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Abstract
The continuous development of new commodity hardware intended to capture the surface structure of objects is
quickly making point cloud data ubiquitous. Scene understanding methods address the problem of determining
the objects present in a point cloud which, dependant on sensor capabilities and object occlusions, is normally
noisy and incomplete. In this paper, we propose a novel technique which enables automatic identification of se-
mantically meaningful structures within point clouds acquired using different sensors on a variety of scenes. The
representation model, namely the structure graph, with nodes representing planar surface segments, is computed
over these point clouds to help with the identification task. In order to accommodate for more complex objects (e.g.
chair, couch, cabinet, table), a training process is used to determine and concisely describe, within each object’s
structure graph, its important shape characteristics. Results on a variety of point clouds show how our method
can quickly discern certain object types.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General—I.3.5 [Computer
Graphics]: Boundary Representation—I.3.8 [Computer Graphics]: Applications—

1. Introduction

The widespread availability of inexpensive acquisition hard-
ware and photogrammetry-based tools like Microsoft Pho-
toSynth [SSS06] and ARC3D [VG06], which are capa-
ble of capturing or extrapolating depth information from
a scene, is leading to the creation of massive repositories
of point clouds. Rapid advances in ubiquitous computing
have made available to the masses the possibility of cap-
turing the world around us using smart phones and tablet
devices [Goo14, Jar14] and synthesising it into point clouds.
As a minimum, these point clouds contain a discretised rep-
resentation of surfaces from the acquired scene, in the form
of a set of coordinate triples. This paper addresses the prob-
lem of point cloud segmentation and understanding, where
meaningful structures and objects, such as walls and chairs,
are automatically identified and extracted. Previous work has
targeted specific domains to the effect of making it very effi-
cient within a specific context; however, this comes at the
cost of limiting its applicability to other scenarios or the
more general cases [NXS12, LGZ∗13]. The method pre-
sented is founded upon the observation that many objects
present in a target scene, particularly man-made objects, can

be partitioned into a number of planar segments exhibiting
specific connectivity patterns amongst them. An object de-
scription can be built from at least one planar surface seg-
ment and its relationship to the remaining points. Objects
not suitable for such representation are automatically identi-
fied and flagged for consideration using other schemes such
as those based on local surface descriptors. The problem of
identifying generic structures is tackled by partitioning point
clouds into connected typed segments, enumerated as pla-
nar, edge, or complex, over which a structure graph is
constructed. Subsequently, a number of nodes representing
planar segments in the structure graph are enhanced with
oriented sparse volume grids to enable the extraction of pre-
viously trained objects. The main contributions are:

1. A point cloud segmentation pipeline which partitions raw
point data of both indoor and outdoor scenes into con-
nected segments suitable for scene analysis

2. A graph-based representation describing salient geomet-
ric features in a point cloud and their connectivity

3. An incremental scene understanding algorithm which
enumerates the space of solutions mapping objects to sur-
face segments in the target scene.
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Figure 1: Scene Segmentation and Understanding Pipeline Overview

2. Related Work

Object segmentation [GWM01, CGF09, LVB∗12] and re-
trieval [DA10, LGA∗12] have been extensively studied.
Many segmentation algorithms apply the RanSaC paradigm
to fit parametric shape primitives to unstructured point
clouds [DN07, SWK07]. Segmentation is usually required
for shape recognition [SWWK08, GKF09, LGZ∗13] and in-
door scene understanding [NXS12, KMYG12, MPM∗14].
Graph-based 3D object descriptors have been used to en-
code geometric and topological properties from the shapes
extracted [SWWK08, GKF09]. Both supervised and unsu-
pervised learning algorithms have been applied to search
for object descriptors within point clouds. Whereas super-
vised methods utilise a training phase in order to synthe-
sise descriptors of individual objects, unsupervised methods
rely on the presence of patterns to automatically infer sim-
ilar objects in a scene. In our work, we combine a super-
vised learning component with unsupervised methods. For
instance, the boundaries of an indoor scene are first inferred
by searching for specific patterns, then objects using previ-
ously trained descriptors. Golovinsky et al. [GF09] present a
segmentation algorithm for outdoor scenes based on fore-
ground/background identification. Indoor scenes however,
usually present a harder segmentation challenge due to noise
induced by added clutter, sensors and partial object oc-
clusions. Mattausch et al. [MPM∗14] exploits similarities
within indoor scenes to segment point clouds into clusters
of similar objects. When these similarities are absent, for
instance due to low quality acquisition sensors, the effec-
tiveness of these techniques diminishes. In our work, we
utilise graph-based object descriptors to capture the geomet-
ric properties of an object as connectivity patterns between
planar segments and then search for similarities with these
trained object descriptors. With supervised methods, scene-

specific knowledge may be embedded in trained object de-
scriptors. Kim et al. [KMYG12] propose a system which
also handles model variability modes. As opposed to our
method however, they assume that the vertical direction of
the models and the scene are fixed. This makes it difficult to
detect overturned objects as opposed to our method which
orients models in a scene according to the identification of
dominant planar segments of the trained object descriptor.
Nan et al. [NXS12] propose a search-classify approach for
interleaving segmentation and classification. Although man-
aging to successfully classify complex scenes, their method
fails when object placement in the scene differs in pose and
scale to that used when training the scene-specific classifier.
In our work, classification does not depend on the original
pose of the training models; instead, connectivity patterns
between planar segments are used to identify objects and
structures. Additionally, grids computed around the dom-
inant planar segments of objects are used to discriminate
between objects which have similar plane connectivity pat-
terns. Shao et al. [SXZ∗12] propose an interactive approach
to indoor scene understanding, where users manually im-
prove segmentation results prior to identification. We seek
to provide a method for scene understanding with minimal
input from the user. The techniques presented in this work
do not rely on a specific context; this makes them applica-
ble to a wide spectrum of domains, including indoor scenes,
LiDaR data and cultural heritage sites amongst others.

3. Method

This section describes the transformation of a point cloud
data set into a structure graph and the use of the latter in
scene understanding (see figure 1).
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Figure 2: Segmentation process on two separate chairs, office (Nan et al. [NXS12]) and outdoor scene with columns from left
to right - all points, edge segments, segmentation results shown as coloured planar segments, close-up view.

Structure Graph Construction: Before segmentation
takes place, each point in the input data set P is classified
as either surface or edge; this is shown in figure 2, first
three columns. This property is determined by the ratio of
the eigenvalues over the point’s k nearest neighbours. The
labelled points are then grouped together into surface or
edge segments using an area growing algorithm. Figure 2,
third column, illustrates the surface segments resulting
from this process; each segment is visualised using different
colours. The surface segments are refined using RanSaC
plane fitting, to ensure that each individual segment is as
close to a planar surface as possible. Figure 3 illustrates
how the seats of the sofas are further split into two planar
segments to approximate slight curvature. If RanSaC is
not able to fit the surface segment into any planar
segments, the segment is marked as complex and is
currently withdrawn from being processed further. Since
RanSaC is applied to surface segments, which are point
subsets of P , the results are considerably less random than
applying RanSaC on all of P . Given this set partition of
P , a structure graph G describing segment adjacency is
created, where each node represents either a planar or
edge segment. Adjacency is determined by intersecting
OBBs computed over planar segments. Each planar
node is augmented with additional information including
the number of points, orientation, points coverage on plane
and spatial context information. Spatial context is used to
determine the approximate location of the planar segment
(ranging from boundary to central) along its normal within
the object or scene. Points coverage measures how spatially
uniform the points are located on the planar segment.

Object Descriptors: Structure graphs form the basis of
object descriptors and are independent of object pose. A

Figure 3: Office Scene Nan et al. [NXS12] - over segmenta-
tion (left) and new segments after RanSaC (right).

single structure graph representation can be used to describe
similar objects with different poses, such as non-uniformly
scaled chairs. They are also robust to noise in point clouds,
as shown in figure 4. A feature, itself a structure graph,
is used to describe a specific connectivity pattern across
segments. Handcrafted features are used to describe regular
structures within a scene. For instance, a typical flight
of stairs in a room can be described in a straightforward
manner as a sequence of connected orthogonal planar
segments. A tree, such as those present in the 5th row
of figure 6, is described as an edge segment (leaves)
above planar segments connected in a cylindrical pattern
(trunk). Graph matching algorithms are used to search for
features in G representing the target scene. In indoor scenes,
the floor and walls are described as a feature where each
node is orthogonal to each other and their spatial context is
set to boundary. The identification of objects (e.g. chairs,
tables, pots, houses as in Lin et al. [LGZ∗13]), requires a
training process intended to automatically produce more
complex features. Figure 5 shows the models used for the
evaluation of indoor scenes, none of which is specifically
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present in the target scenes. A ray casting process, from
multiple views around an object 3D mesh, is used to produce
structure graphs from view dependent point clouds of the
object trained. The information gathered about surface
relationships of the object is merged together into one
structure graph with additional information including most
visible surface and pair-wise segment occlusions. This
information is used to select a small number of salient
planar segments extracted from the object, referred to as
anchors and used as root nodes of object features. Anchors
have a higher probability of being visible in the target scene.
Additional transitions are added in G to describe the con-
nectivity between anchors which together define the support
of the object. The support of an object represents local
planar segment connectivity which is used to quickly give
an indication of whether an object is present in the target
scene. In addition to connectivity information, a sparse
voxel grid is computed around each anchor to approximate
the shape of the object around the anchor. This is used whilst
searching to determine whether the segments identified
using an object’s support and features actually correspond
to that object. The grid is oriented in world-space by the
orthonormal basis formed by the anchor segment OBB
(e.g. second row of figure 5). Whereas increasing the grid
resolution improves the grid approximation to the shape of
the object, in order to improve performance and genericity,
a low resolution grid is used to capture only salient shape
features without capturing too much detail. Each grid cell
stores information about which object segments it contains.

Anchor 2

Anchor 1

Scene 
Planar Segments

Learning a Generic Chair in Training Phase

Matching a Similar Chair in Searching Phase

Grid Matching over 
connected segments

Generic Chair 
Scaled to Grid

Anchor Segments

Figure 4: An trained objects’ structure graph is used to lo-
cate similar objects in a target scene.

Scene Understanding: We reformulate the scene under-
standing problem as one which seeks to maximise matches

between anchor segments in object descriptors and pla-
nar segments in the target scene. In general, this is bound
to be an unconstrained problem, due to the presence of noise
and partial object occlusions, where multiple valid mappings
may exist. The solution space is defined as the Cartesian
product between the set of objects used and the super-set
of planar segments in the structure graph of the target
scene. A Markov decision process enumerates this search
space using a number of heuristics intended to quickly pro-
vide a number of valid solutions. The process creates a solu-
tion lattice L, where each solution associates objects to sets
of scene planar segments and is obtained via a depth first
traversal of L. Each leaf node describes a solution, whose
score is an aggregate of the scores obtained at all inner nodes
(individual object mappings) along each depth first traversal
path. In order to decrease the number of solutions, an addi-
tional constraint on the number of inner node children can
be imposed. If this parameter is set to one, then only one so-
lution is produced. The order in which planar segments in
the scene are matched with anchor segments plays a critical
part in the efficiency of the scene understanding process. If
domain-specific knowledge of the target environment such
as the distance from the floor of the chair seats and table
tops is known, then a segment sorting function can order hor-
izontal planar segments according to their distance from
the floor and try to match these with tables and chairs. In
order to provide for a generic scene understanding solution,
our method allows for different sorting function implementa-
tions to determine the sequence by which planar segments
from the target scene are visited. If no domain-specific in-
formation is available, as in our case, planar segments are
ordered according to their similarity with the descriptors of
trained objects. Whereas anchor connectivity information is
used to determine which scene planar segments to visit
first, voxel grids created around these segments are used to
determine which other scene planar segments make up the
object and further discriminate between similar objects (e.g.
a sofa and a chair). An incremental grid matching process
is used to determine which planar segments in the scene
best fit within an objects’ voxel grid. At each step, a grid
is computed around the segment matching the anchor and
a number of connected segments. A compatibility score be-
tween scene and object grids is computed as a difference of
the two. Non-uniform scaling and rotations around the nor-
mal of the current scene planar segment are performed
until all points in the segments being tested are included. If
the score decreases when adding a new connected segment,
this is removed and other segments are added according to
the structure graph of the target scene. Finally, when the best
scene voxel grid is chosen, edge segments from the con-
nectivity graph connected to the planar segments selected
and any which fall within the OBB of the scene voxel grid
are tested to check whether they consolidate the match. If
the distance between two mappings is small (user-set pa-
rameter), a tie-breaker function is used to select the object
mapping which according to some heuristic has the high-
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est probability of occurring, e.g. always prefer upright pose.
The tie-breaker is not used if multiple solutions are allowed,
in which case all mappings are attached to L. In general, if
more constraints are added to the environments, e.g. more
points, reduction in noise, domain specific knowledge, etc.,
our matching algorithm should be able to perform better.

Figure 5: The top row shows objects trained; middle row
shows voxel grid approximating object shapes around one
anchor segment and the third row illustrates a density map
of the grid parallel to the anchor.

4. Evaluation

Models of two chairs, a table, a couch, a plant pot and a
cabinet (see figure 5) are used to evaluate our method on a
number of scenes including some taken directly from Nan et
al. [NXS12]. The planar segments sorting function used
first searches the scene structure graph for segment connec-
tivity patterns matching the support of trained objects. Those
matching the highest number of anchors (maximum 3) per
object are tested first. In the case of ties, segment point count
is used, testing first those segments with the highest number
of points. In all cases, the planar segment with the high-
est number of points within the segments matching an ob-
ject support is matched against the respective object anchor
segment. Segments matched are removed from the rest of
the search. Figure 7 illustrates the matching order for that
specific scene. Couches are all correctly matched except for
one, segment three, since the segmentation process groups
together the back of two couches into one as illustrated in
figure 8. In this case, grid matching elongates the couch.
The top row of figure 6 illustrates matches between the office
chair, a table and three filing cabinets. In the case of the filing
cabinets, a third cabinet (the largest) is erroneously matched
to part of the wall since two large planar segments are not
included in the set of boundary segments as they are located
within the room. The office chair is correctly identified and
obtains a higher score when grid matching because of the
segments representing the arm rests as can be seen in fig-
ure 8 (top left). The second scene with five chairs is taken
from Nan et al. [NXS12] and is used to demonstrate that our

method, as opposed to theirs, can detect similar objects in a
different pose to the one used for training. The bottom row
scene of figure 6 illustrates a low density point cloud with
all the main objects correctly identified. Since our scene un-
derstanding process matches anchor segments to planar
segments in the scene, severe occlusion and noise pose a
limitation. In general, our method needs at least one anchor
segment to be mostly visible even if with holes, in addition
to some supporting segments around it. Figure 8 (top right),
shows a scene where two chairs have only their back visible.
Whereas our segmentation process does a good job at clus-
tering these points as separate segments, currently, these seg-
ments are not considered whilst searching since there are no
other segments in their vicinity to match any of the trained
objects. However, if the segment sorting function is modified
to always assume that backs of chairs are in a certain pose,
then just one planar segment in the scene could be enough
for matching.

Figure 6: Scenes in the top two rows taken from Nan et
al. [NXS12]; third row scene scanned using Asus Xtion Sen-
sor; fourth row show feature extraction from the temple point
cloud; fifth row show feature (representing trees) extraction
from the garden point cloud.

5. Conclusion and Future Work

Further work is planned in order to improve performance,
robustness and functionality. We seek to re-implement voxel
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grid matching using GPUs to bring our method closer to
a real-time realisation of scene understanding, as opposed
to the current off-line process. We plan to investigate the
integration of run-time context-switching (e.g. Fischer et.
al. [FSH11]) whilst searching for objects in specific lo-
cations. Moreover, previously established relationships be-
tween objects can be used in cases of extensive occlusion
and noise. Finally, integration with other representation and
identification schemes which are more adequate for certain
types of objects (e.g. computer vision for face recognition)
should prove to be beneficial in our context and thus plan on
integrating this information within structure graphs.
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Figure 7: (a) Point Cloud from Nan et al. [NXS12] (b) Pla-
nar segments filtered by boundary, numbers indicate seg-
ment order used for fitting (c) Models fitted

a b c d

Figure 8: (a) Model mesh and point cloud segments super
imposed showing arm rests in point cloud matching to arm
rests in trained office chair improving grid match score (b)
Not enough data is present to correctly match two chairs
whereas the one with more points is correctly matched to
the generic chair (c) Over segmentation groups together the
backs of two couches (d) Segments representing the handles
on the drawers of the cabinet could be used to orient the
model correctly.
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