
A-1

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Eurographics 2003
Tutorial T7

2. September 2003 

Programming Graphics Hardware 

Thomas Ertl

Institute of Visualization and Interactive Systems
University of Stuttgart

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Overview of the Tutorial – Morning

Lunch Break12.45 – 14.30

Daniel WeiskopfHigh-Level Shading Languages12.00 – 12.45

Martin KrausLow-Level Pixel Shader
Programming

11.30 – 12.00

Coffee Break11.00 – 11.30

Martin KrausLow-Level Vertex Shader
Programming

10.30 – 11.00

Thomas ErtlIntroduction to the Tutorial09.30 – 10.30

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Overview of the Tutorial – Afternoon

Joachim
Diepstraten

Advanced Shading Techniques14.30 – 15.15

Daniel WeiskopfFlow Visualization17.15 – 17.45

Manfred WeilerHardware-Based Volume Ray
Casting

16.30 – 17.15

Coffee Break16.00 – 16.30

Mike EißeleNon-Photorealistic Rendering15.15 – 16.00

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Interactive Computer Graphics

lighting
clipping

projection

modeling and
viewpoint

transformation

shading
texturing
occlusion

scene image

geometry processing rasterization

scene: polygonal objects (triangle mesh)
image: raster image of pixels (true color)

Interactive graphics:
- fast processing of the pipeline (>10 frames/s)
- in spite of high scene complexity (millions of triangles)
- realistic illumination effects and material properties
- use of hardware acceleration for geometry and rasterization

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Texturing

• Pasting of images onto geometry
• Assigning texture coordinates of the

image to vertices of the geometry
• For each pixel: bilinear interpolation from

surrounding texels
• Hardware acceleration provides texture

mapping without delay

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Multi-Textures

Light maps in Quake2

××××
(modulate)

=

Light Map Texture Decal Texture

Combine 2 textures onto scene geometry

Precomputed Illumination Surface Structure

http://www.eg.org
http://diglib.eg.org


A-2

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

OpenGL Pipeline (by Kurt Akeley)

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Graphics Hardware Characteristics
• Performance characteristics

– Geometry: shaded triangles per second >> 10 Mio
– Rasterization: fill rate in pixels per second >> 100 Mio

• Computational requirements: geometry subsystem
– ca. 100 FLOPs per vertex (about 30 for T&L each)
– 10 Mio. triangles/s T&L performance need 3 GigaFLOPs

however only 500.000 triangles in the scene at 20 Hz!
• Computational requirements: raster subsystem

– >10 operations per pixel (without special texturing!)
– 100 MegaPixel/s fill rate need 1000 MIPS performance
– at 20Hz and 10 pixel/triangle: 500.000 tris per frame
– for a 1Kx1K frame buffer 5-fold overdraw of each pixel

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Graphics Hardware Trend 
• Faster development than Moore‘s law

– Double transistor functions every 6-12 months
– Driven by Game industry

• Improvement of performance and functionality
– Textures, Multi-textures, texture shaders
– Pixel operations (transparency, blending, pixel shaders)
– Geometry and lighting modifications (vertex shaders)

time

pe
rf

or
m

an
ce

network

graphics CPU

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Transistor Functions

0

10

20

30

40

50

60

9/97 3/98 9/98 3/99 9/99 3/00 9/00 3/01

time (month/year)

tr
an

si
st

or
s

(M
io

)

Riva 128 (3M)

NVIDIA GeForce3 (57M) ATI Radeon 8500 (60M)

9/01 3/02

70

80

90

100
ATI Radeon 9700 Pro (110M)

NVIDIA GeForce FX 5800 (125M)

NVIDIA GeForce4 (63M)

9/02 3/03

110

120

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

High-end Cards – Characteristics
Brand:
• Transistors
• Technology
• Clock rate
• Mem bandwidth
• Fill rate (peak)
• Pixel Pipelines
• Textures per Unit
• FSAA
• Bits per channel
• Tri transform (peak)
• Tris (3Dmark)
• Vertex shaders

ATI Radeon 9800 P
107 Mio
0.15 micron
380 MHz
22 GB/s
3 GigaPixel/s
8
8
6x 18 Gsample/s
10
380 Mio
19 Mio
4

Nvidia GeforceFX 5900 U
130 Mio
0.13 micron
450 MHz
27 GB/s
1.8/3.6 GigaPixel/s
4/8
16
4x 27 Gsample/s
10
315 Mio
28 Mio
4+

www.tomshardware.de

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

20 Years of Graphics Hardware
• 1980s: Simple rasterization

(bitBLT, windows, lines, polygons, text fonts)
• 1990-95: Geometry engines only for high-end workstations

(e.g. SGI O2 vs. Indigo2)
• 1995: New rasterization functionality

(realism with textures) z.B: SGI Infinite Reality
• 1998: Geometry processing (T&L) for PC graphics cards
• 2000: PC graphics reaches high-end performance

numbers, 3D becomes PC standard
• 2001: PC graphics offers additional functionality

(multi-texturing, vertex and pixel shaders)
• 2003: Shading Languages: NVIDIA Cg, OpenGl 2.0, DX9

GPUs > 100 Mio. transistors, 8 Pipes and 16 texture units



A-3

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

From Configuration to Programming

• Configurability:
Select hardware processing options by state changes
– T&L: various texture generation modes
– Rasterization: imaging subset
– Fragment processing: various blending modes

• Programmability:
Download small assembly programs to change hardware
behavior
– T&L: vertex shaders
– Rasterization: texture shaders
– Fragment processing: pixel and fragment shaders

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Programmable Processors (from NVIDIA Cg Manual)

• 2 or more programmable processors per GPU
• Fixed pipeline (with configuration) remains where no

flexibility is necessary (or possible)

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

OpenGL 2.0 Pipeline (from 3Dlabs presentation)

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Vertex Shaders

• Programmable transformation & lighting
– Register architecture with up to 128 instructions
– Replaces standard transformation pipeline

and Phong lighting
– Special perspective projections (lens effects)
– Advanced lighting models
– Automatic generation of texture coordinates
– Procedural geometry, morphing, skinning, ...

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Scientific Visualization – Historic Examples

map, China 11th century

stream lines,
arrow plots:
Halley 1686

height fields:
census data,
Perozzo 1879

time series: planet inclination 10th century

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Modern Scientific Visualization

• Traditional plotting techniques are not appropriate for
visualizing the huge datasets resulting from
• computer simulations (e.g. CFD, physics, chemistry, ...)
• sensoric measurements (e.g. medical, seismic, satellite)

• Map abstract data onto graphical representations
• Try to use colorful 3D raster graphics in

• expressive still images
• recorded animations
• interactive visualizations

„To see the unseen“

„The purpose of computing is insight not numbers“



A-4

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

sensors data basessimulation

raw data

vis data

renderable
representations

visualizations
images videos

geometry:

• lines

• surfaces

• voxels

attributes:

• color

• texture

• transparency

filter

render

map

interaction

visualization pipeline mapping – classification

1D

3D

2D

scalar vector tensor/MV

volume rend.
isosurfaces

height fields
color coding

stream
ribbons

topology
arrows

LIC
attribute
symbols

glyphs
icons

different grid types →→→→ different algorithms

3D scalar fields
cartesian

medical datasets

3D vector fields
un/structured

CFD

trees, graphs, tables,
data bases

InfoVis

Visualization – Pipeline and Classification

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Visualization – Examples

• Height fields
• Stream ribbons
• Isosurfaces

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Interactive Visualization of Huge Datasets

visualization
data

st
ee

rin
g

too much data too many cells too many triangles

CFD FE CT MR PET

simulation

raw data
renderable

representation
visualization

sensors

images

videos

filtering mapping rendering

geometry:

• lines

• surfaces

• voxels

attributes:

• color

• structure

• transparency

interactions

hierarchical
representations

mesh optimization

feature extraction

adaptive algorithms

polygon reduction

progressive
techniques

scene graph-
optimization

hardware
acceleration

Optimization of all steps of the visualization pipeline

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Graphics HW and Interactive Visualization
• First: Mapping generates polygonal geometry only,

colored, lighted and shaded
(e.g. isosurfaces, stream ribbons, glyphs)

• From 1995: Advanced rasterization functionality,
textures and transparency (e.g.LIC, volume rendering)

• From 2000: Multi-textures and register combiners
• From 2002: Texture shaders and vertex shaders
• In the future: Shading languages for visualization
• Trend: Graphics hardware on its way up through the

visualization pipeline towards the data

Images → Renderer ⇒ Mapper ⇒ Filter → Data

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Graphics HW and VIS Pipeline Stages

• Renderer
– Texture based techniques (3D textures, LIC, ...)
– Large textured terrain height fields

• Mapper
– Classification & transfer functions in volume rendering
– Integrate ray segments (in unstructured volumes)
– Integrate particle traces (in flow fields)
– Assign color and transparency for NPR

• Filtering
– Data filtering in graphics memory (e.g. wavelet)
– Compression/decompression (of textures)

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Prog. Graphics HW and VIS Applications

• End users of VIS still use classical Unix
workstations (no programmable graphics HW)

• VIS applications (pre- & post processing, toolkits,
MVEs) are cross-platform, use minimum funct.

• Texturing and transparency are „advanced“
• Exception: volume rendering

– Doctors can afford PCs, no Unix workstations
– Regular data structures profit most
– Improvements are significant



A-5

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Volume Visualization

• Abstract 3-dimensional datasets
• X-ray absorption in material
• humidity in the atmosphere
• density distribution in the earth

• Data often given on uniform 3D grid
millions of cells (voxel)

• Problem: occlusion

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Volume Visualization

• Focus on 3D scalar fields (e.g. medical data)
some concepts extend to non-cartesian grids, vector fields,...

• Isosurfaces
– reconstruction of polygonal surfaces with Marching Cubes
– fast rendering with OpenGL standard hardware
– non-interactive for huge datasets (millions of triangles)

• Direct volume rendering
– for each pixel send a ray into the volume
– sample volume along ray by interpolation
– semi-transparent blending along rays
– transfer functions for color and opacity provide

„segmentation“ of structures
– interactivity even for many trilinear interpolations

with hardware support (dedicated or 3D textures)

•

0s

s

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Volume Visualization of Medical Datasets

• 2D visualization
slice images
(MPR)

• Indirect
3D visualization
isosurfaces
(SSD)

• Direct
3D visualization
volume rendering
(DVR)

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Volume Rendering of Medical Datasets

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Different Transfer Functions

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Textures in CAE Visualization
• Color coding of scalar entities with

1D texture lookups
• Intrusion depth of crash-worthiness

simulationes
• Transparency for detecting

numerical instabilities
• Assembly of finite element models



A-6

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Wireframe Rendering by Textures

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Detection of Flanges – Transparent Texture

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Stack of Semi-transparent Slice Planes

• Transpareny reduces occlusion of irrelevant data

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Texture-based Flow Visualization

• LIC (Line Integral Convolution)
– Transfer directional information of a vector field into a

noise texture
– High correlation in the direction of stream lines, no

correlation orthogonal
– Global visualization method
– Computationally expensive, fast rendering

VIS Group,
University of Stuttgart

Tutorial T7:
Programming Graphics Hardware

Introduction
Thomas Ertl

Programming Graphics Hardware

Let`s jump into the details!


