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Figure 1: (a) acquisition signal from force, acceleration, temperature sensor, (b) construction design of tactile probe,(c) developed probe

Abstract
This paper describes a novel tactile sensing probe based on haptic primary colors (HPCs) and a tactile classifying system.
We developed a finger-type soft tactile probe incorporating a sensor to measure three physical quantities: force, vibration, and
temperature. We also constructed a tactile probe sliding system on the surface of the material repeatedly. The tactile fluctuation
obtained from the tactile probe was recorded, and a frequency analyzed image was generated. In the evaluation experiments,
the tactile images were generated by sliding the tactile probe on seven materials (ray fish skin, aluminum plate, rusting hemp
fabric, MDF board, tatami mat fabric, acrylic board and rubber sheet). A convolutional neural network (CNN) was constructed
and its classification performance was evaluated. In addition, we used tactile images to clarify the classification performance
through TLAlexnet (transfer learned Alexnet). Pre-trained TLAlexnet was generated by domain adaptation using the tactile
images. The results of TLAlexnet showed the great performance to be 85.0%, 91.7%, and 85.7% with respect to single primary
colors of force, vibration, and temperature, respectively, and it improved to 96.4% when using three HPCs. In addition, the
classification performance of the proposed seven-layered another CNN that was trained with the obtained tactile images was
98.2% of the CNN constructed using common filtering parameters. Thus, highly accurate classification was realized by using
three HPCs elements.

CCS Concepts
• Human-centered computing → Virtual reality; Haptic devices; • Hardware → Haptic devices; • Computing methodolo-
gies → Neural networks;
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1. Introduction

Many applications for virtual reality (VR) technology have been
developed rapidly in recent years. High-fidelity transmission of
sensory information and somatic sensation such as tactile sense,
in addition to audiovisual sensation, will provide work flexibility
and efficiency. The presentation of tactile information is consid-
ered necessary for remote working systems, because of its effec-
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tiveness for the efficient VR operation [FTB∗00, KH13]. Our goal
is to develop a telexistence [Tac15] robot system with soft finger
hands. The robot transmits material information through material
sensing and classification results with tactile finger-tip probe. To
achieve the material classification, we developed a proposed sys-
tem to classify the tactile information, to extract features with cer-
tain tactile characteristics based on haptic primary colors (HPCs)
theory [TMFF15], and also to present tactile features classification
results by using machine-learning methods. In order to acquire the
required amount of tactile infromation for the machine learning, a
soft tactile sensing probe and a recording system were constructed.

1.1. Haptic Primary Colors

Tactile sensation is based on information obtained from human tac-
tile sensors and is a type of human somatosensory sensation. The
HPCs is a theory that tactile sensing is composed by elements of
tactile stimulus. It is the same as the three elements of light. In
the HPCs theory, vibration, force, and temperature correspond to
tactile sensation receptors and thermal sensation receptors. Tactile
receptors that accept mechanical stimulation include Meissner cor-
puscles, Pacinian corpuscles, Merkel’s cell, and Ruffini ending. Ex-
periments have been conducted to measure the vibration detection
area by sinusoidal vibration stimulation ranging from about 1-500
Hz for the measurement of the skin-vibration detection area. As tac-
tile information, it is necessary to measure mechanical vibrations of
about 1 kHz stimulus. The force is sensed on muscle, tendon, and
joints as a deep sensation. The force is sensed on muscle, tendon,
and joints as a deep sensation. The vibration is like the alternating-
current component, the force is like the direct current component,
thus both vibration and force sensor is needed. The frequent neural
firing of temperature receptors at 40 - 45◦C in warm sensation and
at about 30◦C in cold sensation. In this case, temperature sensing
is required in the temperature range between 0-50◦C.

1.2. Related Works

The tactile signal acquisition methods with finger or hand shape
probe has been proposed by several reports. In our previous study
[KFIT17], we determined the vibration component of a tactile sen-
sation when sliding an object of materials by using fingertip-like ac-
celeration probe. There are many reports [AS95,BHH∗17,CLK14,
MPC16, PR03] using a rigid metal-tip stylus. Some reports used
gel state tactile sensor [HNNH12, VMK∗05, YZO∗17], while the
other reports using thermal sensor hand [BWK15]. To the con-
trary we aim to realize soft finger-tip tactile sensing probe like
Biotac [WSJL08]. A study [GHKD16] reported the use of for two
fingers mounted on a robot hand; the authors classified tactile feel
through hand gestures such as squeezing and holding. The Biotac
has functions for sensing pressure, vibration through fluid, and core
temperature; however, its sampling rate is not high enough to repro-
duce human sensation; the sampling rate of vibration and thermal
capacity are 100 Hz, except for fluid vibration (2.2 kHz). The au-
thors also reported that the classification performance of results by
using only haptic is not very high. Moreover, the sensor’s sensi-
tivity of Biotac might not be high because the pressure vibration
sensor is separated by fluids, and the stimulus transmitting through
fluids might have high impedance. Several studies have conducted

classified tactile signals with machine learning method like convo-
lutional neural networks (CNNs) constructed from one or multiple
physical quantities and multimodal sensations. A few of these stud-
ies [HMN16, KFIT17, SSS15] classified various material surfaces
through tactile signals acquired from acceleration probe by con-
structing neural networks/CNN, while the others developed CNNs
based on acceleration and by using visual images [ZFJ∗16]. In ad-
dition, force sensor and microphone devices are included on a re-
port [SSIS17], IR sensor metal detector is on a report [SBS17]. In
the former study, its scanning system extracts acceleration, hard-
ness, roughness, friction, sound and image features. The latter one
defines tactile features of reflectance from IR led and metal de-
tection, in addition. Both of them conducted the evaluation using
some supervised machine learning approaches which are not the
deep neural network. Another study [SBS17] proposed a classifica-
tion method which focused on the velocity of normal force changes
while the probe slides the material. On the other hand, in the this
study, we aimed to classify signals about three axes of both force
and vibration, material surface temperature, directly. A classifying
system using CNN classifier was also exploited. In our system,
the feature is not extracted explicitly because human finger just
senses the force, vibration, temperature. Proposed sensing formula
is based on haptic primary colors theory [TMFF15].

A tactile information recording system with a finger slides lin-
early on a material surface is also proposed [MPC16]. It scans fric-
tion coefficients, both lateral and normal force using an external
force sensor. In our proposed system, all sensors are embedded in
a fingertip to measure the very surface vibration and force well.

Thus, in the current study, we propose the tactile probe that
senses force, vibration, and temperature similar to a human finger.
It enables high-frequency sampling rate similar to that of the human
tactile receptor. The tactile sensors of our probe are distributed on
the probe surface for high sensitivity. We also developed a tactile
signal recording system that slides the tactile probe linearly and au-
tomatically on the surface of materials. This type of automatic sys-
tem enables us to easily gather a large amount of material textures.
After recording a signal, our system produces a tactile spectrogram
through a fast Fourier transform (FFT), which is frequently used
in audio analysis research [SK03], in which acquired time series
audio signal are produced to process frequencies.

1.3. Contribution

We proposed the tactile probe that acquires tactile information of
three HPCs (force, vibration, and temperature). In addition, we de-
veloped a tactile recording system to conduct the tactile probe slid-
ing on materials. The acquired tactile information was classified
by using CNN. The result of cross-validation by using the pro-
posed system classifies seven specific materials with an accuracy
of 98.2%. The result also confirmed that combining force, acceler-
ation, and temperature image improves the classification accuracy.
Our proposed system enables distinguish between different types
of materials according to their surface texture.
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2. Tactile Probe, Tactile Feeling Recording System, and
Classification System Construction

In this paper, we describe the recording system and classification
system of tactile sensation that satisfies the above requirements. In
order to obtain tactile information about tactile sensations and tem-
perature sensations, we developed a system that is based on the
HPCs to record the force, vibration, and temperature. The force is
like the direct current component of the tactile sense, and the vi-
bration is the alternating current component. We propose the tactile
probe (Figure 1(b) and (c)) that acquires a tactile signal using three
sensors of force, acceleration, and temperature. The probe imitates
the fingertip of a human, and it is assumed that tactile signals are
obtained by sliding the surface of material samples.

2.1. Tactile probe with built-in three HPCs sensors

We acquired the three-axis of force, which consists of one vertical
force axis against a material and a horizontal biaxial moment force
using µDynPick MAF-3 piezoresistive force sensor, (1 kHz, three
axes, manufactured by Wako Tech). To obtain the vibration, we
employed LIS3DH acceleration sensor (1.6 kHz, tri-axial, manu-
factured by ST Microelectronics). We employed an infrared ther-
mopile TMP-007 (manufactured by Texas Instruments, Inc.) for
non-contact temperature sensors that are connected by an FPC con-
nection cable. To acquire the contact temperature, we employed a
56 A 1002 - C 3 thermistor (manufactured by Alpha Technics Co.,
Ltd.), and both are connected to the embedded controller Arduino
Due (32 bit, equipped with Arm Cortex - M 3, 84 MHz). We estab-
lished a connection from the embedded controller and force sensor
by serial USB communication to the PC to record tactile sensing
signals (Figure 1(a)) and preserve time-series fluctuations.

The configuration of the tactile probe is shown in Figure 1(b).
The tactile probe shape was designed with 3D CAD (Autodesk In-
ventor), and it was a three-dimensional design modeled by a stereo-
scopic image printer (Figure 1(c)). The finger pad of the tactile
probe was made hollow with a thickness of 1 mm to facilitate vi-
brating, and it was molded using a flexible but hard material (FLX
9995). We assumed that it is mounted on the robot’s fingertips or
extremities for remote work. The ease of grasping of objects is im-
portant owing to their softness, but the vibration and force that can
be acquired become dull in the finger pulp, which is too soft. The
base of the force sensor (Figure 1(b)) is made of hard plastic (ABS
resin). This is because a base with hardness is better for obtain-
ing the force. The arm of the force sensor is on the opposite side
from the base, and touches the back and outside of the finger pulp
tube (Figure 1(b)). In Figure 1, the force sensor can measure the
vertical force and the horizontal biaxial moment on the bottom of
the finger pulp tube. In order to obtain the force from the finger
pulp surface to the force sensor, the support column (Figure 1(b))
was extended from the finger pulp bottom surface to the arm of
the force sensor. In addition, it is thought that the vibration is more
easily measured at the part closer to the contact surface, with the
object on the ventral side of the finger pad, where vibrations are
generated. Therefore, the acceleration sensor is disposed inside the
ventral side of the finger pulp tube (Figure 1(c); the acceleration
sensor is transparent).

2.2. Temperature Sensor and Peltier Heater

The contact temperature sensor is attached to the front/outside of
the ventral side of the finger pulp tube. The non-contact tempera-
ture sensor is mounted in a direction such that it can measure the
temperature of the surface of the substance to be contacted from
the measurement hole, which is opened on the ventral side of the
finger pulp tube (Figure 1(b)). For the contact temperature sensor,
we used a thermistor that has a small measurement volume and
good reactivity. The non-contact temperature sensor can measure
the temperature of the cone-shaped bottom surface region with the
sensor surface as the apex, and the finger can measure the temper-
ature immediately before contact with the object, but the effect of
the thermal emissivity of the object to be measured and the envi-
ronment. It is difficult to measure the temperature accurately, easily,
and stable. Therefore, we used only thermistors as contact temper-
ature sensors to measure the temperature.

On the ventral surface of the finger pulp tube, we placed a Peltier
element to maintain the temperature of the finger pad (Figures 1(b),
(c)). We aim to identify materials from temperature fluctuations of
the contact object. In order to identify an object’s material, the hu-
man acquires the temperature fluctuation of the surface of the fin-
ger at the time of contact with the object. This is because the ther-
mos receptor resides in the skin surface. In order to discriminate
an object on the temperature axis, if the tactile probe has a body
temperature, as is the case with humans, heat exchange is caused
by the temperature difference with an object, which is usually at
room temperature. Therefore, it is easier to measure the character-
istics of object temperature change. Figure 2 shows the temperature
change example of our proposed tactile probe was pressed against
both an aluminum plate and a ray fish skin plate. The tactile probe
was pressed against the surface of the sample using a tapping op-
eration, after which it was heated, and the temperature change was
recorded. The Peltier element with the built-in tactile probe was
maintained at 42◦C, which is the upper limit of human skin, which
is controlled using a voltage of 5V and a current of 0.5A. Two ther-
mistors are located on finger pulp. One thermistor (T1) measures the
Peltier device temperature for thermal control. The other thermistor
(T2) is located 5 mm forward from Peltier device on the finger pad.
Figure 2 shows when the T2 became 28.9 ◦C (higher than room
temperature), the fingertip pulp was brought into contact with the
material for 5 min. In the aluminum sample, the temperature rose
after the temperature decreased by 1.5 ◦C toward the room temper-
ature. After the fingertip pulp contacts the ray fish skin, whereas
the fingertip pulp temperature nearly monotonically increased. Be-
cause aluminum has a higher thermal conductivity than ray fish
skin. Because the thermal conductivity of the ray fish skin is low
and the heat conduction to the surroundings of the fingertip pulp
is slow, it is believed that the magnitude of the temperature de-
crease was small. From the above, by touching the object with the
heated tactile probe on the human skin, it is possible to determine
the tendency of the thermal conductivity of the material. Because
the temperature fluctuation is a variable that is unique to each sub-
stance that is neither concave nor convex on the surface of the spec-
imen, it can be used independently of the force and vibration as an
indicator to determine the material using the temperature for the
classification of tactile sensation. The reports [BWK15] also pro-
posed material classification using a heating element and a surface
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thermistor. It sensing temperature decreasing with 200Hz. In our
method, the heating element is as one roll of HPCs sensors which
slides material surface.

2.3. Tactile Feeling Recording System

Using the proposed tactile probe, we constructed a recording sys-
tem (Figure 3) to obtain the texture of the surface material of
the object. We built a system for sliding a tactile probe by cou-
pling a linear actuator and a servomotor. The linear actuator,
which uses a high-precision ball screw SG2605-A300P-A3CS-NN-
PSR(Kuroda Seiko Co., Ltd.) and the servomotor MSMF5AZL1A2
(both of which are manufactured by Panasonic Corporation) are
connected by a coupling SCIW-19-5-8 (Misumi Corporation). They
are operated by sending command values from the servo amplifier
MADLT01SF. A specimen material used to acquire the tactile sen-
sation to be recorded is attached to the work of the actuator, and
it moves iteratively. We do not move the tactile probe using the
linear actuator. This is because there is no acceleration due to slid-
ing. Two pillars that are located on the sides of the linear actuator
support the tactile probe above the linear actuator. Then, the tactile
probe has extra freedom along the vertical axis force (blue text in
Figure 3). The tactile probe weighed 0.1 kg, and it was pressed with
a force of 1 N. The cylinder position was constantly measured by
the optical encoder of the motor. In the recording system used in
the report [CLK14], the vibration was excited by the reciprocating
movement. However, in the proposed recording system, the noisy
vibration can be reduced by the cylinder using the high-precision
ball screw.

2.4. Imaging of Tactile Information

In the recording system, waveforms of force, acceleration and tem-
perature are obtained as tactile information. The obtained tactile
information undergoes the Fast Fourier Transform (FFT) within a
unit time delimited in the time direction to generate an image in
which the intensity of force, acceleration or temperature frequency
varies over time. Image acquisition parameter shows on the Table 1.
In the imaging after the FFT, the intensity distribution of frequen-
cies included in the signal is generated.

2.5. Tactile Information Classification System

For the classification of imaged tactile information, we employed a
machine-learning method using a CNN, which is well used in the
field of computer vision. Alexnet [MPC16] is also frequently used
as the benchmark. In this study, we developed a transfer-learning
CNN by using Alexnet (which we call TLAlexNet) with tactile im-
ages. Alexnet is a pre-trained network through one million general
images of thousand categories database [KSG12, Ima12]. But it is
not specialized in tactile images, therefore another seven-layered
CNN was also constructed for evaluation. The tactile image enters
the input layer, and the convolution layer is the second layer. Next,
the ReLU layer is configured to become the entire binding layer,
then the soft-max layer and the output layer are used for the classi-
fication via the two-dimensional max-pooling layer. It will be deter-
mined at the section of experiments; convolution filter size, stride

Figure 2: Example of temperature change when tactile probe
pressed against both an aluminum plate and a ray fish skin plate.

Figure 3: Recording system of surface material using tactile probe.

size and size of the max-pooling layer. The tactile image is gener-
ated using single HPCs or a combination of two or three HPCs.

3. Experiments

Using the tactile probe and tactile information recording system,
we acquired HPCs tactile information from the sliding operation of
seven material surfaces (Figure 5 and 6).

3.1. Acquisition of Force, Acceleration, and Temperature
Information

The sampling frequency of the force and acceleration of the tactile
information are 1 kHz for the force sensor and 1.6 kHz for the ac-
celeration sensor. Tactile information was acquired by repeatedly
sliding a tactile probe, which is pressed 1 N on a material sam-
ple, and it is operated at a stroke distance of 20 cm (Table 1). A
time for one-way slide takes in 2 - 3 seconds. Figures 5 and 6 show
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Table 1: HPCs Images Acquisition Parameter(left), Parameters of generating images, Images Amount Used for TLAlexnet/Proposed CNN
and Classification Accuracy of TLAlexnet/Proposed CNN(right)

Figure 4: Combination of HPCs images. Example of ray fish skin.

the waveforms of the recorded force, acceleration, and temperature
as well as the frequency analysis results. For the material sample,
we used a ray fish skin, which is rugged but has little friction, a
tatami mat fabric, which is smooth, a rusting hemp fabric, an MDF
boards, which are dry and rustic, an aluminum plate and an acrylic
plate, which presents cool tactile and smoothness, and rubber sheet
which has also smoothness. It is shown that the frequency com-
ponent included in the forces recorded in our proposed system is
concentrated mainly in the low-frequency range of 50 Hz or less.
The frequency components included in the acceleration, which are
set to 800 Hz, especially in the sliding direction. By focusing on a
specific frequency, it is possible to confirm the band-like features.
Because the frequency components that can be acquired differ for
the force and acceleration, it is considered that indicators regarding
the discrimination of materials can be independently obtained by a
combination of obtained frequency components. We obtained the
temperature change during sliding in the same way as the acceler-
ation and force. We measured the temperature of the Peltier device
(T1) and the surface temperature (T2) of the finger pulp tube 5 [mm]
from the Peltier element while controlling the ON/OFF switching
of the power supply; as a result, the Peltier device of the tactile
probe became 42◦C. The temperature sampling rate was about 516
Hz. The temperature waveform (Figure 6, right column) was im-
aged as well as the force and acceleration.

3.2. Classification using TLAlexnet

Pre-trained Alexnet randomly selected 70% of the images gener-
ated from the tactile signals of force, acceleration, and temperature
as shown in Table 1, and the domain adaptation was performed
through transfer learning. The classification performance was then
evaluated with the remaining 30% of the images. Transfer learning
was conducted on each contact image of force, acceleration, and
temperature (15×501 pixels), a combination of two tactile images
(15×501 pixels) for the f orce+acceleration(F +A), the f orce+
temperature(F + T ), theacceleration+ temperature(A+ T ), and
a combination of three tactile images (15 × 501 pixels) for
the f orce+acceleration+temperature(F+A+T ). For combining
several HPCs images, we compound a temperature image next to
a force image for the f orce+ temperature(F +T ). We constructed
a learning system using MATLAB. The size of the mini batch was
[28,28]. Figure 4 shows the combination images of HPCs.

3.3. Classification using Proposed CNN

Similar to the classification using Alexnet, CNN was constructed
using each touch image and evaluated. In the construction of CNN,
the filter size of the convolution layer was set to a width and height
of 8 and 33, respectively. In the pooling layer, the pool size was set
to 2×2, and the stride was set at 2×2. In addition, the output of the
total coupling layer was configured to be 5. The CNN that achieves
the best performance by changing the classification performance
through parameters for each touch was evaluated.

4. Classification Results and Discussion

Compared both situations, 1) The performance classified by inde-
pendently imaging the tactile information of force, acceleration,
and temperature, and 2) The performance in the case of simulta-
neously categorizing the two and three sets of tactile information
into one image, with respect to TLALexnet, the proposed CNN.
Table 1 shows the evaluation result by using TLAlexnet / proposed
CNN respectively. We used just y-axis of accelerometer because
the accuracy was not high when using 3 axes.
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Figure 5: Waveform of force and image after frequency analysis. Waveform (left) and frequency analysis (∼500 Hz) results (right) obtained
in the vertical direction and sliding direction of the force when sliding by reciprocating the skin of ray fish, tatami mat, hemp cloth, and MDF
plate.

4.1. Classification Performance using TLAlexnet

By comparing the classification accuracy of the TLAlexnet, the ac-
curacy was found to be good in the order of temperature(T ) '
f orce(F) < acceleration(A) for single HPCs images (Table 1
(right)). In combination, the order was F + T < F + A < A+ T ,
which is higher than for a single HPCs. Even with the com-
binations of tactile images with low classification performance,
higher classification performance can be realized. The combi-
nations of the f orce + acceleration, the f orce + temperature,
and the acceleration+ temperature were complemented, and are
thought to be similar to the robust joint Haar-like feature quan-
tity [MKSH08] with a combination of weak classifiers used in the
recognition of facial images. This kind of features are called weak
classifier, it is known that these combinations of weak classifiers

become robust strong classifiers. High classification performance
was obtained even with the combination of temperature images
with low classification accuracy. Moreover, by combining three tac-
tile combinations, it was possible to obtain maximum classification
performance. It contains images of accelerations that can be clas-
sified with high accuracy and these seem to have become strong
feature extraction entities.

4.2. Classification Performance using Proposed CNN

Table 1 shows the results by using proposed CNN, which is pro-
duced by using only tactile images, the classification accuracy of
all of HPCs image set increased (it shows right edge column of
Table 1). Middle column at Table 1 (right) shows the accuracy of
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Figure 6: Left table (Acceleration) shows waveform of acceleration and image after frequency analysis. Waveform (left) and frequency
analysis (∼500 Hz) result (right) in the vertical direction and sliding direction of the acceleration. Right table (Temperature) showsT2
waveform (left) and frequency analysis (∼258 Hz) result (right) when sliding. Both tables are results by reciprocating the skin of ray fish
skin, tatami mat, hemp fabric, MDF plate, aluminum plate, acrylic board and rubber sheet.

proposed CNN of which is made from both filter size [13,13] and
35 filters by using HPCs images, F , A, F +A, F + T , A+ T and
F +A+T , respectively. The accuracy by using single T image set
is almost the same but has a little decreased. It is because that tem-
perature images amount is small as well as low sampling rate, and
it is also considered that thermal conduction phenomena changes
slowly than the other HPCs, frequency analyze images of temper-
ature has small features. However it seems by combining differ-
ent HPCs images could increase the classification accuracy even
with temperature, temperature image could cover the pair HPCs
images. Classification accuracy by using three HPCs images scored
98.2% by using a common filter parameter. From the above, pro-
posed CNN also shows the highest classification accuracy by using
three combinations of HPCs images.

4.3. Limitations

Tapping and grasping operation is out of scope in this study, though
the robot hand is required such operation. Tactile sensing pattern
depends on pressure. Adapting to the pressure changes during such
operation is a future work. Our proposed system will be useful
when the robot hand touches a object, with normalized velocity.
The velocity of robot finger will be acquired because a robot hand
should be equipped motion sensing/calculating system to control
of it. In this study seven materials are featured, in order to achieve
various tactile transmits, more materials need to be analyzed for
more tactile information.

5. Conclusion

In this study, we proposed a tactile probe that acquires tac-
tile information of three haptic primary colors. We also devel-
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oped the recording system which slides material repeatedly. Tac-
tile information was acquired automatically by the tactile probe
pressed against the material surface. The sampling rate of the
force/acceleration/temperature is 1 k / 1.6 k / 500 Hz, respectively,
and it is sufficiently fast to be sensed by the skin receptors. The
evaluation was conducted by using both pre-trained TLAlexnet and
another trained CNN with seven sets of single HPC image or the
combinations of two or three HPC images. The high accuracy of
classification was guaranteed by using three combinations of HPC
images, and even the combination of low accuracy HPCs provided
a sufficient accuracy of classification.
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