Laplacian in one minute

\[\nabla f(x) = \text{direction of the steepest increase of } f \text{ at } x \]

\[\text{Divergence } \nabla \cdot F(x) = \text{density of an outward flux of } F \text{ from an infinitesimal volume around } x \]

\[\text{Divergence theorem: } \int_V \nabla \cdot F \, dV = \int_{\partial V} \langle F, \hat{n} \rangle \, dS \]

\[\sum \text{sources} + \text{sinks} = \text{net flow} \]

\[\Delta f(x) = -\nabla \cdot \nabla f(x) \]

Smooth scalar field \(f \)
Laplacian in one minute

- **Gradient** \(\nabla f(x) = \) ‘direction of the steepest increase of \(f \) at \(x \)’

Smooth **scalar field** \(f \)
Laplacian in one minute

- **Gradient** $\nabla f(x) = \text{‘direction of the steepest increase of } f \text{ at } x$’

- **Divergence** $\text{div}(F(x)) = \text{‘density of an outward flux of } F \text{ from an infinitesimal volume around } x$’

Smooth vector field F
Laplacian in one minute

- **Gradient** $\nabla f(x) = \text{‘direction of the steepest increase of } f \text{ at } x'$

- **Divergence** $\text{div}(F(x)) = \text{‘density of an outward flux of } F \text{ from an infinitesimal volume around } x'$

Divergence theorem:

$$\int_V \text{div}(F)dV = \int_{\partial V} \langle F, \hat{n} \rangle dS$$

‘\sum sources + sinks = net flow’

Smooth vector field F
Laplacian in one minute

- **Gradient** \(\nabla f(x) = \) ‘direction of the steepest increase of \(f \) at \(x \)

- **Divergence** \(\text{div}(F(x)) = \) ‘density of an outward flux of \(F \) from an infinitesimal volume around \(x \)

Divergence theorem:

\[
\int_V \text{div}(F) dV = \int_{\partial V} \langle F, \hat{n} \rangle dS
\]

‘\(\sum \) sources + sinks = net flow’

- **Laplacian** \(\Delta f(x) = -\text{div}(\nabla f(x)) \)
 ‘difference between \(f(x) \) and the average of \(f \) on an infinitesimal sphere around \(x \)’ (consequence of the Divergence theorem)

We define Laplacian with negative sign
Physical application: heat equation

\[f_t = -c \Delta f \]

Newton’s law of cooling: rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of the surrounding

\(c \ [\text{m}^2/\text{sec}] = \text{thermal diffusivity constant} \) (assumed = 1)
Riemannian geometry in one minute

- **Tangent plane** $T_x X = \text{local Euclidean representation of manifold (surface) } X \text{ around } x$
Riemannian geometry in one minute

- **Tangent plane** $T_xX = \text{local Euclidean representation of manifold (surface) } X \text{ around } x$

- **Riemannian metric**

$$\langle \cdot, \cdot \rangle_{T_xX} : T_xX \times T_xX \rightarrow \mathbb{R}$$

depending smoothly on x
Riemannian geometry in one minute

- **Tangent plane** \(T_x X = \text{local Euclidean representation of manifold (surface) } X \text{ around } x \)

- **Riemannian metric**
 \[
 \langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}
 \]
 depending smoothly on \(x \)

 Isometry = metric-preserving shape deformation
Riemannian geometry in one minute

- **Tangent plane** $T_x X = \text{local Euclidean representation of manifold (surface) } X \text{ around } x$

- **Riemannian metric**
 \[
 \langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \rightarrow \mathbb{R}
 \]
 depending smoothly on x

 Isometry = metric-preserving shape deformation

- **Exponential map**
 \[
 \exp_x : T_x X \rightarrow X
 \]
 ‘unit step along geodesic’
Riemannian geometry in one minute

- **Tangent plane** $T_x X = \text{local Euclidean representation of manifold (surface) } X \text{ around } x$

- **Riemannian metric**
 \[
 \langle \cdot, \cdot \rangle_{T_x X} : T_x X \times T_x X \to \mathbb{R}
 \]
depending smoothly on x

- **Isometry** = metric-preserving shape deformation

- **Exponential map**
 \[
 \exp_x : T_x X \to X
 \]
 ‘unit step along geodesic’

- **Geodesic** = shortest path on X between x and x'
Laplace-Beltrami operator

\[\nabla_X f(x) = \nabla(f \circ \exp_x)(0) \]

Taylor expansion
\[(f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_xX} \]

Laplace-Beltrami operator
\[\Delta_X f(x) = \Delta(f \circ \exp_x)(0) \]

Smooth field \(f : X \to \mathbb{R} \)

\(x \)

\(f \)

Smooth field \(f : X \to \mathbb{R} \)
Laplace-Beltrami operator

\[
\nabla^X f(x) = \nabla (f \circ \exp_x)(0)
\]

Taylor expansion

\[
(f \circ \exp_x)(v) \approx f(x) + \langle \nabla^X f(x), v \rangle_{T_x X}
\]

Laplace-Beltrami operator

\[
\Delta^X f(x) = \Delta (f \circ \exp_x)(0)
\]

Smooth field

\[
f \circ \exp_x : T_x X \to \mathbb{R}
\]

Intrinsic (expressed solely in terms of the Riemannian metric)

Isometry-invariant

Self-adjoint

Positive semidefinite \(\Rightarrow\) non-negative eigenvalues
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[\nabla_X f(x) = \nabla(f \circ \exp_x)(0) \]

 Taylor expansion
 \[
 (f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X}
 \]
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[
 \nabla_X f(x) = \nabla (f \circ \exp_x)(0)
 \]
 Taylor expansion
 \[
 (f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X}
 \]

- **Laplace-Beltrami operator**
 \[
 \Delta_X f(x) = \Delta (f \circ \exp_x)(0)
 \]
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[\nabla_X f(x) = \nabla (f \circ \exp_x)(0) \]

 Taylor expansion
 \[(f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X} \]

- **Laplace-Beltrami operator**
 \[\Delta_X f(x) = \Delta (f \circ \exp_x)(0) \]

 - **Intrinsic** (expressed solely in terms of the Riemannian metric)
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[
 \nabla_X f(x) = \nabla(f \circ \exp_x)(0)
 \]

 Taylor expansion
 \[
 (f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_xX}
 \]

- **Laplace-Beltrami operator**
 \[
 \Delta_X f(x) = \Delta(f \circ \exp_x)(0)
 \]

- **Intrinsic** (expressed solely in terms of the Riemannian metric)
- **Isometry-invariant**
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[\nabla_X f(x) = \nabla(f \circ \exp_x)(0) \]

 Taylor expansion
 \[(f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X} \]

- **Laplace-Beltrami operator**
 \[\Delta_X f(x) = \Delta(f \circ \exp_x)(0) \]

- Intrinsic (expressed solely in terms of the Riemannian metric)
- Isometry-invariant
- Self-adjoint
 \[\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)} \]
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[\nabla_X f(x) = \nabla (f \circ \exp_x) (0) \]

- **Taylor expansion**
 \[(f \circ \exp_x) (v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X} \]

- **Laplace-Beltrami operator**
 \[\Delta_X f(x) = \Delta (f \circ \exp_x) (0) \]

- **Intrinsic** (expressed solely in terms of the Riemannian metric)
- **Isometry-invariant**
- **Self-adjoint** \[\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)} \Rightarrow \text{orthogonal eigenfunctions} \]
Laplace-Beltrami operator

- **Intrinsic gradient**
 \[\nabla_X f(x) = \nabla(f \circ \exp_x)(0) \]

 Taylor expansion
 \[
 (f \circ \exp_x)(v) \approx f(x) + \langle \nabla_X f(x), v \rangle_{T_x X}
 \]

- **Laplace-Beltrami operator**
 \[\Delta_X f(x) = \Delta(f \circ \exp_x)(0) \]

- **Intrinsic** (expressed solely in terms of the Riemannian metric)
- **Isometry-invariant**
- **Self-adjoint** \(\langle \Delta_X f, g \rangle_{L^2(X)} = \langle f, \Delta_X g \rangle_{L^2(X)} \Rightarrow \) orthogonal eigenfunctions
- **Positive semidefinite** \(\Rightarrow \) non-negative eigenvalues
Discrete Laplacian (Euclidean)

One-dimensional

\[(\Delta f)_i \approx 2f_i - f_{i-1} - f_{i+1}\]

Two-dimensional

\[(\Delta f)_{ij} \approx 4f_{ij} - f_{i-1,j} - f_{i+1,j} - f_{i,j-1} - f_{i,j+1}\]
Discrete Laplacian (non-Euclidean)

Undirected graph \((V, E)\)

\[
(\Delta f)_i \approx \sum_{(i,j) \in E} w_{ij}(f_i - f_j)
\]

Triangular mesh \((V, E, F)\)

\[
(\Delta f)_i \approx \frac{1}{a_i} \sum_{(i,j) \in E} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} (f_i - f_j)
\]

\(a_i = \text{local area element}\)

Tutte 1963; MacNeal 1949; Duffin 1959; Pinkall, Polthier 1993
Physical application: heat equation

\[f_t = -c \Delta f \]

Newton’s law of cooling: rate of change of the temperature of an object is proportional to the difference between its own temperature and the temperature of the surrounding

\[c \, [m^2/sec] = \text{thermal diffusivity constant} \, (\text{assumed} = 1) \]
A function \(f : [-\pi, \pi] \rightarrow \mathbb{R} \) can be written as Fourier series

\[
f(x) = \sum_{\omega} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega \xi} d\xi \quad e^{-i\omega x}
\]

\[
\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi, \pi])}
\]

Fourier basis = Laplacian eigenfunctions:

\[
\Delta e^{-i\omega x} = \omega^2 e^{-i\omega x}
\]
A function $f : [-\pi, \pi] \to \mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{\omega} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega \xi} d\xi \quad e^{-i\omega x}$$

$$\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi, \pi])}$$

$$= \alpha_1 + \alpha_2 + \alpha_3 + \ldots$$
Fourier analysis (Euclidean spaces)

A function \(f : [-\pi, \pi] \to \mathbb{R} \) can be written as Fourier series

\[
f(x) = \sum_{\omega} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\xi) e^{i\omega \xi} d\xi \quad e^{-i\omega x}
\]

\(\hat{f}(\omega) = \langle f, e^{-i\omega x} \rangle_{L^2([-\pi, \pi])} \)

\[
\begin{align*}
\text{Fourier basis} &= \text{Laplacian eigenfunctions: } \Delta e^{-i\omega x} = \omega^2 e^{-i\omega x} \\
&= \alpha_1 + \alpha_2 + \alpha_3 + \ldots
\end{align*}
\]
Fourier analysis (non-Euclidean spaces)

A function $f : X \to \mathbb{R}$ can be written as Fourier series

$$f(x) = \sum_{k \geq 1} \int_X f(\xi) \phi_k(\xi) d\xi \quad \phi_k(x)$$

$$\hat{f}_k = \langle f, \phi_k \rangle_{L^2(X)}$$

$$\phi_1 = \alpha_1 + \alpha_2 + \alpha_3 + \ldots$$

Fourier basis = Laplacian eigenfunctions: $\Delta_X \phi_k(x) = \lambda_k \phi_k(x)$
Convolution (Euclidean spaces)

Given two functions $f, g : [-\pi, \pi] \to \mathbb{R}$ their convolution is a function

$$(f \ast g)(x) = \int_{-\pi}^{\pi} f(\xi)g(x - \xi)\,d\xi$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator

$$f \ast g = F^{-1}(Ff \cdot Fg)$$

d’Alembert 1754; Borel 1899
Convolution (Euclidean spaces)

Given two functions $f, g : [-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$(f \ast g)(x) = \int_{-\pi}^{\pi} f(\xi)g(x - \xi)d\xi$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator

d’Alembert 1754; Borel 1899
Convolution (Euclidean spaces)

Given two functions $f, g : [-\pi, \pi] \rightarrow \mathbb{R}$ their convolution is a function

$$(f \ast g)(x) = \int_{-\pi}^{\pi} f(\xi)g(x - \xi)d\xi$$

Convolution Theorem: Fourier transform diagonalizes the convolution operator \Rightarrow convolution can be computed in the Fourier domain as

$$f \ast g = \mathcal{F}^{-1}(\mathcal{F}f \cdot \mathcal{F}g)$$

d’Alembert 1754; Borel 1899
Convolution (non-Euclidean spaces)

Generalized convolution of \(f, g \in L^2(X) \) can be defined by analogy

\[
(f \ast g)(x) = \sum_{k \geq 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)
\]
Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

$$(f \star g)(x) = \sum_{k \geq 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)$$

product in the Fourier domain

Not shift-invariant!

Represent filter in the Fourier domain

Problem: Filter coefficients depend on basis $\{\phi_k\}_{k \geq 1}$

⇒ does not generalize to other domains!

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

$$(f \ast g)(x) = \sum_{k \geq 1} \left\langle f, \phi_k \right\rangle_{L^2(X)} \left\langle g, \phi_k \right\rangle_{L^2(X)} \phi_k(x)$$

- Product in the Fourier domain
- Inverse Fourier transform

Shuman et al. 2013
Convolution (non-Euclidean spaces)

Generalized convolution of \(f, g \in L^2(X) \) can be defined by analogy

\[
(f \star g)(x) = \sum_{k \geq 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)
\]

- Not shift-invariant!

Shuman et al. 2013
Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

$$(f \ast g)(x) = \sum_{k \geq 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)$$

- Not shift-invariant!
- Represent filter in the Fourier domain

Convolution (non-Euclidean spaces)

Generalized convolution of \(f, g \in L^2(X) \) can be defined by analogy

\[
(f \star g)(x) = \sum_{k \geq 1} \left< f, \phi_k \right>_{L^2(X)} \left< g, \phi_k \right>_{L^2(X)} \phi_k(x)
\]

- **Not shift-invariant!**
- Represent filter in the Fourier domain
- Problem: Filter coefficients depend on basis \(\{ \phi_k \}_{k \geq 1} \)

Convolution (non-Euclidean spaces)

Generalized convolution of $f, g \in L^2(X)$ can be defined by analogy

$$(f \ast g)(x) = \sum_{k \geq 1} \langle f, \phi_k \rangle_{L^2(X)} \langle g, \phi_k \rangle_{L^2(X)} \phi_k(x)$$

- Not shift-invariant!
- Represent filter in the Fourier domain
- Problem: Filter coefficients depend on basis $\{\phi_k\}_{k \geq 1}$
 \Rightarrow does not generalize to other domains!

Convolution (non-Euclidean spaces)

Function f

Filtered function \tilde{f}

Henaff, Bruna, LeCun 2015
Convolution (non-Euclidean spaces)

Function f

Filtered function f

Same filter another shape

Henaff, Bruna, LeCun 2015
Heat diffusion on manifolds

\[
\begin{cases}
 f_t(x, t) = -\Delta_X f(x, t) \\
 f(x, 0) = f_0(x)
\end{cases}
\]

- \(f(x, t) \) = amount of heat at point \(x \) at time \(t \)
- \(f_0(x) \) = initial heat distribution
Heat diffusion on manifolds

\[
\begin{cases}
 f_t(x, t) = -\Delta_x f(x, t) \\
 f(x, 0) = f_0(x)
\end{cases}
\]

- \(f(x, t) = \text{amount of heat at point } x \text{ at time } t\)
- \(f_0(x) = \text{initial heat distribution}\)

Solution of the heat equation expressed through the heat operator

\[
f(x, t) = e^{-t\Delta_x} f_0(x)
\]
Heat diffusion on manifolds

\[
\left\{ \begin{array}{l}
 f_t(x, t) = -\Delta_X f(x, t) \\
 f(x, 0) = f_0(x)
\end{array} \right.
\]

- \(f(x, t) \) = amount of heat at point \(x \) at time \(t \)
- \(f_0(x) \) = initial heat distribution

Solution of the heat equation expressed through the heat operator

\[
f(x, t) = e^{-t\Delta_X} f_0(x) = \sum_{k \geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)
\]
Heat diffusion on manifolds

\[
\begin{aligned}
\left\{ \begin{array}{l}
 f_t(x, t) = -\Delta_X f(x, t) \\
 f(x, 0) = f_0(x)
\end{array} \right.
\end{aligned}
\]

- \(f(x, t) \) = amount of heat at point \(x \) at time \(t \)
- \(f_0(x) \) = initial heat distribution

Solution of the heat equation expressed through the heat operator

\[
f(x, t) = e^{-t\Delta_X} f_0(x) = \sum_{k \geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)
\]

\[
= \int_X f_0(\xi) \sum_{k \geq 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) \, d\xi
\]
Heat diffusion on manifolds

\[
\begin{aligned}
\left\{
\begin{array}{l}
 f_t(x, t) = -\Delta_x f(x, t) \\
 f(x, 0) = f_0(x)
\end{array}
\right.
\end{aligned}
\]

- \(f(x, t) \) = amount of heat at point \(x \) at time \(t \)
- \(f_0(x) \) = initial heat distribution

Solution of the heat equation expressed through the heat operator

\[
\begin{align*}
 f(x, t) &= e^{-t\Delta_x} f_0(x) = \sum_{k \geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x) \\
 &= \int_X f_0(\xi) \sum_{k \geq 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) \, d\xi \\
 &= \underbrace{\text{heat kernel } h_t(x, \xi)}
\end{align*}
\]
Heat diffusion on manifolds

\[
\begin{align*}
\left\{ \begin{array}{l}
 f_t(x, t) = -\Delta_X f(x, t) \\
 f(x, 0) = f_0(x)
\end{array} \right.
\]

- $f(x, t) =$ amount of heat at point x at time t
- $f_0(x) =$ initial heat distribution

Solution of the heat equation expressed through the heat operator

\[
f(x, t) = e^{-t\Delta_X} f_0(x) = \sum_{k \geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)
\]

\[
= \int_X f_0(\xi) \sum_{k \geq 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) \, d\xi
\]

- “impulse response” to a delta-function at ξ
Heat diffusion on manifolds

\[
\begin{aligned}
 f_t(x, t) &= -\Delta_X f(x, t) \\
 f(x, 0) &= f_0(x)
\end{aligned}
\]

- \(f(x, t) \) = amount of heat at point \(x \) at time \(t \)
- \(f_0(x) \) = initial heat distribution

Solution of the heat equation expressed through the heat operator

\[
f(x, t) = e^{-t\Delta_X} f_0(x) = \sum_{k \geq 1} \langle f_0, \phi_k \rangle_{L^2(X)} e^{-t\lambda_k} \phi_k(x)
\]

\[
\begin{aligned}
 &= \int_X f_0(\xi) \sum_{k \geq 1} e^{-t\lambda_k} \phi_k(x) \phi_k(\xi) \, d\xi \\
 &= \text{heat kernel } h_t(x, \xi)
\end{aligned}
\]

- “impulse response” to a delta-function at \(\xi \)
- “how much heat is transferred from point \(x \) to \(\xi \) in time \(t \)"
Heat kernels at different points (rows/columns of matrix $e^{-t\Delta x}$)
Autodiffusivity

Autodiffusivity = diagonal of matrix $e^{-t\Delta x}$

Related to Gaussian curvature by virtue of the Taylor expansion

$$h_t(x, x) \approx \frac{1}{4\pi t} + \frac{K(x)}{12\pi} + O(t)$$

Sun, Ovsjanikov, Guibas 2009
Spectral descriptors

\[f(x) = \sum_{k \geq 1} \begin{pmatrix} \tau_1(\lambda_k) \\ \vdots \\ \tau_Q(\lambda_k) \end{pmatrix} \phi_k^2(x) \]

Heat Kernel Signature (HKS)

\[\tau_i(\lambda) = \exp(-\lambda t_i) \]

Heat autodiffusivity

Wave Kernel Signature (WKS)

\[\tau_i(\lambda) = \exp\left(-\frac{(\log e_i - \log \lambda)^2}{\sigma^2}\right) \]

Band-pass filter bank

Probability of a quantum particle

Sun, Ovsjanikov, Guibas 2009; Aubry, Schlickewei, Cremers 2011