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Overview of the Tutorial – Morning

Lunch Break12.45 – 14.30

Daniel WeiskopfHigh-Level Shading Languages12.00 – 12.45

Martin KrausLow-Level Pixel Shader
Programming

11.30 – 12.00

Coffee Break11.00 – 11.30

Martin KrausLow-Level Vertex Shader
Programming

10.30 – 11.00

Thomas ErtlIntroduction to the Tutorial09.30 – 10.30
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Overview of the Tutorial – Afternoon

Joachim
Diepstraten

Advanced Shading Techniques14.30 – 15.15

Daniel WeiskopfFlow Visualization17.15 – 17.45

Manfred WeilerHardware-Based Volume Ray
Casting

16.30 – 17.15

Coffee Break16.00 – 16.30

Mike EißeleNon-Photorealistic Rendering15.15 – 16.00
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Interactive Computer Graphics

lighting
clipping

projection

modeling and
viewpoint

transformation

shading
texturing
occlusion

scene image

geometry processing rasterization

scene: polygonal objects (triangle mesh)
image: raster image of pixels (true color)

Interactive graphics:
- fast processing of the pipeline (>10 frames/s)
- in spite of high scene complexity (millions of triangles)
- realistic illumination effects and material properties
- use of hardware acceleration for geometry and rasterization
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Texturing

• Pasting of images onto geometry
• Assigning texture coordinates of the

image to vertices of the geometry
• For each pixel: bilinear interpolation from

surrounding texels
• Hardware acceleration provides texture

mapping without delay
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Multi-Textures

Light maps in Quake2

××××
(modulate)

=

Light Map Texture Decal Texture

Combine 2 textures onto scene geometry

Precomputed Illumination Surface Structure

http://www.eg.org
http://diglib.eg.org
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OpenGL Pipeline (by Kurt Akeley)
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Graphics Hardware Characteristics
• Performance characteristics

– Geometry: shaded triangles per second >> 10 Mio
– Rasterization: fill rate in pixels per second >> 100 Mio

• Computational requirements: geometry subsystem
– ca. 100 FLOPs per vertex (about 30 for T&L each)
– 10 Mio. triangles/s T&L performance need 3 GigaFLOPs

however only 500.000 triangles in the scene at 20 Hz!
• Computational requirements: raster subsystem

– >10 operations per pixel (without special texturing!)
– 100 MegaPixel/s fill rate need 1000 MIPS performance
– at 20Hz and 10 pixel/triangle: 500.000 tris per frame
– for a 1Kx1K frame buffer 5-fold overdraw of each pixel
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Graphics Hardware Trend 
• Faster development than Moore‘s law

– Double transistor functions every 6-12 months
– Driven by Game industry

• Improvement of performance and functionality
– Textures, Multi-textures, texture shaders
– Pixel operations (transparency, blending, pixel shaders)
– Geometry and lighting modifications (vertex shaders)
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Transistor Functions
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High-end Cards – Characteristics
Brand:
• Transistors
• Technology
• Clock rate
• Mem bandwidth
• Fill rate (peak)
• Pixel Pipelines
• Textures per Unit
• FSAA
• Bits per channel
• Tri transform (peak)
• Tris (3Dmark)
• Vertex shaders

ATI Radeon 9800 P
107 Mio
0.15 micron
380 MHz
22 GB/s
3 GigaPixel/s
8
8
6x 18 Gsample/s
10
380 Mio
19 Mio
4

Nvidia GeforceFX 5900 U
130 Mio
0.13 micron
450 MHz
27 GB/s
1.8/3.6 GigaPixel/s
4/8
16
4x 27 Gsample/s
10
315 Mio
28 Mio
4+

www.tomshardware.de
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20 Years of Graphics Hardware
• 1980s: Simple rasterization

(bitBLT, windows, lines, polygons, text fonts)
• 1990-95: Geometry engines only for high-end workstations

(e.g. SGI O2 vs. Indigo2)
• 1995: New rasterization functionality

(realism with textures) z.B: SGI Infinite Reality
• 1998: Geometry processing (T&L) for PC graphics cards
• 2000: PC graphics reaches high-end performance

numbers, 3D becomes PC standard
• 2001: PC graphics offers additional functionality

(multi-texturing, vertex and pixel shaders)
• 2003: Shading Languages: NVIDIA Cg, OpenGl 2.0, DX9

GPUs > 100 Mio. transistors, 8 Pipes and 16 texture units
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From Configuration to Programming

• Configurability:
Select hardware processing options by state changes
– T&L: various texture generation modes
– Rasterization: imaging subset
– Fragment processing: various blending modes

• Programmability:
Download small assembly programs to change hardware
behavior
– T&L: vertex shaders
– Rasterization: texture shaders
– Fragment processing: pixel and fragment shaders
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Programmable Processors (from NVIDIA Cg Manual)

• 2 or more programmable processors per GPU
• Fixed pipeline (with configuration) remains where no

flexibility is necessary (or possible)
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OpenGL 2.0 Pipeline (from 3Dlabs presentation)
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Vertex Shaders

• Programmable transformation & lighting
– Register architecture with up to 128 instructions
– Replaces standard transformation pipeline

and Phong lighting
– Special perspective projections (lens effects)
– Advanced lighting models
– Automatic generation of texture coordinates
– Procedural geometry, morphing, skinning, ...
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Scientific Visualization – Historic Examples

map, China 11th century

stream lines,
arrow plots:
Halley 1686

height fields:
census data,
Perozzo 1879

time series: planet inclination 10th century
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Modern Scientific Visualization

• Traditional plotting techniques are not appropriate for
visualizing the huge datasets resulting from
• computer simulations (e.g. CFD, physics, chemistry, ...)
• sensoric measurements (e.g. medical, seismic, satellite)

• Map abstract data onto graphical representations
• Try to use colorful 3D raster graphics in

• expressive still images
• recorded animations
• interactive visualizations

„To see the unseen“

„The purpose of computing is insight not numbers“
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sensors data basessimulation

raw data

vis data

renderable
representations

visualizations
images videos

geometry:

• lines

• surfaces

• voxels

attributes:

• color

• texture

• transparency

filter

render

map

interaction

visualization pipeline mapping – classification

1D

3D

2D

scalar vector tensor/MV

volume rend.
isosurfaces

height fields
color coding

stream
ribbons

topology
arrows

LIC
attribute
symbols

glyphs
icons

different grid types →→→→ different algorithms

3D scalar fields
cartesian

medical datasets

3D vector fields
un/structured

CFD

trees, graphs, tables,
data bases

InfoVis

Visualization – Pipeline and Classification
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Visualization – Examples

• Height fields
• Stream ribbons
• Isosurfaces
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Interactive Visualization of Huge Datasets

visualization
data

st
ee

rin
g

too much data too many cells too many triangles

CFD FE CT MR PET

simulation

raw data
renderable

representation
visualization

sensors

images

videos

filtering mapping rendering

geometry:

• lines

• surfaces

• voxels

attributes:

• color

• structure

• transparency

interactions

hierarchical
representations

mesh optimization

feature extraction

adaptive algorithms

polygon reduction

progressive
techniques

scene graph-
optimization

hardware
acceleration

Optimization of all steps of the visualization pipeline
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Graphics HW and Interactive Visualization
• First: Mapping generates polygonal geometry only,

colored, lighted and shaded
(e.g. isosurfaces, stream ribbons, glyphs)

• From 1995: Advanced rasterization functionality,
textures and transparency (e.g.LIC, volume rendering)

• From 2000: Multi-textures and register combiners
• From 2002: Texture shaders and vertex shaders
• In the future: Shading languages for visualization
• Trend: Graphics hardware on its way up through the

visualization pipeline towards the data

Images → Renderer ⇒ Mapper ⇒ Filter → Data
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Graphics HW and VIS Pipeline Stages

• Renderer
– Texture based techniques (3D textures, LIC, ...)
– Large textured terrain height fields

• Mapper
– Classification & transfer functions in volume rendering
– Integrate ray segments (in unstructured volumes)
– Integrate particle traces (in flow fields)
– Assign color and transparency for NPR

• Filtering
– Data filtering in graphics memory (e.g. wavelet)
– Compression/decompression (of textures)
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Prog. Graphics HW and VIS Applications

• End users of VIS still use classical Unix
workstations (no programmable graphics HW)

• VIS applications (pre- & post processing, toolkits,
MVEs) are cross-platform, use minimum funct.

• Texturing and transparency are „advanced“
• Exception: volume rendering

– Doctors can afford PCs, no Unix workstations
– Regular data structures profit most
– Improvements are significant
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Volume Visualization

• Abstract 3-dimensional datasets
• X-ray absorption in material
• humidity in the atmosphere
• density distribution in the earth

• Data often given on uniform 3D grid
millions of cells (voxel)

• Problem: occlusion
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Volume Visualization

• Focus on 3D scalar fields (e.g. medical data)
some concepts extend to non-cartesian grids, vector fields,...

• Isosurfaces
– reconstruction of polygonal surfaces with Marching Cubes
– fast rendering with OpenGL standard hardware
– non-interactive for huge datasets (millions of triangles)

• Direct volume rendering
– for each pixel send a ray into the volume
– sample volume along ray by interpolation
– semi-transparent blending along rays
– transfer functions for color and opacity provide

„segmentation“ of structures
– interactivity even for many trilinear interpolations

with hardware support (dedicated or 3D textures)

•

0s

s
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Volume Visualization of Medical Datasets

• 2D visualization
slice images
(MPR)

• Indirect
3D visualization
isosurfaces
(SSD)

• Direct
3D visualization
volume rendering
(DVR)
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Volume Rendering of Medical Datasets
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Different Transfer Functions
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Textures in CAE Visualization
• Color coding of scalar entities with

1D texture lookups
• Intrusion depth of crash-worthiness

simulationes
• Transparency for detecting

numerical instabilities
• Assembly of finite element models
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Wireframe Rendering by Textures
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Detection of Flanges – Transparent Texture
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Stack of Semi-transparent Slice Planes

• Transpareny reduces occlusion of irrelevant data
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Texture-based Flow Visualization

• LIC (Line Integral Convolution)
– Transfer directional information of a vector field into a

noise texture
– High correlation in the direction of stream lines, no

correlation orthogonal
– Global visualization method
– Computationally expensive, fast rendering
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Programming Graphics Hardware

Let`s jump into the details!


