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Figure 1: Our multi-view reconstruction pipeline. Starting from input images, structure-from-motion (SfM) techniques are used
to reconstruct camera parameters and a sparse set of points. Depth maps are computed for every image using multi-view stereo
(MVS). Finally, a colored mesh is extracted from the union of all depth maps using a surface reconstruction approach (FSSR).

Abstract
We present MVE, the Multi-View Environment. MVE is an end-to-end multi-view geometry reconstruction soft-
ware which takes photos of a scene as input and produces a surface triangle mesh as result. The system covers
a structure-from-motion algorithm, multi-view stereo reconstruction, generation of extremely dense point clouds,
and reconstruction of surfaces from point clouds. In contrast to most image-based geometry reconstruction ap-
proaches, our system is focused on reconstruction of multi-scale scenes, an important aspect in many areas such
as cultural heritage. It allows to reconstruct large datasets containing some detailed regions with much higher
resolution than the rest of the scene. Our system provides a graphical user interface for structure-from-motion
reconstruction, visual inspection of images, depth maps, and rendering of scenes and meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1 Introduction

Acquiring 3D geometric data from natural and man-made
objects or scenes is a fundamental field of research in com-
puter vision and graphics. 3D digitization is relevant for de-
signers, the entertainment industry, and for the preservation
as well as digital distribution of cultural heritage objects and
sites. In this paper, we introduce MVE, the Multi-View En-
vironment, a new, free software solution for low-cost geom-
etry acquisition from images. The system takes as input a
set of photos and provides the algorithmic steps necessary
to obtain a high-quality surface mesh of the captured object

as final output. This includes structure-from-motion (SfM),
multi-view stereo (MVS) and surface reconstruction.

Geometric acquisition approaches are broadly classified
into active and passive scanning. Active scanning technolo-
gies for 3D data acquisition exist in various flavors. Time
of flight and structured light scanners are known to produce
geometry with remarkable detail and accuracy. But these
systems require special hardware and the elaborate capture
setup is expensive. Real-time stereo systems such as the
Kinect primarily exist for the purpose of gaming, but are of-
ten used for real-time geometry acquisition. These systems
are based on structured light which is emitted into the scene.
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They are often of moderate quality and limited to indoor
settings because of inference with sunlight. Finally, there is
some concern that active system may damage objects of cul-
tural value due to intense light emission.

Passive scanning systems do not emit light, are purely
based on natural illumination, and will not physically harm
the subject matter. The main advantage of these systems is
the cheap capture setup which does not require special hard-
ware: A consumer-grade camera (or just a smartphone) is
usually enough to capture datasets. These systems are based
on finding visual correspondences in the input images, thus
the geometry is usually less complete, and scenes are limited
to static, well textured surfaces. The inexpensive demands on
the capture setup, however, come at the cost of much more
elaborate computer software to process the unstructured in-
put. The standard pipeline for geometry reconstruction from
images involves three major algorithmic steps:

• Structure-from-Motion (SfM) reconstructs the extrinsic
camera parameters (position and orientation) and the cam-
era calibration data (focal length and radial distortion)
by finding sparse but stable correspondences between im-
ages. A sparse point-based 3D representation of the sub-
ject is created as a byproduct of camera reconstruction.

• Multi-View Stereo (MVS), which reconstructs dense 3D
geometry by finding visual correspondences in the images
using the estimated camera parameters. These correspon-
dences are triangulated yielding 3D information.

• Surface Reconstruction, which takes as input a dense
point cloud or individual depth maps, and produces a
globally consistent surface mesh.

It is not surprising that software solutions for end-to-end
passive geometry reconstruction are rare. The reason lies
in the technical complexity and the effort required to cre-
ate such integrated tools. Many projects cover parts of the
pipeline, such as VisualSfM [Wu13] or Bundler [SSS06] for
structure-from-motion, PMVS [FP10] for multi-view stereo,
and Poisson Surface Reconstruction [KH13] for mesh recon-
struction. A few commercial software projects offer an end-
to-end pipeline covering SfM, MVS, Surface Reconstruction
and Texturing. This includes Arc3D, Agisoft Photoscan and
Acute3D Smart3DCapture. We offer a complete pipeline as
open source software system free for personal use and re-
search purposes.

Our system gracefully handles many kinds of scenes, such
as closed objects or open outdoor scenes. It avoids, however,
to fill holes in regions with insufficient data for a reliable
reconstruction. This may leave gaps in models but does not
introduce artificial geometry, common to many global recon-
struction approaches. Our software puts a special emphasis
on multi-resolution datasets which contain both detailed and
less detailed regions, and it has been shown that inferior re-
sults are produced if the multi-resolution nature of the input
data is not considered properly [MKG11, FG11, FG14].

In the remainder of the paper, we will first give an
overview of our system (Section 2). The practical applica-
bility of our system is demonstrated in a hands-on guide in
Section 3. We then show reconstruction results on several
datasets in Section 4 and demonstrate the superiority of our
pipeline in comparison to alternative state of the art software.
We briefly describe our software framework in Section 5 and
finally conclude in Section 6.

2 System Overview

Our system consists of three main steps, namely structure-
from-motion (SfM) which reconstructs the parameters of the
cameras, multi-view stereo (MVS) for establishing dense
visual correspondences, and a final meshing step which
merges the MVS geometry into a globally consistent, col-
ored mesh. In the following, we give a concise overview
of the process, using the dataset of Anton’s Memorial as an
example for a cultural heritage artifact, see Figure 1. For a
more detailed explanation of the approaches, we refer the
interested reader Szeliski’s textbook [Sze10].

2.1 Structure-from-Motion

Structure-from-motion is one of the crowning achievements
of photogrammetry and computer vision which started its
roots in [AZB94, PKG98] and opened up to a wider audi-
ence in [PGV∗03, SSS06]. In essence, SfM reconstructs the
parameters of cameras solely from sparse correspondences
in an otherwise unstructured image collection. The recov-
ered camera parameters consist of the extrinsic calibration
(i.e. the orientation and position of the camera), and the in-
trinsic calibration (i.e. the focal length and radial distortion
of the lens). Although, at least in theory, the focal length can
be fully recovered from the images for non-degenerate con-
figurations, this process can be unstable. However, a good
initial guess for the focal length is usually sufficient and can
be optimized further.

Feature detection: First, machine-recognizable features
are detected in the input images (Figure 2, left) and matched
in order to establish sparse correspondences between im-
ages. Differences in the images require invariance of the fea-
tures with respect to certain transformations, such as image
scale, rotation, noise and illumination changes. Our system
implements and jointly uses both SIFT [Low04] and SURF
[BETVG08] features which are amongst the top performing
features in literature.

Feature matching: The detected features are matched be-
tween pairs of images (Figure 2, right). Because correspond-
ing points in two images are subject to the epipolar con-
straints of a perspective camera model [LF95], enforcing
these constraints removes many false correspondences. The
pairwise matching results are then combined and expanded
over several views, yielding feature tracks. Each track corre-
sponds to a single 3D point after SfM. Depending on the size
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of the scene, matching can take a long time, because every
image is matched to all other images, resulting in a quadratic
algorithm. As an expedient, the state after matching (con-
taining the feature detections and the pairwise matching)
can be saved to file and reloaded later in case the remain-
ing procedure is to be repeated under different parameters.
This state is called the prebundle.

We also investigated in accelerating the matching time of
our system. Common approaches include matching fewer
features per image, reducing the number of pairs in a pre-
processing step, or accelerating the matching itself using
parallelism. We use a practical combination of the ap-
proaches: By matching a few low-resolution features, one
can identify image pairs that potentially do not match,
and reject the candidates before full-resolution matching is
performed. Although low-resolution matching rejects some
good image pairs, we could not observe any loss of quality
in the reconstruction. It has been shown by Wu [Wu13] that
this can considerably accelerate the matching time.

Figure 2: Feature detection (left) and feature matching be-
tween two views (right). The horizontal lines are mostly good
matches, and more slanted lines are outliers. Enforcing two-
view constraints will remove most outliers.

Incremental reconstruction: The relative pose of a good
initial image pair is estimated, and all feature tracks visi-
ble in both images are triangulated. What follows is the in-
cremental SfM, where suitable next views are incrementally
added to the reconstruction, until all reconstructable views
are part of the scene (Figure 3). Lens distortion parame-
ters are estimated during reconstruction. The performance of
subsequent algorithms is considerably improved by remov-
ing the distortion from the original images.

Not many software solutions for SfM have been pub-
lished, probably because the theoretic concepts and algorith-
mic details are involved. Freely available software for this
purpose includes Bundler [SSS06] and VisualSfM [Wu13].

2.2 Multi-View Stereo

Once the camera parameters are known, dense geometry re-
construction is performed. MVS algorithms exist in vari-
ous flavors [SCD∗06]. Some approaches work with volu-
metric representations [KBC12] and usually do not scale
well to large datasets. Others reconstruct global point clouds,

Figure 3: Structure-from-motion reconstruction showing the
sparse point cloud and the camera frusta.

e.g. the popular PMVS implementation of Furukawa et
al. [FP10]. Scalability issues further motivated work that
clusters the scene into smaller manageable pieces [FCSS10].
Although PMVS is widely used, we aim at creating much
denser point clouds for mesh reconstruction in order to pre-
serve more details in the final result. A third line of work
directly reconstructs global meshes [VLPK12] and couples
MVS and surface reconstruction approaches in a mesh evo-
lution framework.

We use the Multi-View Stereo for Community Photo Col-
lections approach by Goesele et al. [GSC∗07] which recon-
structs a depth map for every view (Figure 4). Although
depth map based approaches produce lots of redundancy
because many views are overlapping and see similar parts
of the scene, it effortlessly scales to large scenes as only a
small set of neighboring views is required for reconstruc-
tion. In a way, this can be seen as an out-of-core approach
to MVS. Another advantage of depth maps as intermediate
representation is that the geometry is parameterized in its
natural domain, and per-view data (such as color) is directly
available from the images. The excessive redundancy in the
depth maps can be a burden; not so much in terms of storage
but processing power required for depth maps computation.
On the positive side, this approach has proven to be capable
of producing highly detailed geometry, and to overcome the
noise in the individual depth maps [FG11, FG14].

2.3 Geometry Reconstruction

Merging the individual depth maps into a single, globally
consistent representation is a challenging problem. The input
photos are usually subject to large variations in viewing pa-
rameters. For example, some photos show a broad overview
of the scene while others show small surface details. The
depth maps inherit these multi-scale properties which leads
to vastly different sampling rates of the observed surfaces.

Many approaches for depth map fusion have been pro-
posed. The pioneering work by Curless and Levoy [CL96]
renders locally supported signed distance fields (SDF) of
the depth maps into a volumetric representation. Overlap-
ping SDFs are averaged, which effectively reduces noise, but
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Figure 4: An input image and the corresponding depth map
reconstructed with multi-view stereo. Each depth value en-
codes the distance from the camera.

also quickly eliminates geometric details if depth maps with
different resolution are merged. To this end, Fuhrmann and
Goesele [FG11] present a solution based on a hierarchical
SDF which avoids averaging geometry at different resolu-
tions. We use the follow-up work by Fuhrmann and Goesele
[FG14]. They present a point-based reconstruction approach
(Floating Scale Surface Reconstruction, FSSR), which addi-
tionally takes per-sample scale values as input. In contrast to
point-based approaches that do not use scale, such as Pois-
son Surface Reconstruction [KH13], the method is able to
automatically adapt the interpolation and approximation be-
havior depending on sample scale and redundancy without
explicit parameter settings. An important aspect of FSSR is
that it does not interpolate regions with insufficient geomet-
ric data. Instead, it leaves these regions empty which is use-
ful for incomplete or open (outdoor) scenes. This stands in
contrast to many global approaches that often hallucinate ge-
ometry, requiring manual cleanup.

In order to generate the input samples for FSSR, all depth
maps are triangulated and colored using the input image. The
connectivity information is used to compute a normal for
each vertex. Additionally, the lengths of all edges emanating
from a vertex are averaged and used as scale value for the
vertex. The union of all vertices from all depth maps is then
used as input to FSSR. An hierarchical, signed implicit func-
tion is constructed from the samples and the final surface
(Figure 5) is extracted as the zero-level set of the implicit
function using a hierarchical variant of the Marching Cubes
algorithm [KKDH07].

3 Reconstruction Guide

We now demonstrate in a practical walkthrough of a recon-
struction session starting with photo acquisition all the way
to the final geometry. Specifically, we point out best prac-
tices and explain how to avoid common pitfalls.

Capturing photos: A dataset reconstructs best if a few sim-
ple rules are observed. First, in order to successfully recon-
struct a surface region, it must be seen from at least five

Figure 5: The final surface reconstruction with color (left)
and shaded (right). Notice how even the engraved text is vis-
ible in the geometry.

views. This is a requirement of the MVS algorithm to reli-
ably triangulate any 3D position. Photos should thus be taken
with a good amount of overlap. Usually, unless the dataset
becomes really large, more photos will not hurt quality, but
there is a tradeoff between quality and performance. As a
rule of thumb, taking twice as many photos as one might
think is a good idea. In order for triangulation to work, paral-
lax is required. The camera should be re-positioned for every
photo. (This is exactly opposite to how panoramas are cap-
tured, where parallax in the images must be avoided.) This is
also important for SfM: Triangulating a feature track with in-
sufficient parallax results in a small triangulation angle and a
poorly conditioned 3D position. Figure 6 shows some input
images of our exemplary dataset.

Figure 6: Five out of 161 input photos of the Anton’s Memo-
rial dataset.

Creating a scene: A view is a container that contains per-
viewport data (such as images, depth maps and other data).
A scene is a collection of views, which make up the dataset.
A new scene is created using either the graphical interface of
our software, UMVE, or the command line tool makescene.
Technically, the scene appears as a directory in the file sys-
tem (with the name of the dataset). It contains another direc-
tory views/with all views stored as files with the extension
.mve. Creating a new scene will solely create the views/
directory for now. Importing photos will create a .mve file
for every photo. This process will also import meta informa-
tion from the images (EXIF tags), which is required to get
a focal length estimate for every photo. If EXIF tags are not
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available, a default focal length will be assumed. This, how-
ever, can lead to SfM failures if the default value is a bad
guess for the actual focal length. Figure 7 shows our graphi-
cal interface UMVE after importing images into a new scene.

Figure 7: UMVE after creating a new scene from images.
The left pane contains a list of views. A view appears in red
if no camera parameters have (yet) been reconstructed. The
central part is the view inspector where the individual im-
ages of the selected view can be inspected. The right-hand
side contains various contextual operations, such as UI ele-
ments to start the MVS reconstruction.

SfM reconstruction: The SfM reconstruction can be con-
figured and started using UMVE, or the command line tool
sfmrecon. The UI guides through feature detection, pairwise
matching and incremental SfM. What follows is the SfM re-
construction starting from an initial pair, and incrementally
adding views to the reconstruction. Finally, the original im-
ages are undistorted and stored in the views for the next step.
Figure 8 shows a rendering of the SfM reconstruction with
the sparse point cloud and the camera frusta. Note how dense
the frusta are spaced around the object to achieve a good re-
construction.

Figure 8: UMVE rendering the SfM reconstruction. The
central element is the 3D scene inspector. The right hand
side offers various rendering options.

MVS reconstruction: Given images with camera parame-
ters, dense geometry is reconstructed using MVS. This can
be done with either UMVE or the command line tool dmre-
con. The most important parameter is the resolution level at
which depth maps are reconstructed. A level of 0, or L0, re-
constructs at the original image size, L1 corresponds to half

the size (quarter the number of pixels), and so one. Look-
ing at the resolution of recent digital cameras, a full-size L0
reconstruction is rarely useful as finding dense correspon-
dences gets more difficult, often leading to sparser depth
maps at much higher computational cost. Using smaller im-
ages (we often use L2), the process is faster and depth maps
become more complete. See Figure 9 for a depth map com-
puted at L2.

Figure 9: UMVE displaying the reconstructed depth map.
The mapping of depth values to intensities can be controlled
using the histogram in the upper right corner. Purple pixels
correspond the unreconstructed depth values.

Surface reconstruction: The scene2pset tool combines all
depth maps in a single, large point cloud. At this stage, a
scale value is attached to every point which indicates the
actual size of the surface region the point has been mea-
sured from. This additional information enables many ben-
eficial properties using the FSSR surface reconstruction ap-
proach [FG14]. Then, the FSSR tools compute a multi-scale
volumetric representation from the points (which does not
require setting any explicit parameters) and a final surface
mesh is extracted. The mesh can appear cluttered due to
unreliable regions and isolated components caused by inac-
curate measurements. The mesh is thus cleaned by deleting
small isolated components, and removing unreliable regions
from the surface. See Figure 10 for the final reconstruction.

Figure 10: UMVE rendering the reconstructed surface. The
reconstructed vegetation has been manually cropped from
the geometry with a bounding box in order to isolate the
statue.

c© The Eurographics Association 2014.

15



Simon Fuhrmann, Fabian Langguth and Michael Goesele / MVE – A Multi-View Reconstruction Environment

Figure 11: The Der Hass dataset. The top row shows 4 out
of 79 input images and a depth map. The bottom row shows
the reconstruction with color (left) and shaded (right).

4 Reconstruction Results

In the following, we show results on a few datasets we
acquired over time. We report reconstruction times for all
datasets in Table 1. A complete reconstruction usually takes
several hours, depending on the size of the dataset and the
available computing resources.

Der Hass: The first dataset is called Der Hass and contains
79 images of a massive stone sculpture, see Figure 11. This
is a relatively compact dataset with uniform scale as the im-
ages have the same resolution and are evenly spaced around
the object. Notice that although the individual depth maps
contain many small holes, the final geometry is quite com-
plete. Here, redundancy is key as all of our algorithms are
completely local and no explicit hole filling is performed.

Notre Dame: Next, we reconstruct the façade of Notre
Dame in Paris from 131 images downloaded from the Inter-
net. We demonstrate that our pipeline is well suited even for
Internet images: The features we use are invariant to many
artifacts in the images, such as changing illumination. The
MVS algorithm [GSC∗07] uses a color scale to compensate
for changing image appearance and is well suited for com-
munity photo collections. The surface reconstruction [FG14]
handles the unstructured viewpoints well; it will, however,
not produce a particularly good model colorization. This is
because the original images have non-uniform appearance
and color values are computed as per-vertex averages. In
Figure 12, e.g., the portal appears slightly brighter as it has
been reconstructed from brighter images.

Figure 12: The Notre Dame dataset. The top row shows
3 images and 1 depth map from a total of 131 input im-
ages. The bottom row shows the reconstruction with color
(left) and shaded (right). Images taken by Flickr users April
Killingsworth, Alex Indigo and Maria Boismain.

Citywall: We conclude our demonstration with the City-
wall dataset in Figure 13. The 363 input images depict an old
historic wall with a fountain. This dataset demonstrates the
multi-scale abilities of our system. While most of the views
show an overview of the wall, some photos cover small de-
tails of the fountain. These details are preserved during re-
construction yielding a truly multi-resolution output mesh.

4.1 Runtime Performance

In Table 1, we present timings for all datasets in this paper.
The reconstructions have been computed on an Intel Xeon
Dual CPU system with 6×2.53GHz per CPU. Usually 4GB
of main memory are sufficient for the smaller datasets. For
large datasets, we recommend at least 8 GB of main memory
(such as for the Citywall dataset, where surface reconstruc-
tion is quite demanding). Since most parts of the pipeline
are parallelized, multiple CPUs will considerably improve
the computation time. Currently we do not perform compu-
tations on the GPU as only few steps of our pipeline would
benefit from GPU accelleration.

All datasets listed here use exhaustive matching, however,
we investigated in reducing the time for feature matching. In
order to quickly reject candidates that are unlikely to match,
we first match a few hundred low-resolution features instead
of the full set of featues. We evaluated this approach on the
Citywall, the largest of our datasets. As can be seen in Ta-
ble 1, this reduces the matching time by about 2/3, rejecting
about 2/3 of all potential image pairs.
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Figure 13: The Citywall dataset. The top row shows 3 out of
363 input images and one depth map. The middle row shows
the full reconstruction in color, and the bottom row shows
the fountain and a small detail on the fountain.

4.2 Limitations

A practical limitation in the presented system is the memory
consumption in some parts of the pipeline. For example, sur-
face reconstruction keeps all points in memory for the eval-
uation of the implicit function. Since our algorithm is purely
local, we plan to implement out-of-core solutions to further
scale the approach. Datasets with many images pose a bottle-
neck in runtime performance of SfM. This is because every
image is matched to all other images, resulting in a quadratic
algorithm in the number of images. Although low-resolution
matching reduces runtime performance, our system is not
limited to, but suitable for a few hundred images.

A general limitation of multi-view reconstruction ap-
proaches is the lack of texture on the geometry. Since stereo

SfM MVS FSSR
Dataset Images [min] [min] [min]

Der Hass 79 33+5 61 17
Notre Dame 131 109+8 32 26
Anton Memorial 161 180+10 121 88
Citywall 363 945+56 267 203
Citywall LRM 363 345+55 254 181

Table 1: Runtime performance for various datasets. The SfM
timings are broken down into feature detection with match-
ing and incremental SfM. The bottom row (Citywall LRM)
shows the timing using low-resolution matching consider-
ably reducing matching time.

Figure 14: One image of a dataset with a weakly textured re-
lief, and the corresponding depth map. The depth map con-
tains a big hole in the homogeneous region as visual corre-
spondences cannot reliably be established.

algorithms rely on variations in the images in order to find
correspondences, weakly textured surfaces are hard to re-
construct. This is demonstrated in Figure 14. Although most
of the depth map has been reconstructed, multi-view stereo
fails on the textureless forehead in the relief.

5 Software

The principles behind our software development make our
code base a versatile and unique resource for practitioners
(use it) and for developers/researchers (extend it). One no-
table example of an extension (also relevant in the context
of cultural heritage) is the texturing approach by Waechter
et al. [WMG14]. The core functionality of MVE is avail-
able as a small set of easy to use, cross-platform libraries.
These libraries solely build upon libjpeg, libtiff and
libpng for reading and writing image formats, and do not
require any other external dependencies. We strive for a user-
friendly API and to keep the code size at a maintainable
minimum. The correctness of many components in our code
is backed by unit tests. Our GUI application requires (aside
from our own libraries) the widely used QT framework for
the user interface. We ship with our libraries a few command
line applications for the entire pipeline to support computa-
tion on server machines without a graphical interface. MVE
is tested and operational under Linux, MacOS and Windows.
The source code is available from our website†.

6 Conclusion

In this paper we presented MVE, the Multi-View Environ-
ment, a free and open 3D reconstruction application, relevant
to the cultural heritage community. It is versatile and can op-
erate on a broad range of datasets. This includes the ability
to handle quite uncontrolled photos and is thus suitable for
reconstruction amateurs. Our focus on multi-scale data en-
ables to put an emphasis on interesting parts in larger scenes
with close-up photos. We belief that the effort and expert
knowledge that went into MVE is an important contribution
to the community.

† http://www.gris.informatik.tu-darmstadt.de/
projects/multiview-environment/
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