HDF5-based driver that forwards the data from HDF5
calls to ParaView [BSO∗11]; we give an example of our
system implementing similar functionality in § 3.2. Ab-
basi et al. introduce DataStager, a system for streaming
data to staging nodes and demonstrate a performance ben-
efit by asynchronously streaming multiple buffers at one
time [AWE∗09]. In situ libraries can also be used to improve
the performance of simulation code [VHP11].

Most work focuses on extreme-scale performance with
less regard for the effort required in integrating simulation
and visualization software, whereas we focus on the latter
concern. Notably, however, Abbasi et al. extend their pre-
vious work with a JIT compiler that allows users to cus-
tomize data coming through ADIOS [LKS∗08] using snip-
pets of code written in a subset of C [AEW∗11]. Zheng et
al. modify OpenMP runtimes, an approach that shares our
mentality of working within the constraints of existing in-
frastructure [ZYH∗13]. Others have tightly integrated simu-
lation with visualization to allow steering, but these gener-
ally come at high integration costs [LR12, AFS∗11].

Existing solutions leave a potentially large segment of the
user community behind. Most previous work has integrated
or presupposed integration with particular libraries for per-
forming I/O operations, and no such library has achieved
universal adoption. Yu et al. note the tight collaboration re-
quired for a fruitful integration [YWG∗10]. Reasons for not
adopting I/O middleware are varied: the difficulty in inte-
grating the library with local tools, perceived lack of benefit,
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lack of support for existing infrastructure with home-grown
formats, or issues conforming to required interfaces, such as
synchronous ‘open’ calls.

Moreover, the focus of modern I/O middleware specifi-
cally on simulations at the extreme scale leaves a long tail of
potential in situ uses behind. The set of simulation authors
focused on creating exascale-capable simulations is a small
subset of all simulation authors. A large set does not even
dream of petascale; and even larger are those who would
barely know how to exploit a terascale-capable solver for
their science. The distribution gets larger and more diverse
as one moves out to lower scalability levels.

At the opposite end of ‘extreme scalability’ uses for in
situ, one may find a number of heretofore ignored appli-
cations. There is no reason to limit the in situ idea to par-
allel code running on a supercomputer, for example. Anal-
ysis routines embedded into the fabric of network transfer
operations would be a boon to distributed research groups
(and the success of tools such as Globus [FBC∗11] speaks to
the multitudes of domains faced with this problem). Those
writing simulations in MATLAB R© might also benefit from
precanned visualization tasks that occur concurrently with
their simulation, yet the closed source nature of the product
makes the prospect of integrating I/O middleware improba-
ble at best.

The currently-dominant middleware approach to in situ
requires significant effort. It is reasonable for simulation au-
thors to spend a week integrating and retooling their code to
achieve thousand-way concurrent in situ visualization, but
this level of investment is unreasonable to users who sim-
ply wants to compute a data range on their files as they
move across the country. The cliff between ‘nothing’ and
a ‘100%’ solution for in situ visualization with existing mid-
dleware solutions is too high to appease such diverse use
cases. Worse, the model is unworkable in some situations;
it is doubtful that the OpenSSH maintainers would accept
patches incorporating ParaView’s Catalyst into sftp, for
example.

Freeprocessing is an abstraction of previous work. Us-
ing it, one can implement classical in situ visualization and
analysis, computation or data reduction via staging nodes,
unique instrumentation such as gathering power consump-
tion information dynamically [GRP∗13], or a number of
novel ‘processing while moving data’ ideas. This process-
ing can be synchronous or asynchronous depending on the
needs and desires of the user. Developers of a freeprocessor
can connect it to existing visualization tools such as VisIt’s
libsim or ParaView’s Catalyst, implement their own anal-
ysis routines, and even push data into another language such
as Python, all without data copying—or with data copying,
should those semantics be preferable. The general nature of
Freeprocessing not only allows one to implement the diverse
domains of previous work, but also allows novel use cases.
Specifically, we contribute:

• a new method for inserting data processing code into I/O
operations;

• the generalization of in situ ideas to heretofore unexplored
domains, such as visualization during network transfer;

• greatly increased programmability for in situ ideas, mak-
ing them applicable with considerably less effort;

• a sample implementation that demonstrates all of these
ideas in real-world cases.

The rest of this paper is organized as follows. First, we ex-
plain the technical underpinnings of how the program works.
In § 3 we demonstrate Freeprocessing in some classical en-
vironments and show that there is almost no overhead. We
demonstrate some novel uses before we conclude and note
limitations as well as future work in § 5.

2. Instrumentation

Previous in situ solutions have relied on the simulation au-
thor explicitly invoking the visualization tool, or the simula-
tion using a custom library for I/O, which is then repurposed
for analysis. In this work we demonstrate that there is little
need for either; every simulation produces output already, an
in situ tool just needs to tap into that output.

Our symbiont uses binary instrumentation to realize that
tap. We take unmodified simulation binaries and imbue them
with the ability to perform visualization and analysis tasks.
In doing so, we remove a potentially complicated component
of in situ: modifying the program to work with the visualiza-
tion or analysis tool. Notably, this approach enables simula-
tion software to produce in situ visualizations even when the
source code of the simulation is unavailable. Furthermore,
as the symbiont interposes these functions during load time,
a user need only change the invocation of the program to
enable or disable these features.

The method we use is to redefine some of the stan-
dard I/O functions, in a similar manner to the way the
GLuRay or Chromium systems operate [BFH12, HHN∗02].
These methods rely on features available in runtime dy-
namic linkers to replace any function implemented within
a library at load time. The overridden entry points form
what we call the ‘symbiont’, the core of Freeprocessing.
The symbiont’s purpose is to conditionally forward data to
a freeprocessor—a loadable module that implements the de-
sired in situ computation—in addition to fulfilling the func-
tion’s original duties. Separating the instrumentation itself
and the freeprocessor allows users to develop processing el-
ements without knowledge of binary instrumentation.

The set of intercepted functions is different depending on
the I/O interface that the simulation uses, as shown in Fig-
ure 1. For the C language, these functions are those of the
POSIX IO layer, such as open(2) and write(2). In For-
tran these calls are implementation-specific, and C++ im-
plements I/O differently, but on POSIX-compliant systems
all such implementations are ultimately layered on top of
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Figure 1: Freeprocessing works like a vampire tap on the data coming out of a simulation. Without changes to a program’s
source code, we can intercept the data as it goes to the IO library and inject visualization and analysis tasks.

the POSIX I/O interface. We also introduce interposition
for higher-level functions, such as those that comprise MPI
File I/O, and a subset of calls from the HDF5 family. Using
this interposition, what the simulation believes is a standard
‘write’ operation actually calls in to our symbiont.

Function interposition for higher-level functions from li-
braries such as HDF5 and NetCDF provide an important
benefit: data semantics. As these formats are self-describing,
there is enough information in just the stream of function
calls to identify data properties—in contrast to raw POSIX
I/O functions, which provide little more than an abstract
buffer. The symbiont forwards any available data semantics
from the interposed library functions to the freeprocessor.

However, in contrast to previous work, Freeprocessing
will also willingly forward data without knowledge of any
underlying semantics. A freeprocessor can also ignore meta-
data simply by not implementing the methods that interpret
those messages. This distinction is important, as it both en-
ables Freeprocessing to function in a larger set of scenar-
ios, as well as increases the flexibility of the system. Pre-
sumably a freeprocessor would then obtain this information
from some external source. We view allowing semantic-less
data transfer similar to using ‘dangerous’ constructs in a pro-
gramming language, such as casts in C. While these con-
structs are generally frowned upon, with restrained applica-
tion they can be a powerful and thereby useful tool.

2.1. Data semantics

Meta-information concerning data semantics are required,
and are only available through Freeprocessing in limited
cases. While we consider such concerns beyond the scope of
this work, they need to be provided for the demonstration of

the technique. The general nature of Freeprocessing allows
any number of solutions: the problem is no different than un-
derstanding arbitrary binary data read from a file. One of the
solutions we have found works well is a simple text file in the
style of Damaris/Viz or ADIOS [DSP∗13, LKS∗08]. An ex-
ample of one such configuration is given in Listing 1. How-
ever, it is important to note that this configuration is exter-
nal to Freeprocessing itself. The symbiont does not contain
this parsing and metadata acquisition code; the ‘user code’—
freeprocessors—implements this only if they desire.

Listing 1: JSON configuration file used for a Silo conver-
sion freeprocessor. Variants that do not require the repeated
"i"s are possible, but lack the desirable property of strict
adherence to the JSON specification.

{ " dims " : [ {" x " : 4 } , {" y " : 2 } , {" z " : 3 } ] ,
" c o o r d s " : [

{ " x " : [ {" i " : 0 . 0 } , {" i " : 1 . 0 } , {" i " : 2 . 0 } ,
{" i " : 3 . 0 } ] } ,

{ " y " : [ {" i " : 0 . 0 } , {" i " : 4 . 5 } ] } ,
{ " z " : [ {" i " : 0 . 0 } , {" i " : 5 . 0 } ,

{" i " : 1 0 . 0 } ] } ] ,
" t y p e " : " u i n t 8 " }

Freeprocessing itself does not endorse any specific
method for obtaining data semantics, in the same way that
the C file I/O routines do not endorse a specific encoding for
metadata on binary streams.

2.2. Defining freeprocessors

The module interface for a freeprocessor is simple. The sys-
tem exposes a stream processing model. Data are input to
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the processor, utilized (or ignored), and thereafter unavail-
able. This interface is in principle the same model as GLSL,
OpenCL, and CUDA expose, though we do not currently im-
pose the same restrictions. A freeprocessor is free to imple-
ment a cache and process data in a more traditional manner,
for example.

Listing 2 shows the freeprocessor interface. The sym-
biont calls Init when a file is first accessed; some of our
freeprocessors initialize internal resources here. The file-
name parameter allows the processor to provide different
behavior should the simulation output multiple file formats.
The buffer and n parameters are the data and its size in
bytes. If the required information is available, the symbiont
will call Metadata immediately before a write, communi-
cating the characteristics for the impending data. Likewise,
finish cleans up any per-file resources. Finally, the cre-
ate function implements a ‘virtual constructor’ to create
the processor. All functions sans create are optional; if a
freeprocessor has no need for metadata, for example, it sim-
ply does not implement the corresponding function.

Listing 2: Base class for a freeprocessor.

c l a s s F r e e p r o c e s s o r {
v i r t u a l vo id I n i t ( c o n s t s t d : : s t r i n g &);
v i r t u a l ~ F r e e p r o c e s s o r ( ) ;

enum DType { FP_FLOAT , FP_INT8 , . . . } ;
v i r t u a l vo id Metada ta ( c o n s t s i z e _ t [ 3 ] ,

enum DType ) ;
v i r t u a l vo id Stream ( c o n s t vo id ∗ b u f f e r ,

s i z e _ t n ) ;
} ;
e x t er n "C" F r e e p r o c e s s o r ∗ c r e a t e ( ) ;

2.2.1. Configuration

The symbiont reads a configuration file that describes which
freeprocessor to execute. Any library that satisfies the inter-
face given in Table 2 is a valid freeprocessor. It is important
to note that the operations share the semantics of the sim-
ulation code. For example, if a parallel simulation performs
only collective writes for a given file, then it is appropriate to
perform collective operations in the freeprocessor’s Stream
call.

It is common for a simulation to produce a large set of
output files. Furthermore, MPI runtimes frequently open a
number of files to configure their environment, and all these
files are ‘seen’ by the symbiont. It is therefore necessary to
provide a number of filtering options. Some of these are built
in, such as ignoring files that are opened for read-only ac-
cess. Others the user specifies in the configuration file for
the symbiont. The specification uses a match expression for
the filenames, so the user can further limit where instrumen-
tation will occur. These match expressions provide a more

Figure 2: Sample in situ visualizations of the Cambridge
stratified flame produced by the PsiPhi code.

convenient mechanism to uniquely connect processing ele-
ments to streams, but the assignment could also be done by
the freeprocessor implementation.

2.2.2. Python

Developers may also implement freeprocessors in Python.
We provide a simple freeprocessor that embeds the Python
interpreter and exports data and needed metadata. Most no-
tably, it creates the ‘stream’ variable: a NumPy array
for the data currently being written. Exposing the array to
Python does not require a copy; the simulation data shares
the memory with the Python runtime. Should the Python
script attempt any write operation on the data, a copy is
transparently made inside the Python runtime, which is then
managed via Python’s garbage collector. We allow only one
of the simulation or the Python tool to run at any given time.

The Python script is otherwise indistinguishable from
standard Python code; the symbiont imposes no restric-
tions beyond the unique source of data. Communication
via, e.g., MPI4Py is even possible, provided the simulation
utilizes synchronous writes. In § 3.2 we demonstrate this
method by connecting Freeprocessing with the yt visual-
ization tool [TSO∗11].

3. Classical in situ

Freeprocessing can implement a number of in situ ideas,
including the traditional use case of in situ: visualization
and analysis during a simulation run. In this section, we de-
tail how the corresponding freeprocessors for a few simula-
tion codes operate, and demonstrate that the overhead of the
method is negligible.

3.1. PsiPhi

PsiPhi is a Fortan95/2003-based CFD-solver that focuses on
Large Eddy Simulation (LES) of flows that include com-
bustion and other types of chemical reactions. The sim-
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ulation discretizes the governing equations of mass, mo-
mentum, and species concentration on a cartesian grid via
the finite volume method. Second-order schemes discretize
the domain, and an explicit third-order low storage Runge-
Kutta scheme advances the solution. The immersed bound-
ary (IB) technique handles diverse geometries in a computa-
tionally efficient manner. Besides the solution of the men-
tioned transport equations in an Eulerian formulation, the
code is able to solve the equations of motion for Lagrangian
particles. A combination of Lagrangian particles and im-
mersed boundaries describes moving objects. The code is
modular, easy to extend and maintain, and highly portable
to different machines. PsiPhi parallelizes via the distributed-
memory paradigm, using MPI.

PsiPhi simulates highly-resolved simulations of reactive
flows, e.g., premixed, non-premixed and stratified combus-
tion, coal and biomass combustion, liquid spray combustion,
and nanoparticle synthesis [PCGK11, MSCK13, MMK13].
The software has scaled to thousands of cores on Top500
machines such as SuperMUC and JUQUEEN. Recent tests
with the program have shown that the output of the com-
putational results becomes a performance bottleneck when
moving up to an even higher number of cores.

There are three types of intermediate outputs in the PsiPhi
simulation. The first are actually custom-developed in situ
visualizations: slice outputs and volume renderings. The
simulation writes out these visualizations in custom ASCII-
based formats every n time steps, with typical values of n
in between 100 and 1000 [PK13]; Figure 2 shows example
visualizations. The second type of output is a simulation-
specific binary format used for restart files, which is orga-
nized in a ‘one file per process’ manner. Synchronous For-
tran ‘unformatted’ WRITE operations create these outputs.
The third kind of output is an ASCII-based metadata file that
describes the layout of the binary restart files.

The PsiPhi authors are interested in extracting arbitrary
2D slices as well as 3D visualizations with more flexibil-
ity than their custom-developed routines allow. Therefore,
we developed a custom freeprocessor for the PsiPhi simula-
tion. PsiPhi periodically dumps its state to disk in the form
of restart files, at approximately the same cadence as ‘nor-
mal’ output files. We utilized the aforementioned restart files
as the basis for our freeprocessor, in addition to parsing the
ASCII-based metadata to interpret these restart files.

The simulation authors were enthusiastic about the
freeprocessor. All the outputs the simulation previously cre-
ated were redundant with the restart files. Furthermore,
PsiPhi users hardcoded postprocessing parameters such as
slice numbers into the simulation source, necessitating a re-
compile to modify the parameters. In light of the visualiza-
tion options presented by the freeprocessor, the PsiPhi au-
thors elected to remove all custom-developed in situ outputs
and create only the restart files.

We therefore reimplemented their outputs in a
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Figure 3: Scalability of the PsiPhi simulation. ‘existing’
and ‘Freeprocessing’ produce the same outputs via different
mechanisms, while ‘raw’ produces only restart files. Freep-
rocessing’s overhead is negligible; new output methodolo-
gies can even increase performance.

freeprocessor and measured the performance of the
system under both the old and new configurations. As
shown in Figure 3, not only was the overhead miniscule,
but the simulation actually ran faster with the freeprocessor.
The performance difference arose from the difference in
how PsiPhi and the freeprocessor organize their writes. In
the freeprocessor, we calculate the appropriate file offsets
on each rank and output to a shared file directly; the original
PsiPhi approach was to gather the data on the root processor
and then do all writing from there.

3.2. Enzo

Enzo is a simulation code designed for rich, multi-physics
hydrodynamic astrophysical calculations [TBN∗13]. It is of
special interest in the visualization community due to its use
of adaptively-refined (i.e., AMR) grids. Enzo runs in par-
allel via MPI and CUDA on some of the world’s Top 500
supercomputers, with OpenMP hybrid parallelism under in-
vestigation. For I/O, Enzo relies on the HDF5 library.

As Enzo is HDF5-based and HDF5 provides all the data
semantics required, the selection of which fields are of inter-
est is the only required work. For HDF5 outputs, the sym-
biont configuration file specifies the ‘Datasets’ (in the HDF5
sense) of interest as opposed to a filename; the symbiont as-
sumes that all HDF5 files opened for write access are a sim-
ulation output.

When Enzo was first investigated, HDF5 support was not
available in our symbiont. Generic HDF5 support in the
symbiont required only a day of effort. Configuring it to
work with Enzo takes seconds. Users must edit a text file to
indicate which field[s] they wish to see. To work with Enzo’s
yt tool, we utilize the aforementioned freeprocessor that ex-
poses data into Python and runs a script (§ 2.2.2); the script
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Figure 4: ‘Density’ field generated in situ by the Python vi-
sualization tool ‘yt’ applied to an Enzo hydrodynamics sim-
ulation. A freeprocessor exposed the data into Python and a
standard yt script created the visualization.

we utilized is a standard yt script, except that it pulls its data
from the special ‘freeprocessing’ import, instead of a
file. Figure 4 demonstrates this. The 100-line freeprocessor
is applicable for any in situ application; the 20-line Python
script is specific to yt.

3.3. N-Body simulation coursework

We taught a course in High-Performance Computing during
the preparation of this manuscript. Among the work given
in the course was an MPI+OpenMP hybrid-parallel N-Body
simulation. We provided our symbiont to the students along
with a simple ParaView script, which would produce a visu-
alization given one of their timestep outputs. A sample visu-
alization is shown in Figure 5.

The flexibility of the system was a boon in this environ-
ment. Visualizing the data in-memory would be difficult.
The data were distributed, and the writes were in ASCII;
parsing the data from the given stream was daunting for
undergraduates. Therefore they elected to delay launching
ParaView until after a timestep completed. The system must
write and then read particle information from disk, but visu-
alization was still concurrent with simulation and faster than
serializing the two tasks. Most importantly, the simplicity
allowed application of the technique in tens of minutes.

4. Alternative use cases

The ability to hook into any data movement operation of a
process enables Freeprocessing to create novel applications

Figure 5: Sample frame from an animation produced from a
student’s simulation using our tool. The ease of use allowed
the student to quickly get the tool running, allowing fast and
simple visual debugging.

of in situ ideas. In this section, we highlight a couple uses
which makes Freeprocessing unique among in situ tools.

4.1. Transfer-based visualization

A heretofore lost opportunity has been in applying visual-
ization methods to data during transport from site to site.
This use case shares the primary motivation behind prior in
situ visualization work: that we should do operations on data
while they are already in memory, instead of writing the data
to disk and then reading them back. While most if not all
HPC experts agree that—at the largest scale—moving data
will no longer be viable for large data, a large userbase still
exists for which simulation on a powerful remote supercom-
puter and analysis on local resources is the norm.

To downplay this drawback, we propose preprocessing
during this transit time. As an example of Freeprocessing
for this novel case, we use it to instrument the transfer of a
dataset using the popular secure copy (scp) tool. The sys-
tem works by intercepting data as it goes out to or comes
in from a socket. The source of the secure shell program it-
self needs no modification; the system could work with any
network service, such as an FTP client or a web browser.

One use case is the computation of an isosurface; Fig-
ure 6 shows an example. A freeprocessor computed this iso-
surface of a Richtmyer-Meshkov instability during network
transfer. This example demonstrates one of the issues with
our system: we needed to modify a marching cubes imple-
mentation to work in a slice-by-slice manner, as opposed to
assuming all data were in-core. Additionally, our marching
cubes implementation required at least two slices to operate,
which necessitated a cache in the freeprocessor to make up
for the small writes utilized by scp. This buffering and our
unoptimized marching cubes implementation slows down a
gigabit-link transfer by 4x. Although this still proved faster
than transferring the dataset and computing the isosurface
in series, it highlights the pain associated with the need to
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Figure 6: Richtmyer-Meshkov instability isosurface com-
puted by a freeprocessor. Whereas the freeprocessor could
be applied to any process that moves data, this particular
isosurface was computed during network transfer via scp.

rewrite code in a stream processing fashion. On the other
hand, with the rise of data parallel architectures and the de-
creasing memory per core ratio, one might argue that a tran-
sition to a stream processing model is inevitable.

4.2. MATLAB

Users often request methods to read outputs of binary-only
commercial software in tools like VisIt.†. We implemented
a freeprocessor that accepts raw data, reads a metadata de-
scription from a configuration file for semantics, and exports
these data into a Silo file that VisIt can easily import. Ap-
plying this freeprocessor incurs an additional overhead of
3–10% on a simple Julia set calculation in MATLAB, due to
the additional data that it writes.

The alternative of an ‘export to Silo’ MATLAB extension
has notable drawbacks. First, one must compile using the
‘mex’ compiler frontend, and every major MATLAB update
will require a recompilation or even rewrite. Second, divorc-
ing the code from MATLAB and its interface may require
significant effort. In contrast, our freeprocessor is indenden-
dent of the MATLAB version it instruments, with neither
source changes nor a recompilation required. Furthermore,
the same freeprocessor is applicable in other manners, such
as creating Silo files during a network transfer.

5. Conclusions

In this paper we have introduced Freeprocessing: an in situ
visualization and analysis tool based on binary instrumen-
tation. The method imbues an existing simulation with in
situ powers, with little or—in some cases—no effort on the
part of the simulation author. The method’s generality en-
ables novel applications, such as visualization during net-

† c.f. “Using MATLAB to write Silo files to bring data into VisIt”,
visit-users mailing list, February 2014.

work transfer or instrumenting software for which source is
unavailable.

The system is, however, not without its drawbacks.
The symbiont is stable, but customizing the system via
new freeprocessors can require per-simulation effort. Fur-
thermore, the unidirectional communication model pre-
cludes simulation steering applications. The ability of
Freeprocessing to insert small, ad hoc bits of code in myr-
iad new places uncovers perhaps its greatest limitation: in-
creased programmability requires increased programming.

The work presented here lowers the barrier of entry for
a simulation to indulge in in situ processing. Previous work
on in situ has largely focused on achieving highly scalable
results, with less regard to the amount of integration effort
required. The most significant contribution of this work may
be that fruitful capabilities can arise from a modicum of ef-
fort.
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