

Evaluation of Mesh Compression and GPU Ray Casting for Tree Based AMR data in VTK

Antoine Roche^{1,2,3} and Jérôme **D**ubois^{1,3}

1 Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France 2 MSc Student, Université de Reims Champagne-Ardennes, France 3 CEA, DAM, DIF, F-91297 Arpajon, France

Scientific Visualization - VTK HyperTreeGrid [1,2]

- Efficient memory-wise for sparse simulation data representation
- ✓ Advanced filtering available in ParaView / VTK
- ✓ User-controlled hierarchical data reduction in Paraview / VTK to accelerate analyses [3,4]
- ✓ Generally efficient surface rendering as an unstructured mesh: N³ volume data N² surface data
- ✓ Distributed parallel computations through whole trees dispatch

8x6 HyperTrees

Advanced filtering

User-controlled hierarchical data reduction

Computer Graphics – Compressed Octree (SVDAG) [5]

- ✓ High compression ratios of octree on surface Computer Graphics scenes
- ✓ Very efficient surface RayTracing on Nvidia GPUs using CUDA

Surface RayTracing

Problem

Rendering for the Visualization Toolkit (VTK) HyperTreeGrid: memory consumption can be very large

- Keneration of an unstructured mesh with as much surface data as volume data for extreme cases
- ➤ For same mesh, surface representation is on average 10x more costly in memory than HyperTreeGrid
- ✗ In extreme cases, surface representation does not fit on a GPU

Proposal

Evaluation of SVDAG-inspired compression and rendering, applied to VTK HyperTreeGrid:

- **Compression** of scientific volume data
- Surface RayTracing of HyperTreeGrid on Nvidia GPUs
- Reduction of the memory footprint for surface rendering of HyperTreeGrid

Contributions

✓ Implementation of a HyperTreeGrid to SVDAG conversion

✓ Evaluation of compression and rendering of HyperTreeGrid surface and volume models as SVDAG.

Grid of **Grid of** Grid of 16 SVDAGs 4 SVDAGs 1 SVDAG merge merge merge $| \mathbf{x} | \mathbf{x} | \mathbf{x} | \mathbf{x}$

Benchmark of an export of HyperTreeGrid as SVDAG to storage for preview purposes

Results - Combined Data Reduction

- **Extreme compression:** number of octrees nodes for scientific visualization volume data
- **Enables the interactive surface rendering** for some HyperTreeGrid models on the GPU, otherwise not possible with current native VTK rendering
- ✓ Almost instant preview of data at <u>full simulation resolution</u> instead of dozens of seconds

SVDAG HyperTreeGrid 14GB 1,8GB

Drastic reduction of:

Time to first picture from disk, **50-100x** Overall memory footprint, **3-7x**

Ideal for previewing data at full scale Not possible to further filter previewed data

Conclusion

In this work, we evaluated AMR mesh compression for the rendering of SciVis volume data.

We achieved great improvements over native HTG rendering scheme:

- **Reduction of memory footprint** by ratios of 3-7x Load data for **preview at full scale** 50-100x faster
- Make it possible to render data on GPU, originally impossible

Future Work

- In future work, we plan to:
- investigate attribute compression [6], for HyperTreeGrid volume data
- Explore other AMR representations such as VDB [7] Evaluate **volume rendering** of HyperTreeGrid data on
- Nvidia GPUs with GVDB [8]
- x86 CPUs with Intel OSPRay [9].

HypertreeGrid volume rendered on a Nvidia GPU with GVDB GTX 1050, 4Go VRAM

References

[1] Harel, G., Lekien, J., & Pébaÿ, P.P. (2017). Two New Contributions to the Visualization of AMR Grids: I. Interactive Rendering of Extreme-Scale 2-Dimensional [5] KÄMPE V., SINTORN E., ASSARSSON U.: High resolution sparse voxel dags. ACM Trans. Graph. 32, 4 (July 2013), 101:1–101:13. URL: http://doi.acm.org/10.1145/2461912 Grids II. Novel Selection Filters in Arbitrary Dimension. ArXiv, abs/1703.00212. [6] Dan Dolonius, Erik Sintorn, Viktor Kämpe, Ulf Assarsson. Compressing Color Data for Voxelized Surface Geometry. Extended version. IEEE Transactions on Visualization and [2] Harel, G., Lekien, J., & Pébaÿ, P.P. (2017). Visualization and Analysis of Large-Scale, Tree-Based, Adaptive Mesh Refinement Simulations with Arbitrary Computer Graphics, 2018.

Rectilinear Geometry. ArXiv, abs/1702.04852. [3] Dubois, J., Harel, G., & Lekien, J. (2018). Interactive Visualization and Analysis of High Resolution HPC Simulation Data on a Laptop With VTK. 2018 IEEE

Scientific Visualization Conference (SciVis), 127-141.

[7] KEN MUSETH. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics, Vol. 32, No. 3, Article 27, Publication date: June 2013. [8] Rama Karl Hoetzlein. GVDB: Raytracing Sparse VoxelDatabase Structures on the GPU. High Performance Graphics (2016). [9] WALDI., JOHNSONG. P., AMSTUTZJ., BROWNLEEC., KNOLLA., JEFFERSJ., GÜNTHERJ., NAVRÁTILP.: OSPRay-A CPUray tracing framework for scientific visualization. IEEE [4] DUBOIS J., LEKIEN J.-B.: Highly efficient controlled hierarchical data reduction techniques for interactive visualization of massive simulation data. Eurovis19. transactions on visualization and computer graphics 23, 1 (2016), 931–940.