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Figure 1: Clouds rendered by the proposed algorithm.

Abstract

We present a new method for rendering realistic cumulus clouds in real time. The clouds in our approach consist
of randomly rotated and scaled copies of a single reference particle. During the pre-processing, we pre-compute
optical depth, single and multiple scattering inside the reference particle for every camera position, orientation
and light direction, and store the information in the look-up tables. At run time, information from the look-up
tables is used to compute the cloud shading, avoiding any ray marching or slicing. To control the level of detail,
we introduce a new technique which provides high fidelity for close clouds while using a coarse representation
for distant regions. In addition to this, we present a new method for blending particles. Compared to traditional
alpha-blending, this method produces more accurate visual results by accounting for volumetric intersection. The
method merges collection of individual particles into a continuous medium, and also eliminates temporal artifacts.
Our technique is able to produce realistic images at high frame rates.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Rendering realistic clouds has always been a desired feature
for a wide range of applications, from military flight simu-
lators to computer games. Clouds consist of a great number
of tiny water droplets which interact with the photons trav-
eling through the cloud. The dominant type of interaction
is scattering which changes the photon direction. Typically,
a photon undergoes many scattering events before it leaves
the cloud, and almost all photons entering it eventually exit.

Accurately modeling multiple scattering in the cloud is pro-
hibitively expensive, even for off-line renderers. Real-time
techniques rely on simplifications to reduce computational
complexity, like ignoring multiple scattering or using proce-
dural texturing and other non physics-based methods.

There are numerous kinds of clouds such as cumulus, stra-
tus, cirrus as well as combinations of these. In our work,
we concentrate on rendering cumulus (puffy) clouds, which
have the most pronounced volumetric nature. Since precisely
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modeling light propagation inside the cloud is too expensive
to perform in real time, we offset the cost by pre-computing
light transport at pre-process. Our main contributions to the
state of the art are:

1. Pre-computed solution to optical depth integral inside the
inhomogeneous volumetric particle.

2. Pre-computed solution to single and multiple scattering
inside the homogeneous spherical particle.

3. Real-time lighting model based on the pre-computed so-
lutions to optical depth and scattering.

4. Method to control the level of detail which enables ren-
dering large outdoor environments with clouds.

5. Technique for volume-aware blending of particles.

The rest of the paper is organized in the following way.
In section 2, we give an overview of the previous work and
in section 3 present the mathematical background. Section 4
describes our pre-computed solution to optical depth, single
and multiple scattering. Implementation details are given in
section 5, results and discussion follow in section 6. Sec-
tion 7 concludes the paper.

2. Related Work

Many cloud rendering algorithms have been developed
in the last few years. A recent survey by Hufnagel and
Held [HH12] provides a thorough overview. In this section
we briefly review the most relevant methods.

The most accurate results come from off-line renderers,
which can afford long rendering times (minutes to hours to
generate single frame) and can simulate very complex ef-
fects. Jensen and Christensen used photon maps to generate
high quality images of participating media [JC98]. Nishita et
al. modeled an energy exchange between voxels [NDN96] of
a uniform grid, and reduced the number of possible paths by
taking into account the strong forward scattering.

Some methods completely ignore the physics of the prob-
lem so as to render quickly, and rely on different procedural
techniques. Gardner used textured ellipsoids to model cu-
mulus clouds [Gar85]. Elinas and Stuerzlinger implemented
Gardner’s method in real time using the texturing capabili-
ties of the GPU [ES00]. Ebert combined implicit functions
with turbulence-based procedural techniques to model and
animate clouds [Ebe97]. Schpok et al. presented a system
which uses volumetric implicit functions to model cloud
shape, and adds fine-grain details using 3D noise [SSEH03].
Rendering is performed using slice-based volume rendering
technique, while color is artistically controlled by interpola-
tion between "shadowed" and "lit" colors. Wang described
an artist-driven technique which renders clouds as alpha-
blended textured sprites [Wan04]. In this method, cloud
shape, texturing, and shading are manually modeled by
artists. The main advantage of non physics-based approaches
is speed. However, creating realistic-looking images requires

tweaking different parameters and a lot of artistic effort. Dy-
namic lighting and cloud animation increase the cost even
more, and many effects, such as cloud self-shadowing or sil-
ver linings, are hard to model.

Many methods approximate the physical process of
cloud formation and lighting using simplifying assumptions.
Dobashi et al. [DKY∗00] modeled cloud dynamics using
cellular automaton. Rendering was performed using splat-
ting, and only single scattering was modeled. Harris and
Lastra [HL01] extended this method by simulating multi-
ple forward scattering at pre-process and anisotropic scat-
tering at run time. Clouds and lighting conditions are lim-
ited to be fixed in this method. Miyazaki et al. [MDN04]
used a half-angle slicing technique introduced by Kniss et
al. [KHSM03] to compute single scattering in the cloud. Ri-
ley et al. [REK∗04] adapted the same technique to approx-
imate multiple forward scattering by using a series of pre-
convolved phase functions.

The idea of offsetting run-time rendering costs by per-
forming expensive pre-computations is exploited by many
algorithms. Sloan et al. [SKS02] performed an off-line light
transport simulation to encode the transfer from incident
lighting into outgoing radiance. Transfer functions are repre-
sented using low-order spherical harmonics, for every point,
which limits the method to low-frequency lighting environ-
ments and static objects. It cannot be used for rendering sig-
nificantly anisotropic scattering media like cloud droplets
under direct sunlight.

To efficiently render stratiform clouds, Bouthors et al. pre-
computed light transport in a plane-parallel slab, and then fit-
ted the local cloud shape to the slab [BNL06]. This algorithm
was then extended to render cumulus clouds [BNM∗08].
The method uses the results of an extensive Monte-Carlo
simulation fitted into analytic functions to find area on the
cloud surface (called collector area) through which the light
reaches the shading point. This algorithm is rather involved,
computationally expensive, and difficult to reproduce.

Ament et al. described the direct volume rendering
method which also exploits pre-integration of light trans-
port to approximate multiple scattering [ASW13]. They ex-
amine a finite spherical region of a homogeneous medium
and use path tracing to pre-compute the radial distribution
of scattered light leaving the sphere. The results of simu-
lation are stored in the look-up table parameterized by the
scattering/extinction properties of the medium, anisotropy of
the phase function, and incident light direction. The final in-
scattering intensity is computed by ray marching. Each sam-
ple point is considered the center of an imaginary sphere. Lo-
cal properties of the volume data inside the sphere are aver-
aged and used as the coordinate to look-up the approximated
intensity of the scattered radiance leaving the sphere in the
direction of camera. The algorithm therefore only requires
the radial contributions of the outgoing radiance, ignoring its
directional distribution. In our method, we use a related idea.
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We also pre-compute light transport in the spherical volume,
but looking for the entire light field on its boundary. Since
our look-up table is not limited to rays going through the
sphere center, we can render particles directly by querying
the outgoing intensity for any camera ray without the need
for ray marching. Another conceptual difference is that the
method by Ament et al. is a direct volume rendering solu-
tion. They examine volume data to fit appropriate sphere to
every ray marching sample. Our method is a particle-based
solution, and spheres themselves build up the cloud body.
For pre-integration, we do not use Mote-Carlo simulation,
but solve light transport equations with GPU-based numeri-
cal integration.

3. Mathematical Background

In this section we briefly introduce the main concepts of light
transport in a participating medium. More detailed informa-
tion can be found in [REK∗04], [Bou08]. The three main
phenomena influencing the light propagating through a par-
ticipating medium are scattering, absorption and emission
characterized by the scattering, absorption and emission co-
efficients βSc, βAb and βEm correspondingly. The extinction
coefficient βEx = βSc + βAb shows the energy loss due to
both out-scattering and absorption. Clouds are a purely scat-
tering medium, i.e. absorption and emission in visible wave-
lengths are negligible [CS92]. Hence βAb = βEm = 0 and
βEx = βSc = β.

Optical depth τ(A,B) between points A and B is the inte-
gral of the extinction coefficient over the path:

τ(A,B) =
∫ B

A
β(P) ·ds, (1)

where P = A +~r · s is the current integration point and
~r = B−A

||B−A|| is the unit direction vector between integration
limits. Intensity of light traveling through the medium of op-
tical thickness τ is reduced by a factor of e−τ.
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Figure 2: Light scattering in the cloud.

In-scattered light (Figure 2) at position C when viewing
in direction~v is given by the following equation:

LIn(C,~v) =
∫ P1

P0

e−τ(P,P0) · J(P,~v) ·β(P) ·ds, (2)

where P0 and P1 are positions where the view ray enters
and leaves the cloud. J(P,~v) is the total radiance of light

scattered at point P towards the camera:

J(P,~v) =
∫

Ω

LIn(P,~ω) ·P(θ) ·dω. (3)

P(θ) is the phase function which describes probability of a
photon being scattered from the incident direction to the out-
going direction −~v (view direction~v is opposite to the scat-
tering direction, thus the "minus" sign), where θ is the angle
between the two.

The main difficulty in solving eq. (2) is that LIn appears
(implicitly through J) on both sides of the equation. This is
typically solved by representing LIn as the infinite sum of
intensities of light scattered exactly n times:

LIn =
∞
∑
n=0

L(n)
In , (4)

where

L(n)
In (C,~v) =

∫ P1

P0

e−τ(P,P0) · J(n)(P,~v) ·β(P) ·ds, (5)

J(n)(P,~v) =
∫

Ω

L(n−1)
In (P,~ω) ·P(θ) ·dω. (6)

L(0)
In is the radiance of light scattered 0 times, which is

simply external radiance attenuated by the cloud.

The phase function of cloud droplets is very complex
[BH98]. In our work, we approximate it using the well-
known Cornette-Shanks function [CS92]:

P(θ)≈ 1
4π

3(1−g2)

2(2+g2)

(1+ cos2(θ))

(1+g2−2gcos(θ))3/2
. (7)

It must be noted that our method is not limited to this
simplification and it can be easily extended to use a more
accurate phase function. The final radiance measured at the
camera is the sum of in-scattered light LIn and the attenuated
background radiance LB:

L(C,~v) = LIn(C,~v)+ e−τ(P0,P1) ·LB. (8)

4. Pre-computed Solution

Performance of current graphics hardware does not allow
solving equations (1, 4, 5, 6) in real time. Our solution is
inspired by [BN08], where the property of the spherical sym-
metry of the Earth’s atmosphere is used to pre-compute mul-
tiple scattering in a 4D look-up table. Our idea is to select
some basic relatively simple cloud particle (which we will
call reference particle), pre-compute equations (1, 4, 5, 6)
for all possible camera positions and orientations and light
directions, and store the resulting data in the look-up tables.
We use these look-up tables at run time to approximate light-
ing.
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4.1. Optical Depth

Consider some inhomogeneous volume with known density
distribution which will make up our reference particle. Let
us assume that the camera is always located outside that vol-
ume. Our goal is to pre-compute optical depth integral (1)
for all possible camera positions and orientations (Figure 3,
left). In other words, eqn. (1) should be evaluated for every
ray piercing the bounding sphere of that particle.
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Figure 3: Reference cloud particle (left). Parameterization
for the optical depth integral (middle, right).

To define the ray, we need four parameters. The first two
are the azimuth (ϕS ∈ [0,2π]) and zenith (θS ∈ [0,π]) angles
of the ray entry point S (Figure 3, middle). The other two
define azimuth (ϕv ∈ [0,2π]) and zenith (θv ∈ [0,π/2]) an-
gles of the view ray~v in the tangent frame (Figure 3, right).
Local z axis points inside the sphere towards its center. No-
tice that since we need to account for rays going inside the
sphere only, maximum value for θv is π/2. Other parame-
terizations are certainly possible, but we found that this one
works reasonably well.

Pre-computation then consists in going through all pos-
sible values of ϕS, θS, ϕv and θv and numerically inte-
grating eqn. (1). We will denote the resulting solution by
T (ϕS,θS,ϕv,θv). Extinction coefficient β(P) at every ray
step is obtained by combining several 3D noises. Figure 4
illustrates particles created using different methods.

Figure 4: Optical depth integral computed using different
methods: radial fall-off + 3D noise (left), 3D noise + thresh-
olding (middle), pyroclastic style (right).

4.2. Single Scattering

Unfortunately, it is not possible to pre-compute single and
multiple scattering for an inhomogeneous particle, as it re-
quires too many parameters (at least five). However, if we
assume that the particle density depends only on the distance
to the center, the number of parameters can be reduced. Con-
sider such a spherical particle illuminated by a directional

light source. Our goal is to evaluate multiple scattering for
every light direction, every camera position, and orientation.
Due to the symmetry, we can arbitrary choose the light direc-
tion. Assume that it coincides with the positive z axis (Fig-
ure 5). Next, examine one of the rays intersecting the parti-
cle. Due to the symmetry, the light field will be symmetrical
with respect to the incident light direction. Consequently, we
need only zenith angle θS to describe the start point. We will
use the same two angles in the local frame (φv and θv) to de-
scribe the view ray. Thus for a given density, the light field
on the sphere surface can be described by three parameters.
However, to evaluate eqn. (6), we will need to know the light
field in the whole volume, not only on the surface. There-
fore we use an intermediate 4D look-up table with the 4-th
parameter being the distance r from the center. Also note
that we need to cover the entire sphere of directions in local
frame in this case, hence θv ∈ [0,π].
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Figure 5: Pre-computing single scattering inside the spheri-
cal particle.

The solution to single scattering L(1)
In (θS,φv,θv,r) inside

the spherical particle is then computed for each θS ∈ [0,π],
φv ∈ [0,2π], θv ∈ [0,π], r ∈ [0,1] by numerical integration of
the following equation:

L(1)
In =

∫ E

S
e−τ(P,S)e−τ(P,Q) ·β(P) ·ds, (9)

where S is the start point of the ray and E is the point where
the ray exits the sphere (Figure 5). Q is the point on the sur-
face of the sphere through which the light reaches the cur-
rent integration point P. Note that pre-computed single scat-
tering does not include the phase function, which is eval-
uated at run time to avoid precision issues caused by sig-
nificant anisotropy of the function. Different methods can
be used to evaluate scattering/extinction coefficient β(P) as
long as it depends on the distance to the sphere center only:
β(P) = β(||P||). We tried different methods and found that
constant density β(P) = β works best.

4.3. Multiple Scattering

To find solution LM
In to multiple scattering (2+), we iterate

over scattering orders from 2 to N and for each order n per-
form the following steps:

1. Compute J(n)(θS,φv,θv,r) for all θS, φv, θv, r by numer-
ically solving integral (6) for the spherical particle.

2. Compute L(n)
In (θS,φv,θv,r) for all θS, φv, θv, r by numer-

ically solving integral (5).
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3. Accumulate current scattering order: LM
In = LM

In +L(n)
In .

After all scattering orders are processed, we copy the ra-
diance on the surface (r = 1) into the final look-up table. In
contrast to optical depth, scattering in the particle is not lin-
ear with respect to density. Therefore we pre-compute single
and multiple scattering as described above for a number of
densities, and store the resulting data in a 4D look-up table
with 4th parameter being density scale ρ.

Figure 6 demonstrates single, multiple and final lighting
for the spherical particles under different lighting conditions.

Figure 6: Pre-computed scattering for different light orienta-
tions. From left to right: single scattering only, 2+ scattering
only, all terms (including ambient). The particle in the bot-
tom row is illuminated from above.

4.4. Real-time Shading Model

Now we will describe our approximated solution to (8) using
the pre-computed solutions to optical depth T , single scatter-
ing L(1)

In and multiple scattering LM
In. We will denote the cor-

responding solutions for a given view ray and light direction

by lower case letters (τ, l
(1)

, l
M

). The first step is obtaining
the optical depth τ for the given view ray. We can get the
exact value from T :

τ = T (ϕS,θS,ϕv,θv).

Before use, the value of τ is multiplied by each particle’s in-
dividual density scale ρ. Since τ is exact, transparency e−ρ·τ

and attenuated background radiance are also computed ex-
actly.

Our approximated lighting solution consists of three parts:
single scattering, multiple scattering and ambient. To get an
approximation to single scattering, we assume that it is equal
to single scattering in the homogeneous sphere whose den-
sity scale corresponds to the optical depth of the view ray:

l
(1)

= P(θ) ·L(1)
(θS,φv,θv,ρ · τ).

Note also that the phase function is not included in L(1) and
needs to be evaluated now. Intensity of multiple scattering
is global process and more dependent on the total density
scale of the whole particle. Therefore we use the following
equation:

l
M
= LM

(θS,φv,θv,ρ).

Single and multiple scattering are multiplied by the inten-
sity of the attenuated sun light reaching the particle (detailed
description is given in section 5.3).

Finally, ambient light l
A

is approximated based on the ob-
servation that cloud creases are brighter than edges. To ac-
count for this, we compute the distance to the first cloud sub-
stance when pre-computing optical depth. This value is also
stored in T . We then use this value at run time to scale the
ambient sky light intensity.

5. Implementation

5.1. Pre-computing Look-up Tables

Since current graphics hardware does not natively support
4D textures, we emulate them using 3D textures with man-
ual interpolation for the fourth coordinate. In our implemen-
tation, optical depth integral is stored in a 64×32×64×32
(NϕS = 64, NθS = 32, Nϕv = 64, Nθv = 32) 8-bit look-up ta-
ble. The table occupies 4 MB of data. Instead of storing the
integral itself, we store the normalized average extinction
coefficient along the ray, which lies in range [0,1]. Optical
depth is reconstructed by multiplying that value by the ray
length.

Single and multiple scattering are stored in two 32×
64× 16× 8 (NθS = 32, Nϕv = 64, Nθv = 16, Nρ = 8) 16-bit
float look-up tables. Each table requires 0.5 MB of storage.
We use power scale for density: ρ = 2s,−4 ≤ s < 3. Pre-
computation implements equations described in section 4.
We compute up to N = 18 scattering orders. For single scat-
tering we assume g = 0.9, for multiple scattering we use
g = 0.7. We use β = 0.07 as scattering/extinction coefficient.
All operations are implemented as pixel shaders and are ex-
ecuted on the GPU.

5.2. Particle Generation

We use a fully procedural method to generate particles. To
account for expansive view distances, which can be cov-
ered by clouds, we exploit the camera-centered grid structure
(Figure 7) inspired by the geometry clipmaps terrain render-
ing system [LH04]. The grid consists of a number of rect-
angular rings centered around the camera. Cells in the next
ring are twice the size of the cells in the inner ring. Each
cell contains several particle layers. The number of layers, as
well as particle size and density, are determined by 2D noise.
Particles in higher layers are smaller to make cumulus-like
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cloud shapes with narrower tops and wider bottoms. All par-
ticles are randomly rotated and displaced to break repetitive
patterns. To hide transitions between LODs, grids slightly
overlap, and particles in overlapping regions are smoothly
blended.

 

Figure 7: Camera-centered particle grid.

Particle generation is performed on the GPU and consists
of the following steps:

1. Process each cell of the grid, compute cloud density in
this cell, and create a list of valid non-empty cells.

2. Process the list of valid cells. For each cell, output one
or more particles depending on the number of layers and
cloud density in the cell.

3. Generate ordered list of particles for rendering.

The first step is implemented by the compute shader. One
thread of the shader processes one cloud cell. Indices of
valid cells are output to the append buffer, a DX11 object
which maintains internal counter and allows creating un-
ordered lists of elements on the GPU.

The second step is implemented by another compute
shader. Since only the GPU knows the number of valid cells,
we use DispatchIndirect () function to avoid CPU-GPU
synchronization. The function loads its arguments from a
GPU-residing buffer. We write internal counter of the ap-
pend buffer to this buffer to execute the required number of
GPU threads.

In the third step, we generate an ordered list of particles
for rendering. For our algorithm to work properly, the par-
ticles need to be sorted from back to front. Sorting can be
done on the GPU, using, for instance, bitonic sort. We use
a different method. We sort all cells on the CPU, and then
process the list on the GPU retaining only valid cells. At this
stage append buffers cannot be used because order needs to
be preserved. To guarantee original ordering, we use geome-
try shader and stream output stage. To improve performance,

we process 32 cloud particles by every geometry shader in-
vocation. At this stage we also test each valid particle against
the view frustum planes to cull all invisible particles.

5.3. Occlusion Estimation

At this stage it is necessary to determine the amount of light
reaching every particle. That is, to estimate the attenuation
by other particles as the light travels to the current particle
(Figure 8). We solve this problem in three steps:

1. Perform light-space tiling and construct lists of particles
covering each tile.

2. Use the particle lists constructed in the first step to esti-
mate occlusion.

3. Smooth occlusion.

 

Figure 8: Light-space tile grid (left) and computing light oc-
clusion by traversing the tile’s list (right).

The first step is implemented by rasterizing the particles
as seen from the light over the tile grid. Each pixel of the tar-
get viewport corresponds to one tile. Particles are extended
by half the tile size to ensure conservative coverage. Typical
tile grid size in our method is 64×64. The tiling information
consists of two parts: an integer texture (bound as unordered
access view), which has the same dimensions as the tile grid
and stores indices of the first particle covering the tile, and
the append buffer containing linked lists of particles. Before
tiling, the first particle index texture is cleared to -1 to in-
dicate empty lists. During the rasterization, the pixel shader
allocates a new element in the append buffer, inserts the new
particle to the head of the list, and updates the first particle
index in the texture. Atomic operations are used to elimi-
nate concurrent access to memory. We use pixel shader or-
dering, an extension introduced by Intel, to keep order (see
section 5.5 for more details). Note, that particles are orig-
inally sorted from back to front, but every next particle is
added to the head of the list. As a result, the final lists will
be sorted from front to back.

The second step is implemented by a compute shader
which processes every particle visible in the camera view
frustum. The shader finds the tile which contains the center
of the current particle. It then goes through the list of parti-
cles assigned to that tile. The shader intersects the ray going
from the center of the current particle towards the light with
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every particle in that list, and computes amount of occlusion
by the intersection. For typical clouds, about 50% of energy
is scattered in a 5◦ angle around forward direction. To ac-
count for this property, Bouthors et al. proposed embedding
a strong forward peak of the phase function into the extinc-
tion [BNL06]. We exploit the same idea through the param-
eter ξ which we use to scale extinction coefficient β. In our
experiments we used ξ = 0.05.

The third step smooths the occlusion and simulates the
effect of light diffusion in the body of the cloud. This step
is also implemented by a compute shader which processes
every valid particle and performs low-pass filtering of the
light occlusion. To avoid incorrect smoothing, we use parti-
cle density as weights.

5.4. Rendering

To display each volumetric particle, we rasterize its bound-
ing box. In the pixel shader, we reconstruct the view ray
and intersect it with the sphere (ellipsoid) enclosed in the
box. Based on the intersection point and the ray direction,
the shader loads optical depth, single and multiple scatter-
ing from the look-up tables. Then it applies the model de-
scribed in section 4.4. 3D noise is used to add small de-
tails. Three buffers are generated: cloud color, transparency,
and the closest distance to cloud. To improve performance,
our system enables rendering the particles to low resolution
buffers, which are upscaled to full resolution using edge-
preserving bilateral filter.

5.5. Volume-Aware Blending

Alpha-blending is a typical way to combine two or more par-
ticles on the screen. This method does not account for inter-
section of volumes represented by particles and for that rea-
son produces inaccurate results. Here we describe our new
volume-aware particle blending method.

Consider two intersecting volumetric particles which have
non alpha-premultiplied colors C0 and C1 and densities ρ0
and ρ1 (Figure 9).
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Figure 9: Intersection of two volumetric particles.

There are three regions: front, intersection, and back. For
the transparency and color of the front part we can derive the

following expressions:

Tf = e−ρ0·d f ·β (10)

Cf =C0 · (1−Tf ) (11)

Likewise, for the back part we will obtain:

Tb = e−ρ1·db·β (12)

Cb =C1 · (1−Tb) (13)

For the transparency and color of the intersection we propose
the following expressions:

Ti = e−(ρ0+ρ1)·di·β (14)

Ci =
C0 ·ρ0 +C1 ·ρ1

ρ0 +ρ1
· (1−Ti) (15)

Eqn. (15) for the color of the intersection produces density-
weighted average color, which is reasonable. If both particles
have the same densities, the resulting color will be average of
the two. If the density of one particle is significantly larger,
its color will govern the resulting color.

The final transparency and alpha-premultiplied color can
then be computed as follows:

T = Tf ·Ti ·Tb (16)

C =Cf +Tf ·Ci +Tf ·Ti ·Cb (17)

There is no programmable blending unit on the current
generation graphics hardware, so the blending according to
the above equations cannot be implemented. Pixel shaders
are allowed to read and write to arbitrary memory locations,
however there is no way to make read-modify-write oper-
ations atomic (al least without significant performance im-
pact). Intel recently introduced hardware extension which
solves the above problem. It is called pixel shader ordering
and is available through both DirectX and OpenGL APIs.
The extension guarantees the following two conditions:

• All read-modify-write operations from different pixel
shader instances, which map to the same pixel, are per-
formed atomically.

• Pixel shader instances are executed in the same order in
which primitives were submitted for rasterization.

We use this extension to implement volume-aware blend-
ing. We use the special buffer to keep track of the continuous
particle volume closest to the camera, for each pixel on the
screen. The following information is stored: color C, density
ρ, minimum and maximum distance along the view ray dmin
and dmax. The representation is initially empty. When every
new particle is rasterized, its volume extent is tested against
the current representation stored in the buffer. Two cases are
possible here:

1. The particle does not overlap the current volume. In this
case, we blend the color of the farthest of the two into
the back buffer. If the new particle is closer to the cam-
era, it replaces the current volume representation, which
is preserved otherwise.

c© The Eurographics Association 2014.

133



Egor Yusov / High-Performance Rendering of Realistic Cumulus Clouds Using Pre-computed Lighting

2. The particle intersects the current volume. In this case,
we blend the color Cb of the back part of the two parti-
cles into the back buffer using transparency Tb. The re-
maining parts (front and intersection) are merged and the
merged color, density and the combined extents replace
the current volumetric representation (Figure 10).

 

UAV Back Buffer UAV Back Buffer 

Next Particle 

Current color 

Current extent 

New color 

New extent 

Figure 10: Updating UAV and back buffer during the
volume-aware blending.

Note that for the algorithm to work properly, the particles
must be processed from back to front, which is guaranteed
by sorting (section 5.2).

5.6. Integration with the Atmospheric Scattering

To render the Earth’s atmosphere, we adopted the technique
described in [Yus14]. This technique solves the airlight in-
tegral for samples distributed along the epipolar lines on the
screen, and then performs transformation from epipolar to
screen space using bilateral filter. To account for occlusion
by the clouds, we use the screen-size buffers generated at
the particle rendering stage (section 5.4): cloud transparency,
color, and minimal distance to cloud. During the ray march-
ing, we check if the marched distance is greater than the dis-
tance to the cloud. If so, we modulate the color of each next
sample by the cloud transparency (Figure 11, left). Distance
to the cloud is also used to attenuate the cloud color by the
atmosphere extinction.

 

Cloud 

altitude 
Min distance 

to cloud 

Figure 11: Integration of clouds with the atmospheric light
scattering: attenuation along the view ray (left) and sun light
attenuation (right).

To create the effect of shafts of light, we use the light
space cloud transparency buffer which has the same struc-
ture and uses the same matrices as cascaded shadow map.
At each ray marching step we check if the current position
on the ray is below the clouds (clouds are assumed to have
fixed altitude). If so, we load the cloud transparency from
the buffer to account for the sun light occlusion (Figure 11,
right).

6. Results and Discussion

We implemented the described algorithm in C++ using Di-
rect3D11 API. The full source code is available on GitHub
at https://github.com/GameTechDev/CloudySky. To explore
the performance of our system, we used two test platforms.
The first platform was a desktop workstation powered by
Intel Core i7 CPU and NVIDIA GeForce GTX 680 GPU
(195W TDP). The second test platform was an Ultrabook
powered by Intel Core i5 CPU integrated with Intel HD
Graphics 5200 GPU (47W TDP shared between both). All
images on the first test platform were rendered in full HD
resolution (1920×1080). On the second platform, the reso-
lution was set to 1280×720. Note that our high-end platform
does not support pixel shader ordering, so volume-aware
blending was disabled. Also note that recently Microsoft has
announced that it is going to include this feature into the next
versions of Direct3D.

Creating look-up tables is performed only once, and the
results are stored on the disk. On our first test platform, pre-
computing optical depth integral requires 0.4 s and creat-
ing scattering look-up table takes 76 s. On our second plat-
form, optical depth integral evaluation requires 1.1 s and
pre-computing scattering takes 5 min 16 s. For comparison,
CPU-based Monte-Carlo pre-integration in [ASW13] takes
2-20 hours. The optical depth can be easily updated at run
time, which can be useful for switching between different
types of clouds.

We evaluated run-time performance on both test platforms
using three quality settings: low (ring dimension × num-
ber of rings × number of layers = 1042× 4× 2), medium
(1362 × 4× 4), and high (1842 × 4× 6). Results are sum-
marized in Table 1. The columns show the times in ms re-
quired to render particles, compute atmospheric effects, and
perform other steps (particle generation, lighting, visibility
computation, streaming). The particles were rendered in half
resolution. Figure 12 shows the images rendered using these
quality settings.

Plat. Qual. Partcl. Atm. sctr. Other Total
I Low 3.1 1.6 0.9 5.6
I Med 6.3 1.6 1.6 9.5
I High 10.5 1.5 3.4 15.4
II Low 9.1 4.1 2.9 16.1
II Med 16.8 4.2 4.0 25.0
II High 26.2 4.2 6.1 36.5

Table 1: Run-time performance of our method (times in ms)

By changing resolution of the particle grid, the number
of rings and the number of layers, our method can scale
from high quality to high performance mode. Rendering
larger number of small particles results in high-quality im-
ages (Figure 14). Even on low-power platform, our method
is able to render convincing clouds at more than 25 fps.

Since our technique is particle-based, it provides efficient
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Figure 12: Test scene rendered in low (top), medium (mid-
dle) and high quality (bottom).

control over the cloud shape and locations. We used a proce-
dural method to generate particles; however the clouds can
be modeled manually by placing particles at the required po-
sitions to obtain the desired look and feel. Physics simulation
e.g. [Har03], [DKY∗00] or any other method can be used as
well.

Similar to all particle-based methods, the performance of
our algorithm is primarily determined by the number of par-
ticles rendered on the screen (see Table 1). There are many
ways to improve rendering speed of such techniques. For in-
stance, ring of impostors can be used to accelerate rendering
of distant clouds in the same manner it is done in [HL01]
and [Wan04].

Figure 13 demonstrates the effect of volume aware-
blending. For the sake of clarity, spherical particles are used.
Note that the volume-aware blending not only merges parti-
cles (even when their opacities are close to 1 as in Figure 13),
but also reduces temporal artifacts caused by instant changes
of particle order.

Figure 13: The effect of the volume-aware blending. Left
column: alpha-blending (particle opacity is close to 1). Right
column: volume-aware blending. Top row: initial camera po-
sition. Bottom row: camera moved slightly to the right caus-
ing particle reordering.

Other solutions exist that eliminate popping artifacts in
volume rendering, such as the sheet buffer-based splatting by
Mueller and Crawfis [MC98]. Their method however is most
closely related to slicing techniques as volume data is splat-
ted into the camera-facing slab which is advanced through
the medium step-by-step. Consequently, the method cannot
be used for direct rendering of intersecting particles.

6.1. Limitations

It must be noted that our method is physics-based, not
physics-accurate. Though we accurately pre-compute scat-
tering inside the reference particle, we still have to make a
number of assumptions to use the data at run time. We as-
sume, for instance, that each particle is evenly illuminated
by a directional light source, which is not entirely true. This
problem can be mitigated by computing attenuated light for
a number of points on the particle surface. We also use phe-
nomenological approach to account for ambient light.

Despite the fact that our volume-aware blending produces
much better visual results compared to alpha-blending, it
has a number of limitations. First, particles must be sorted,
which is sometimes not desired. Second, only the intersec-
tion of two particles is processed precisely. Three and more
overlapping particles are handled approximately. Nonethe-
less visual results are still good in this case. But the main
problem is that the sorting is done at particle level. Conse-
quently, there is no guarantee that volumetric fragments are
always sorted from back to front. If the order is broken for
two particles, the method works fine. However, if three or
more fragments go in reverse order, artifacts arise, because
the fragments are blended into the back buffer in wrong or-
der. The solution to this problem requires using less dense
particle sets where multiple intersections are less possible.

7. Conclusions and Future Work

We presented a new method for high-performance rendering
of realistic cumulus clouds. Our method pre-computes opti-
cal depth, single and multiple scattering inside the reference
particle and stores the information in the look-up tables. The
tables are used at run time to approximate light transport in
the cloud. Our method uses volume-aware blending to accu-
rately mix intersecting particles. Nested grid structure is ex-
ploited to control the level of detail and enable rendering of
large outdoor scenes with clouds. Despite some limitations,
we believe that our idea of using pre-computed solution to
shade the clouds is promising and can be further developed
in future research.

In our future work, we are going to improve the perfor-
mance of the algorithm. A possible way to achieve this is
using impostors for distant clouds. Our lighting model can
also be elaborated by modeling energy exchange between
particles. Adding micro details e.g. by using additional 3D
noise is another area for improvement.
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Figure 14: Some high-quality images generated by our algorithm.
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