‘Workshop on Material Appearance Modeling (2015)
H. Rushmeier and R. Klein (Editors)

The Material Definition Language

L. Kettner, M. Raab, D. Seibert, J. Jordan, and A. Keller

NVIDIA

"1,4_/-4

-*-‘

Figure 1: A variety of materials created with the Material Definition Language (MDL).

Abstract

We introduce the physically-based Material Definition Language (MDL). Based on the principle of strictly sepa-
rating material definition and rendering algorithms, each MDL material is applicable across different rendering
paradigms ranging from realtime over interactive solutions to advanced light transport simulation.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.7]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The paradigm shift towards physically-based rendering
(PBR) has happened throughout the whole rendering in-
dustry, from VFX to design and games, over the course of
the last years. Being physically-based is a prerequisite for
almost all modern rendering algorithms [Vea97] and has
received great attention with the 2013 Technical Achieve-
ment Awards and the seminal book with the very same ti-
tle [PH11]. As a consequence, material appearance model-
ing evolved from conventional shading languages to the use
of Bidirectional Scattering Distribution Functions (BSDFs)
and related concepts in order to separate the concerns of ren-
dering algorithms and material definition.

For its various benefits, physically-based workflows have
been adopted by different classes of rendering algorithms
such as for example ray-tracers and rasterizers. Hence, there
is a need for a physically-based material definition that
works across different rendering algorithms.

In this position paper, we introduce the NVIDIA Material
Definition Language (MDL) and discuss its expressiveness
and advantages as well as its limitations. The language spec-
ification [NVI15] is publicly available and enables others to
adopt MDL.

(© 2015 The Author(s)

e-mail:Ikettner|mraab|dseibert|jjordan|akeller @nvidia.com

DOI: 10.2312/mam.20151195

2. Yet another Material Language?

Modern renderers typically offer a C/C++ API for mate-
rial development, such as PBRT, Arnold, or the RIS frame-
work of RenderMan 19 do. MetaSL [men10] successfully in-
troduced programmable BRDFs (Bidirectional Reflectance
Distribution Functions) with version 1.2, but kept its legacy
of a conventional programming language and later has been
discontinued. Besides MDL, the only domain specific lan-
guage to model physically-based materials is the Open Shad-
ing Language (OSL) [Son14].

OSL innovated with the representation of distribution
functions by closures in an otherwise RenderMan-Shading-
Language-like language. Conventional functions are used to
compute a closure from standard components and an alge-
bra of operators. In contrast, MDL keeps the definition of
the distribution functions and their layering structure strictly
separated from the conventional functions. An MDL com-
piler thus easily understands the structure of the distribution
functions of a material at compile time. While OSL offers
a direct trace call and additional data communication chan-
nels to serve the needs of VFX productions, parallel archi-
tectures are targeted more efficiently by MDL, in particular,

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/mam.20151195

2 L. Kettner et al. / The Material Definition Language

interactive rasterizer

ray tracer

path tracer

Figure 2: The same car paint material across three render-
ing algorithms.

due to the side-effect free functions, the read-only state, less
data dependencies at runtime, and easy access to the material
structure for optimizations.

In summary, MDL addresses the requirements of modern
light transport simulation algorithms better than traditional
shading languages and provides the benefits of a domain
specific language over the common C/C++ API solutions. In
comparison to OSL, it has a clearer separation of concerns
into functions, material definition, and rendering algorithms,
and its design contains choices in favor of highly performant
renderers especially on massively parallel architectures in-
cluding GPUs.

3. One Material across many Rendering Algorithms

MDL is a small domain-specific language to define materi-
als and functions, which can be organized in modules and
packages to create flexible, custom-built material catalogs.
Materials are defined in a declarative style; they define what
to compute for a material and not how to compute it, which
is the key to make one MDL material usable across many
rendering algorithms while targeting the same material ap-
pearance (see Fig. 2), of course within the limitations of
the selected light transport simulation algorithm. As a con-
sequence, renderer specific parts commonly found in other
shading languages, such as light loops or ray tracing calls,
are not available in MDL. The function definitions in MDL
are written in a procedural programming style. Their use is
limited to computing material parameters, which allows for
optimizing rendering algorithms independent of the material
definition.

3.1. Declarative Definition of Materials

Modeling with physically-based entities, a material’s char-
acteristics are defined by the means of Bidirectional Scat-
tering Distribution Functions (BSDF), Emission Distribu-
tion Functions (EDF), and Volume Distribution Functions

Figure 3: Procedural flakes of varying geometric shapes.

(VDF). They define the interface between the material defi-
nition and the rendering algorithm.

Unlike other monolithic or strictly layered solutions, in
MDL these distribution functions can be composed in a flex-
ible and powerful way from simple building blocks. For ex-
ample, a BSDF can be one of a set of simple elemental BS-
DFs, or it can be constructed using a directed acyclic graph
of operators and modifiers where only the leaves are elemen-
tal BSDFs. Combination operators include simple weight-
driven mixing, (Fresnel-)layering, and color curve modi-
fiers, often with configurable custom normal mapping op-
tions. The graph of operators is equivalent to a declarative
expression and does not allow for control flow constructs
that would prevent compile-time understanding of the ma-
terial’s structure, like for example variable-dependent loops.
Similarly, EDFs and VDFs can be built from elemental dis-
tribution functions and operators.

3.2. Procedural Language for Function Definitions

Since MDL has been designed for massively parallel archi-
tectures like GPUs, we only allow for the definition of pure
(side-effect-free) functions that have access to a read-only
rendering state.

The C-like procedural programming language offers flex-
ibility to material artists to program material input parame-
ters or additional material properties, such as displacement
mapping, normal mapping, and cutouts. The renderer state
available in MDL enables material authors to program ev-
erything from simple texture blending and projection map-
ping pipelines to noise-driven normal mapping. See Fig. 3
for an example of procedurally generated flakes.

4. Expressive Power for Material Appearance Modeling

In the following, we discuss aspects of the expressive power
of MDL and its limitations, and in particular its support of
measured materials.

4.1. Synthesizing Materials

Seen from the perspective of a conventional shading lan-
guage, the declarative material model of MDL certainly

(© 2015 The Author(s)

L. Kettner et al. / The Material Definition Language 3

i

Figure 6: Five textures comprising an SVBRDF measurement [AWLI13] rendered on a sun-lit plane.

Figure 4: Synthesizing a carbon fiber reinforced polymer:
The material uses three maps with a simple layered BRDF
foundation, which are (from the second image on the left to
the far right): An anisotropy map to model reflections of the
fibers embedded in the resin. A bump map for the fiber bun-
dles, while the coating itself appears flat. A reflectivity map
for the fiber self shadowing. A similar material structure can

be used to create lively woods.

Figure 5: Cloth features complex anisotropic behavior de-
termined by threads running orthogonally to each other
(warp and weft). Threads are bent which can create sec-
ondary highlights and warp and weft might be of different
color, creating complex color variation. From left to right:
a) The basis for warp (Anisotropic glossy BSDF). b) Adding
a tilted glossy lobe to simulate thread bending. c) Adding an-
other tilted glossy lobe to simulate thread bending. d) Weft:
90 degrees rotated and different color (warp and weft to-
gether create the complex reflective behavior of cloth). e)
Translucency of the fabric. f) Final result.

could be perceived as a kind of restrictive fixed-function
model. For example, the elemental distribution functions and
their operators are fixed indeed; they are part of the interface
between the renderer and the material definition. However,
the algebra of operators on distribution functions is very
powerful and flexible. The forthcoming MDL Handbook
(see www.mdlhandbook.com) provides an idea of the vast
diversity of materials that can be represented in a straightfor-
ward and natural way in MDL, such as materials with trans-
parent clear coats, varnishes, plastics, metals, glas, translu-

(© 2015 The Author(s)

Figure 7: Three materials of the sample material set
[Rus14] measured with the Radiant Zemax Imaging Sphere
device: Basketball, green felt, and gold silver.

cent materials (see Fig. 1), resins with embedded fibers (see
Fig. 4), cloth (see Fig. 5), or procedural metallic paints.

Such materials efficiently can be evaluated and sampled in
a renderer, even under realtime constraints. Obviously, the
cost grows with the complexity of the material, for exam-
ple, when combining many BSDFs or using complex texture
function networks and procedures. MDL’s support for ma-
terial measurements provides an efficient alternative, espe-
cially if such complex materials are required.

4.2. Measured Materials

Material measurements are a simple way to create believable
materials and a necessity for quantitative results in predic-
tive rendering. Measurement devices for either purpose exist
and create a Spatially Varying BRDF (SVBRDF) represen-
tation, i.e., a set of textures controlling an analytic BRDF
model representing their measurement. Typically, these are
easy to represent in MDL, such as for a recent research sys-
tem to capture believable materials [AWL13] (see Fig. 6),
or the base profile in the AXF format from the Bidirectional
Texture Function (BTF) scanning technology by X-Rite tar-
geting predictive workflows [Sch14] (see Fig. 1 on the right,
where the green cloth and the basketball materials are from
the sample material set [Rus14]). Currently, a complete BTF
cannot be represented in MDL.

Additional components in MDL support measured re-
flectance curves, for example, for realistic glass, and mea-
sured isotropic BSDFs. We used the latter representation
with the Radiant Zemax Imaging Sphere device. The device
does not provide spatial variation as it averages a material
BRDF over a small area of a porthole, which may provide a

L. Kettner et al. / The Material Definition Language

Figure 8: From left to right: a) A physical car-paint sample, b) its measurement, c¢) with an added clear coat (a Fresnel-layered
specular BRDF), d) a normal map for scratches in the paint, and e) a rendering of the final material on a car model.

Figure 9: Light path expressions are used to render the tiles
on the back wall into individual images and composite tinted
versions to make the final images including tinted secondary
effects on floor and ceiling. For example, a final image (left)
can be adjusted in post processing to a high-quality recol-
ored image (right).

good result for a far field appearance (see Fig. 7 for results
using the sample material set [Rus14]).

The component model of MDL integrates measurements
seamlessly with all other components, for example, allow-
ing for their flexible use in a creative design concept phase,
where an artist develops new materials by modifying exist-
ing ones by adding a different surface finish with a bump
map (see Fig. 8(d)). For a lack of efficient compression,
the measured BSDF representation is currently limited to
isotropic BSDFs.

A typical limitation of measurement devices is their insuf-
ficient capture of reflections at grazing angles. In MDL, ad-
ditional knowledge about grazing-angle reflectivity of a ma-
terial, for example, through a different measurement or hu-
man knowledge, can be used to amend the measurement with
a suitable Fresnel-layered specular reflection (see Fig. 8(c)).

5. Conclusion

Physically-based materials work reliably across different
lighting situations and allow for the creation of future-proof
material catalogs. Compared to conventional shader pro-
gramming, look development is dramatically simplified and
material specific programming can be well separated from
rendering specific code.

Instead of compromising on the correctness of the mate-
rial model, the demand for artistic control over the images
generated by physically-based renderers can be met with the
orthogonal render concept of light path expressions (LPEs).
In particular, MDL material components, such as an individ-
ual elemental BSDF responsible for a specular highlight or
car-paint flakes, can be individually selected by regular ex-
pressions and rendered into separate passes for subsequent,
possibly non-linear, compositing tasks (see Fig. 9).

The physically-based material model provided by MDL is
key for high rendering performance, as verified by the exist-
ing integrations in NVIDIA Iray (see Fig. 2) and mental ray.
Our implementation supports JIT compilation with CUDA
kernels on GPUs, CPUs, and OpenGL GLSL. All images
are rendered with Iray Photoreal, except Fig. 2, which shows
three renderers.

Acknowledgements

We would like to thank Holly Rushmeier for the material
samples distributed at MAM 2014, X-Rite for the respective
measured AXF files, TurboSquid for various models used in
our scenes, and Thomas Zancker for the BMW scene.

References

[AWL13] AITTALA M., WEYRICH T., LEHTINEN J.: Practical
SVBRDF capture in the frequency domain. ACM Trans. Graph.
32,4 (July 2013), 110:1-110:12.

[men10] MENTAL IMAGES GMBH, BERLIN, GERMANY: Design
Specification for MetaSL, Version 1.2.1, Dec. 15th, 2010.

[NVI15] NVIDIA CoRrP., SANTA CLARA, CA, USA: NVIDIA
Material Definition Language 1.2: Language Specification,
2015.

[PH11] PHARR M., HUMPHREYS G.: Physically Based Render-
ing. Morgan Kaufmann, 2nd Ed., 2011.

[Rus14] RUSHMEIER H.: The MAM2014 sample set. In Euro-
graphics Workshop on Material Appearance Modeling (2014),
Klein R., Rushmeier H., (Eds.).

[Sch14] ScHWARTZ C.: X-Rite demo. Eurographics Workshop
on Material Appearance Modeling, 2014.

[Sonl4] SONY PICTURES IMAGEWORKS INC., ET AL.: Open
Shading Language 1.6: Language Specification, 2014.

[Vea97] VEACH E.: Robust Monte Carlo Methods for Light
Transport Simulation. PhD thesis, Stanford University, 1997.

(© 2015 The Author(s)

