Flow Visualization

Tutorial on Information Theory in Visualization

Han-Wei Shen
The Ohio State University
Entropy for Scientific Data

- A data set can be considered as a random variable.
- Each data point can be considered as an outcome of the random variable.
- We can estimate the information content for the whole data set or for local regions.
Distributions from Scientific Data

Scalar Distributions
- Uni-variate
- Multi-variate

Vector Distributions

Feature Distributions

State Transitions
Data Sets with Multiple Variables

• Assuming your data set contains two variables X and Y
• You want to know the relationship between X and Y
• You can calculate the conditional entropy, mutual information, etc between these two variables
• Some of the metrics can be used as the ‘information distance’ between two variables
Entropy for Multiple Variables

• Joint Entropy

\[H(X,Y) = - \sum_{x \in X} \sum_{y \in Y} p(x, y) \log p(x, y) \]

• Conditional Entropy

\[H(X|Y) = \sum_{y \in Y} p(y) H(X|Y = y) = - \sum_{y \in Y} \sum_{x \in X} p(x, y) \log p(x|y) \]

• Mutual Information

\[I(X;Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
Relations of Entropy Measures

\[H(X, Y) \]
\[H(X) \]
\[H(Y) \]
\[H(X; Y) \]
\[H(Y; X) \]
Evaluating Visualization

\[H(x) = - \sum_{i=1}^{n} p_i \log p_i \]

\[I(X; Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]
Vector Field Analysis

• Concept
 • Treat the vector field as a data source that generates vector orientation as outcome
 • The more diverse the vector orientations, the more information is contained in the vector field

• Measurement
 • Estimate the distribution of the vector orientation
 • Compute the entropy of this distribution as the measurement
Information in Vector Fields
Entropy Field and Seeding

Measure the entropy around each point’s neighborhood

Entropy field: higher value means more information in the corresponding region

Entropy-based seeding: Places streamlines on the region with high entropy
Evaluation of Visualization

Data → Visualization Algorithm → Visualization

Can more information be shown?

Yes → Information in Data

No → Stop
Information Comparison between Data/Visualization

Conditional entropy $H(X|Y)$:
The information in X not represented by Y

An effective visualization should represent most information in the data,
i.e. $H(X|Y)$ should be small
Conditional Entropy and Joint Entropy

\[H(X | Y) = H(X, Y) - H(Y) \]

- Conditional Entropy of both \(X \) given \(Y \)
- Joint Entropy of both \(X \) and \(Y \)
- Entropy of \(Y \)

Entropy of the joint distribution of both original and synthesized vectors

Input vector field

Vector field from the streamlines
Conditional Entropy Field and Seeding

Measure the under-represented information in local regions

Conditional-entropy-based seeding: Place more seeds on regions with higher under-represented information
Result

1st iteration: Entropy-based seeding

2nd iteration: Cond.-entropy-based seeding

When conditional entropy converges
View-dependent Flow Visualization

• Goal: create a clear view of important features in 3D flow fields by streamline placement

• Issue: occlusion among the flow features

• Approaches
 • Evaluate flow field in screen space by information theory
 • Place streamline to highlight salient flow features with less occlusion
Image-Space Flow Complexity

• Goal
 • Measure the flow complexity on the screen
 • Not trivial because multiple flow features can overlap on the screen

• Approach: consider the most complex flow features visible from the given viewpoint

If the salient flow features are self-occluded, only a subset of them are visible
Flow Complexity Evaluation

Flow Field

Object Space

View-independent Entropy Field

Image Space

View-Dependent Flow Complexity
Maximal Entropy Projection (MEP)

MEP: Project the entropy field to the screen via Maximal Intensity Projection (MIP)

- Sample the maximal entropy visible to each pixel
- Store the sampled entropy and depth in the MEP Framebuffer
Streamline Evaluation

Input Streamlines
Streamlines w/ less occlusion to the MEP Framebuffer

MEP Framebuffer
Entropy
Depth
Streamlines that occluded to the MEP Framebuffer
MEP-based Streamline Placement

- Highlight salient flow features
- Reduce occlusion to these features
MEP-based Streamline Placement

High Streamline Density

Low Streamline Density
Streamline Statistical Feature Descriptors

• Each streamline is represented as one or more distributions of feature measures such as curvature, curl and torsion.
Streamline Statistical Feature Descriptors

- Problem of 1D histograms
 - The order of features is not preserved in the final histogram

A streamline with only one high curvature zone

A streamline with two high curvature zone
Streamline Statistical Feature Descriptors

• Solution: 2D Histograms
 • Decompose the streamline into a fixed number of segments
 • Create 1D histogram of appropriate quantity for each segment
 • Stack the 1D histograms to form a 2D histogram which preserve the order between segments
Streamline Decomposition

- An iterative segmentation algorithm
- Recursively divide into segments until:
 - The difference in the 1D histograms between two halves is smaller than a threshold
 - Streamline segment is too short to be further segmented
Measure Similarity Between Two Streamlines

- Compute similarity between the 2D histograms of two streamlines
 - As two streamline have different number of segments,
 - Apply **Dynamic Time Warping (DTW)** to find an optimal mapping between segments
 - For each pair of segments,
 - Use **Earth Mover’s Distance** to measure the distance of their 1D histograms
Similarity-based Streamline Query
(Hurricane Isabel Data Set)

• Streamlines having similar features as the one selected by the user are displayed to highlight features in the data

• Histograms based on Curvature and Torsion are used to answer query in this particular case

Hurricane Isabel

User selected target

User selected target

Top 400 matches

Top 200 matches
Similarity-based Streamline Query (Solar Plume Data Set)

- Query response using curvature and torsion based histograms

User selected streamline

Top 200 matches

User selected streamline

Top 20 matches
Similarity-based Streamline Query (Ocean Data Set)
Streamline Clustering

- Clusters are formed based on curvature distribution
- Vortices and linear regions are in two different clusters