
EUROVIS 2020/ J. Byska and S. Jänicke Poster

Additional Material - Evaluation of Mesh Compression and GPU
Ray Casting for Tree Based AMR data in VTK

Antoine Roche1,2,3 and Jérôme Dubois1,3

1Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, 91680 Bruyères-le-Châtel, France
2MSc Student, Université de Reims Champagne-Ardennes, France

3CEA, DAM, DIF, F-91297 Arpajon, France

1. Additional Information

In this addendum to our poster paper, we add three elements: 1)
experiments conducted on surface models issued from the Com-
puter Graphics field, 2) Sphere volume model results, and 3) Some
numbers on depth-limitation using a HTG feature and SVDAG ren-
dering. Additionally, Figure 8 shows the unfiltered display of YA31
Asteroid data set.

Surface models. Overall, HTG does not behave that well to rep-
resent and render surface models, and SVDAG performs extremely
well. Such situation can be encountered either when 1) model is
surface-like to begin with, 2) after VTK filtering we obtain a re-
sulting surface-like mesh. In the case of a HTG representation of
such mesh, memory footprint can be very large, especially when
rendering it with native surface representation as an unstructured
mesh. Using techniques from SVDAG directly inside HTG could
greatly help improve such SciVis situations. All tables, and Figures
1 to 6 are related to this item.

Sphere model. Sphere model is a synthetic model displaying 7
out of 8 octants of a sphere. It simply illustrates leaf cells of differ-
ent levels, and shows the weakness of the provided single SVDAG
implementation which generates large amounts of attribute (color)
values for blue voxels in Figure 6. Our multi-SVDAG approach
fixes this, with memory occupancy on par with HTG for the at-
tribute array. We are convinced additional work could be conducted
directly in the provided SVDAG implementation to correct this as
well, and would provide results similar to the multi-SVDAG. Either
way, the compression ratios and fast rendering are very convincing,
and a direct implementation inside the VTK HyperTreeGrid could
be very beneficial for the SciVis community.

Depth-limitation. VTK HTG reader and writer have a depth
limitation capability. It is possible to prune the trees of a model
virtually, thus decreasing grid resolution. This can be useful for
previewing or applying filters faster on limited hardware, in ex-
change of a controlled loss of precision. Data can still be reloaded
at full resolution afterwards, updating the whole VTK pipeline au-
tomatically and implying heavier computations as well as a larger
memory footprint. We illustrate the depth limitation process with
Fuel Assembly, and then the rendering as a SVDAG. Results are

similar with the YA31 Asteroid data set, where loading data is de-
creased from 110s at full resolution (level 7) to 20s at level 6, 5s
at level 5 and 1s at level 4, while still providing a decent overview
of the data. HTG management of coarse nodes values is important
to allow this efficiently, and combining depth limitation to SVDAG
rendering offers nice improvement for the SciVis end-user. Figure 7
illustrates the depth-limitation process.

Table 1: Amount of voxels and memory ratio of surface models vox-
elized as a SVDAG or HTG in a 10243 voxel grid, compared to the
original unstructured mesh. For Bunny, Dragon and Hairball, HTG
has a larger memory footprint than the unstructured mesh. This is
due to 1) HTG defining all children nodes when subdividing, and
associating a color to all of them (even masked) ; 2) rendering of
HTG is done as an unstructured mesh. Memory footprint of HTG
voxelization highly depends on the shape of the model. SVDAG of-
fers very nice performance and we think that applying a similar
strategy to HTG could help improve user experience in VTK for
surface-like TB-AMR meshes.

Bunny Dragon Lucy Hairball
HTG 10M ; 0.1x 7M ; 0.4x 4M ; 5.8x 100M ; 0.5x

SVDAG 400K ; 2.3x 300K ; 34x 2M ; 393x 5M ; 41x

Table 2: HTG voxel count depending on the grid resolution for the
Lucy surface model and SVDAG compression ratio.

Grid 32 64 128 256 512 1024 2048
HTG 10K 40K 200K 700K 3M 10M 50M

SVDAG 13x 14x 15x 16x 19x 22x 25x

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.

https://orcid.org/0000-0002-2958-544X
https://orcid.org/0000-0003-4346-7164


Antoine Roche & Jérôme Dubois / Add. Material-Mesh Compression and GPU Ray Casting for TB-AMR data

Figure 1: Surface models voxelized as HTG and rendered as SVDAG. From left to right: Bunny, Dragon, Hairball and Lucy.

Figure 2: Hairball voxelized as HTG and rendered as SVDAG,
in grid resolutions of 1K and 4K. Native HTG rendering was im-
possible with a grid of 4K on a 8GB GPU because of the large
unstructured mesh generated for surface rendering. SVDAG ren-
dering made it possible.

Figure 3: Number of vertices for the HTG and SVDAG represen-
tation of Lucy model at different grid resolutions.

Figure 4: GPU memory usage of native HTG rendering or SVDAG
Ray Cast rendering, in MBytes and depending on the grid reso-
lution for the Hairball. For this data set, and on a GPU with 8
GBytes, HTG rendering was impossible on grid resolutions supe-
rior to 1K. To be noted, HTG generates the surface to render, inside
and outside. On the other hand, SVDAG rendering only computes
what is required for the display, applying several optimizations
such as culling. HTG surface view is computed once, and SVDAG
rendering is a continuous computation depending on the camera
movements. Memory was retrieved with the nvidia-smi tool, and we
observe SVDAG has a constant minimum memory occupancy for
this data set.

Figure 5: Build time of HTG and SVDAG for the Hairball data set,
in seconds and at different grid resolutions. Experiments conducted
serially, and no particular optimizations applied.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



Antoine Roche & Jérôme Dubois / Add. Material-Mesh Compression and GPU Ray Casting for TB-AMR data

Figure 6: Lucy and the Sphere models rendered with HTG on the left and SVDAG on the right. Lucy is colored by the normal, and sphere
by the level of the cell in the tree. For provided SVDAG implementation, dark blue leaf cell generates a large amount of finest level leaf
cell. SVDAG extremely efficient compression compensates this, but extreme uncompressed amount of generated attribute values (dark blue)
induces a large memory overhead on the GPU, of about 3 GBytes. The proposed multi-SVDAG approach copes with this, and overall GPU
memory consumption is less than 100 MBytes.

Figure 7: Fuel Assembly data set loaded with depth limitations of 4, 5 and 6 (Max.) thanks to the VTK HyperTreeGrid reader capability,
and ray casted as a SVDAG on the GPU. Second row shows a zoom. Removing one level during HTG loading reduces time and memory by a
factor of 5x, and therefore loading HTG at level 4 is 25x faster, with 25x less voxels and attribute values. Therefore, native HTG rendering as
well as SVDAG generation are faster. Speed-up may vary with other models, and maximum expected speed-up for an octree is 8x per level.
This is an example of combining strengths of VTK filtering with fast efficient SVDAG rendering.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



Antoine Roche & Jérôme Dubois / Add. Material-Mesh Compression and GPU Ray Casting for TB-AMR data

Figure 8: Unfiltered (raw) display of YA31 at two time steps. We can only see details emerging on the faces of the rectangular box, and
either filtering or direct volume rendering must be applied to see what is happening inside.

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.


