EUROGRAPHICS 2002

Tutorial TH1: More than RGB: Spectral Trends in Color Reproduction

Ian Bell, University of Waterloo Gladimir Baranoski, University of Waterloo

Published by The Eurographics Association ISSN 1017-4565

EUROGRAPHICS 2002

Saarbrücken, Germany September 2–6, 2002

EUROGRAPHICS THE EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS Organized by

Max-Planck-Institut für Informatik Saarbrücken, Germany

Universität des Saarlandes Germany

International Programme Committee Chairs

George Drettakis (France) Hans-Peter Seidel (Germany)

Conference Co-Chairs Frits Post (The Netherlands) Dietmar Saupe (Germany)

Tutorial Chairs Sabine Coquillart (France) Heinrich Müller (Germany)

Lab Presentation Chairs Günther Greiner (Germany) Werner Purgathofer (Austria)

Günter Enderle Award Committee Chair François Sillion (France)

John Lansdown Award Chair Huw Jones (UK)

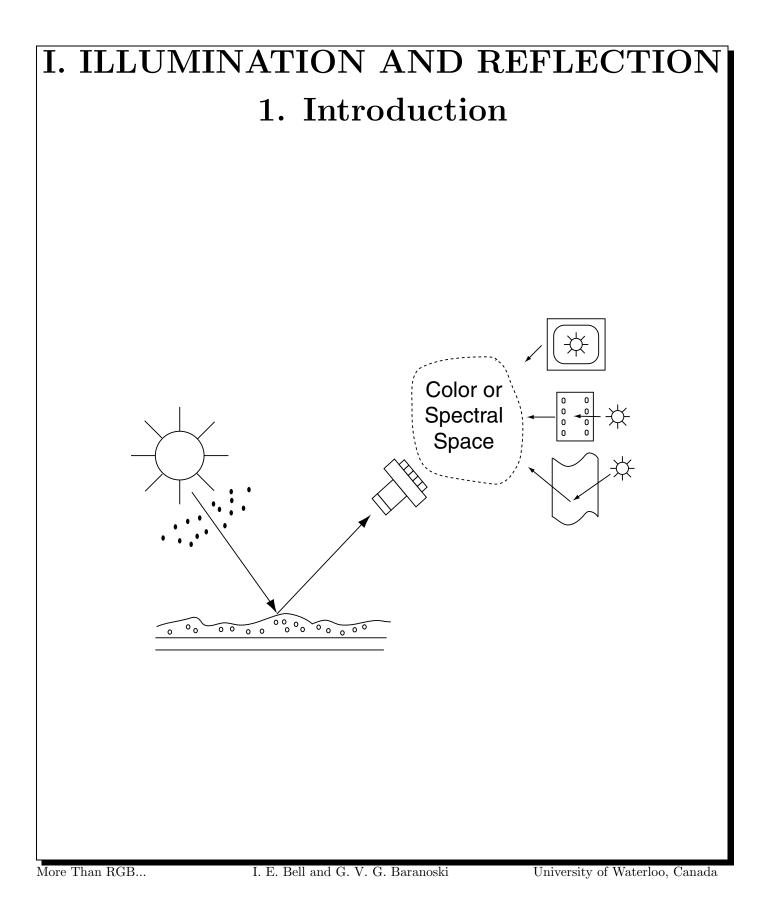
Short/Poster Presentation Chairs Isabel Navazo (Spain) Philipp Slusallek (Germany) Honorary Conference Co-Chairs Jose Encarnação (Germany) Wolfgang Straßer (Germany)

STAR Report Chairs Dieter Fellner (Germany) Roberto Scopignio (Italy)

Industrial Seminar Chairs Thomas Ertl (Germany) Bernd Kehrer (Germany)

Conference Game Chair Nigel W. John (UK)

Conference Director Christoph Storb (Germany)


Local Organization Annette Scheel (Germany) Hartmut Schirmacher (Germany)

More than RGB: Spectral Trends in Color Reproduction

Ian E. Bell and Gladimir V. G. Baranoski

Abstract

Early rendering algorithms relied exclusively on three-dimensional spaces for color computation, such as RGB and CIE XYZ. Recent rendering advances use full spectral information for illuminants and surfaces, resulting in much greater accuracy and realism. These expensive computations can be wasted, however, if *ad hoc* methods are used to adjust the final image on the monitor, in film, or in print. Inefficiency and inaccuracy can be avoided with some knowledge of device gamuts and color reproduction algorithms. This course follows spectral data through the graphics pipeline, examining issues of rendering, color science, perception, gamut mapping, and color management. We conclude with a discussion of trends and open problems in managing spectral data for accurate color reproduction. Participants will learn not only the theoretical background of color and spectral reproduction, but practical guidelines often omitted in technical papers.

Multispectral Management		
• spectral data from	1	
– measurement		
– models		
– simulation		
• directed to output	devices	
– monitor		
– printer		
– film recorder		
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	I. E. Den and G. V. G. Daranoski	University of Waterioo, Canada
	Adapting Color Managem	
conventional color	Adapting Color Managem	
	Adapting Color Managem	
• conventional color	Adapting Color Managem management tools	
• conventional color – device profiles	Adapting Color Managem management tools nent system	
 conventional color device profiles color manager gamut mappir 	Adapting Color Managem management tools nent system	ent
 conventional color device profiles color manager gamut mappir must adapt appro 	Adapting Color Managem management tools nent system ng	ent

I. ILLUMINATION AND REFLECTION

- 1. Introduction
- 2. Illumination
 - (a) Light as radiation
 - (b) Spectral power distributions
 - (c) Spectrophotometry
 - (d) Additive color
- 3. Reflection and Transmission
 - (a) Surface geometry
 - (b) Bidirectional reflection distribution functions (BRDFs)
 - (c) Illumination equations
 - (d) Subtractive color
 - (e) Linear models of spectra

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

II. SPECTRA AND PERCEPTION

- 1. Applications: Rendering with Spectral Data
 - (a) Physically-based rendering
 - i. The sky and the ocean
 - ii. Aurorae and nebulae
 - (b) Biologically-based rendering
 - i. Plants
 - ii. Human skin
 - (c) Art and archival imaging
- 2. Perceptual Response and Color
 - (a) Early color experiments
 - (b) Human visual system
 - (c) Trichromacy and color matching functions
 - (d) Color spaces
 - (e) Luminous efficiency and metamerism

III. THE VIRTUAL CAMERA AND DEVICES

- 1. Spectra through the Virtual Camera
 - (a) Lens effects, filters
 - (b) The virtual camera versus the digital camera
 - (c) Managing spectral data
 - (d) Principal components analysis (PCA)
 - (e) Linear reflectance spaces
- 2. Device Characterization and Gamuts
 - (a) Ideal characterization functions
 - (b) Characterization by model
 - (c) Device gamuts
 - (d) Spectral gamuts

More Than RGB...

I. E. Bell and G. V. G. Baranoski

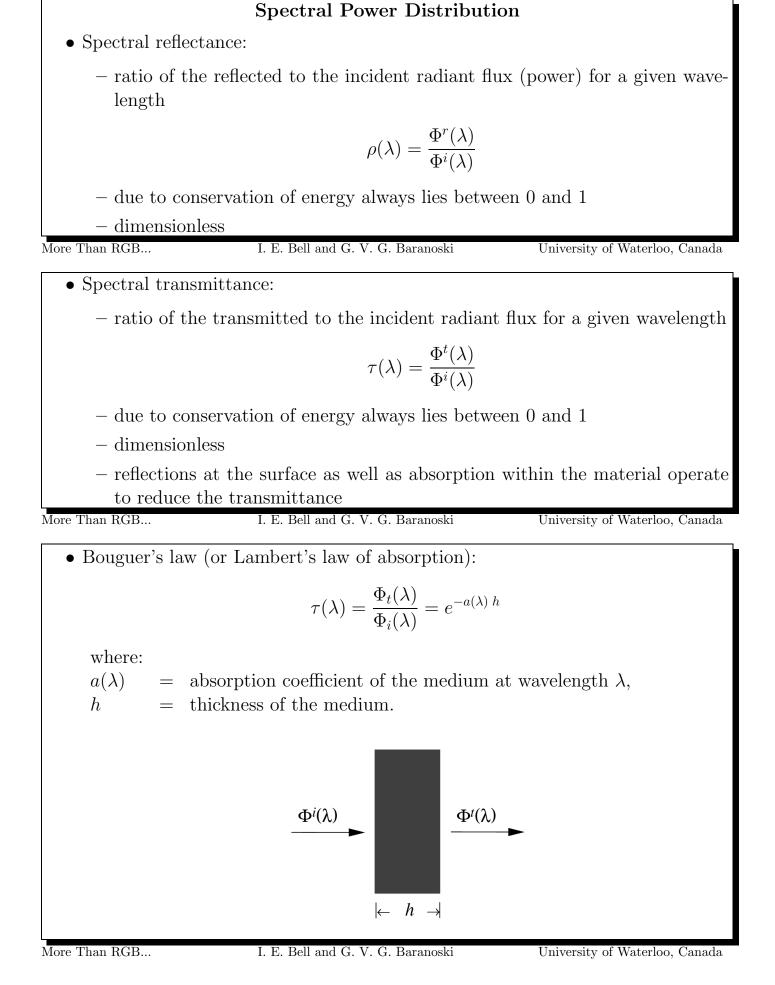
University of Waterloo, Canada

IV. GAMUT MAPPING AND COLOR MANAGEMENT

- 1. Gamut Mapping
 - (a) Characterization by Measurement
 - i. Look-up tables with interpolation
 - ii. Sequential linear interpolation
 - iii. Regression
 - iv. Other methods
 - (b) Gamut mapping
 - i. Black- and white-point mapping
 - ii. Out-of-gamut projection
 - iii. Gamut compression
 - iv. Geometric methods
- 2. Challenges in Multispectral Management
 - (a) Color management and ICC standards
 - (b) Working with spectral and high-dimensional data
 - (c) Open problems
- 3. Discussion

2. Illumination		
Light as Radiation		
• Dual nature of the light:		
- stream of particles (photons)		
- wave		
• Studies on the nature of light based on:		
– wave optics		
* polarization, interference and diffraction phenomena		
– geometrical or ray optics		
* particle-based transport theory		
– quantum optics		
\ast photon considered as a small, physically localized wave packet		
Iore Than RGB I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada		
- Light processes		

• Light processes:


М

- reflection: process in which light at a specific wavelength incident on a material is propagated outward by the material without a change in wavelength
- transmission: process in which light at a specific wavelength incident on the interface between materials passes through it without a change in wavelength
- absorption: process by which the light incident on a material is converted to another form of energy, usually to heat
- fluorescence: process by which light of one wavelength is reradiated, or propagated, at another (usually longer)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

• Spectral Pa	diamatria Quant	itiog		
	• Spectral Radiometric Quantities			
	- Radiant energy: $Q(J)$			
	* How much?			
– Radiant	- Radiant power or flux: $\Phi = \frac{dQ}{dt} (W)$			
* Wha	* What rate?			
– Radiant	– Radiant intensity: $I = \frac{d\Phi}{d\vec{\omega}} (W/sr)$			
* Wha	at rate in what di	irection?		
	radiometric quan d or on the dista	-	—	on the size of the object
More Than RGB	I. E. Bell	and G. V. G. Barance	oski	University of Waterloo, Canada
Radiance				
	$L(x,\psi,\lambda) = \frac{dI(x,\psi,\lambda)}{dA}$	$\frac{x,\psi,\lambda)}{4\cos\theta} = \frac{d^2\Phi(x)}{d\vec{\omega}dx}$	$\frac{x,\psi,\lambda)}{dA\cos\theta}$	$(\frac{W}{m^2 sr})$
$\begin{bmatrix} d_1 \\ d_2 \\ \theta \end{bmatrix}$	4 = di	adiant power at ngle between th afferential area s	x and in a ne normal ar surrounding	direction ψ , and the direction ψ ,
More Than RGB	I. E. Bell	and G. V. G. Barance	oski	University of Waterloo, Canada
	nt of appearance and surface finish		surements r	necessary to characterize
- Spectra	al distribution of	f the propagate	d light:	
* reflectance, transmittance and absorptance				
- Spatial distribution of the propagated light:				
* bidir simp • b	rectional surface oly BDF), which idirectional reflectional trans	e-scattering di can be decomp ctance-distribut	istribution oosed into: tion functior	n (BRDF)
More Than RGB	I. E. Bell	and G. V. G. Barance	oski	University of Waterloo, Canada

- Beer's law: states that for a dye solution, the absorption coefficient of the solution is directly proportional to its concentration
- Combining Bouguer's law and Beer's law:

$$\tau(\lambda) = e^{-a(\lambda) c h}$$

where:

 $a(\lambda)$ = absorption coefficient of the medium at wavelength λ ,

- c = concentration of the solution,
- h =thickness of the medium.

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

- Spectral absorptance:
 - ratio of the absorbed to the incident radiant flux for a given wavelength

$$\alpha(\lambda) = \frac{\Phi^a(\lambda)}{\Phi^i(\lambda)}$$

- dimensionless
- due to conservation of energy, for any given material the following relationship holds:

$$\rho(\lambda) + \tau(\lambda) + \alpha(\lambda) = 1$$

More Than RGB...

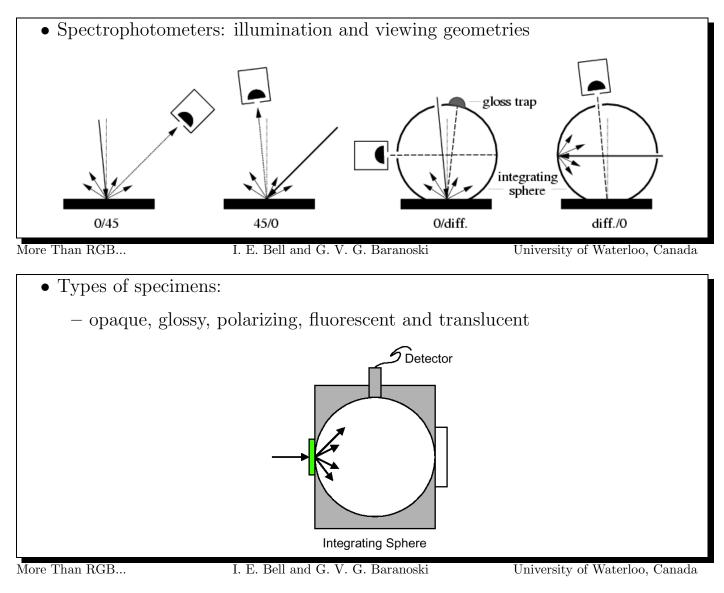
I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

• Spectral reflectance factor:

 ratio of the reflected flux from a surface to the flux that would have been reflected by a perfectly diffuse surface in the same circumstances

$$R(\lambda) = \frac{\Phi^r(\lambda)}{\Phi_{pd}(\lambda)}$$

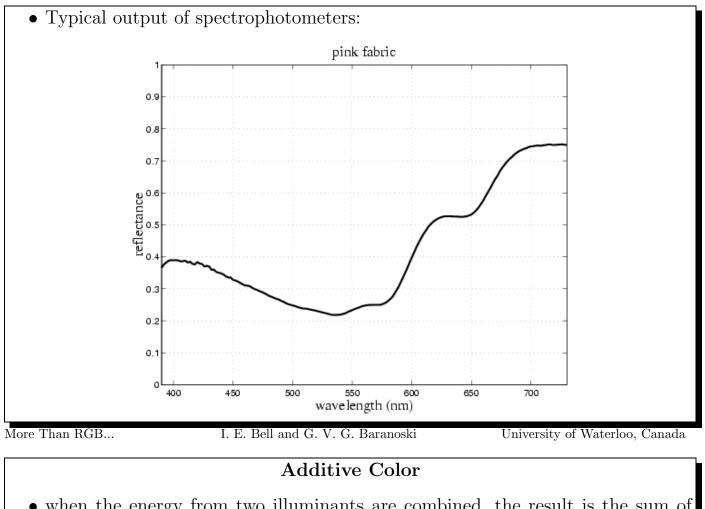

- due to conservation of energy always lies between 0 and 1

– dimensionless

More Than RGB...

I. E. Bell and G. V. G. Baranoski

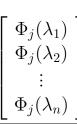
•]	Reflectance, transmittance	and reflectance factor de	epend on:	
	- the incident and propagation solid angles			
	* directional $(d\vec{\omega})$			
	* conical (Γ)			
	* hemispherical (Ω)			
	- the BDF of the surface			
	– polarization			
More T	-	ll and G. V. G. Baranoski	University of Waterloo, Canada	
	Types of reflectance, transmedent and propagation solid		factor according to the inci-	
	$dec{\omega}_i$	Γ_i	Ω_i	
$d\vec{\omega}$	Bidirectional	Directional-conical	Directional-hemispherical	
Г	Conical-directional	Biconical	Conical-hemispherical	
Ω	Hemispherical-directional	Hemispherical-conical	Bihemispherical	
	han RGB I. E. Be Directional hemispherical r	ll and G. V. G. Baranoski eflectance given by:	University of Waterloo, Canada	
	$\rho(x,\psi_i,2\pi,\lambda) = \int_{outgoing \psi} f_r(x,\psi_i,\psi,\lambda) \cos\theta d\vec{\omega}$			
	where: $f_r(x, \psi_i, \psi, \lambda) = \text{BRDF}$ of the surface at x , $\theta = \text{angle between the normal and the outgoing direction } \psi$, $d\vec{\omega} = \text{differential solid angle at which the radiance is reflected.}$			
More T	han RGB I. E. Be	ll and G. V. G. Baranoski	University of Waterloo, Canada	
	Spectrophotometry			
•]	• Instruments for measuring color attributes:			
	- Spectrophotometer			
	* measure spectral reflectance factor and spectral transmittance			
	 Reflectometer (colorimeter) 			
	× ×	ond to spectral distribu	ations of light in the same	


- Characteristics of spectrophotometers:
 - integrating sphere wall is the standard, $\it i.e.,$ wall reflectance is treated as unity
 - a gloss trap can be used to reduce the influence of the specular component of specimens with mixed reflection
 - precision is estimated by the ability of the device to replicate a measurement for a given specimen under same conditions

 \ast uncertainty: between 0.007 and 0.005

 accuracy is estimated by the ability of the device to provide the true reflectance and transmittance of a given specimen

More Than RGB...


I. E. Bell and G. V. G. Baranoski

• when the energy from two illuminants are combined, the result is the sum of their spectral power distributions

$$\Phi(\lambda) = \Phi_1(\lambda) + \Phi_2(\lambda)$$

- this is known as *additive mixing*
- modelling this property of light is possible with simple algebra
 - summing functions over wavelength, $\sum_{j} \Phi_{j}(\lambda)$
 - summing vectors sampling such functions, \sum_{j}

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Additive Color

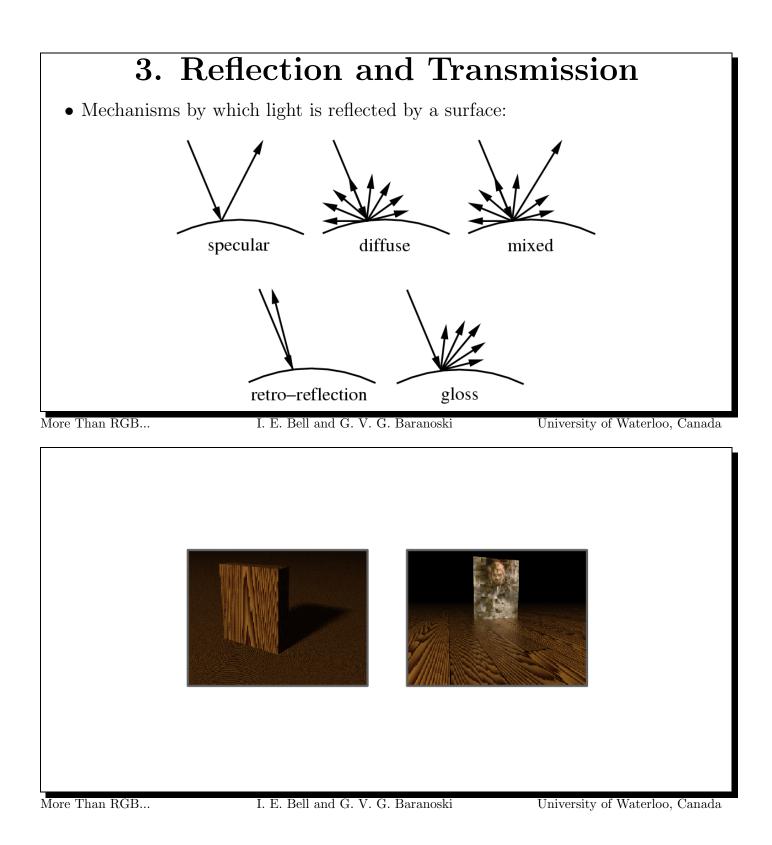
- the effect of additive mixture of light on the human visual system is also additive
- Grassman's Laws (1853) are the basis for *colorimetry* [found in many sources, Wyszecki and Stiles (1982), Hardeberg (2001)]
 - 1. Three independent variables are necessary and sufficient to psychophysically characterize a color.
 - 2. The result of an additive mixture of colored light depends only on the psychophysical characterization, and not on the spectral composition of the colors.
 - 3. If the components of a mixture of color stimuli are moderated with a given factor, the resulting psychophysical color is moderated with the same factor.

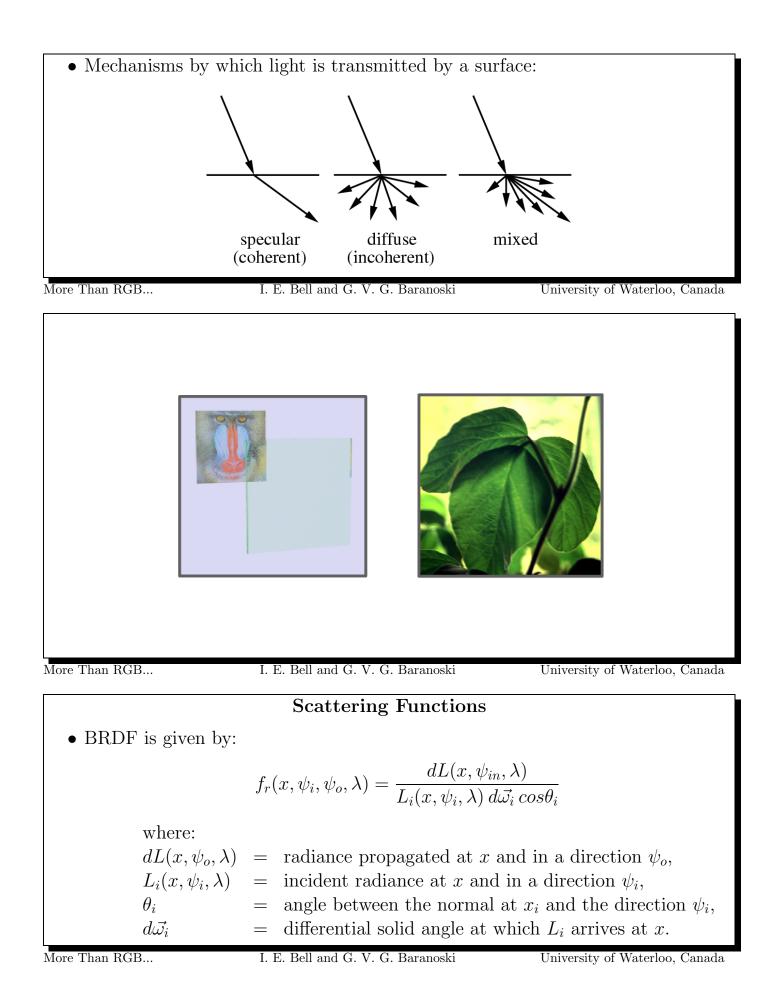
More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Additive Color

- Grassman's laws show that not only light but color can be treated with a vector space approach
- \bullet tristimulus spaces are three-dimensional vector spaces with a basis of primaries, such as ${\bf r},\,{\bf g},\,{\bf b}$
- a color stimulus **c** is then written as a linear combination of the primaries, $\mathbf{c} = R\mathbf{r} + G\mathbf{g} + B\mathbf{b}$
- if spectra are modeled with N-vectors, and color with 3-vectors, matrix algebra can be used to describe the interaction between spectral and color spaces

More Than RGB... I. E. Bell and G. V. G. Baranoski


Additive Color


- additive color principles support devices like monitors and televisions
 - small red, green, and blue phosphors, placed close together and excited by electron beams can take the appearance of a wide range of colors
- the same principle underlies electronic billboards
- half-toning in newspaper and magazine images is partly additive
- pointillistic painting techniques (Seurat, Pissarro, Signac)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

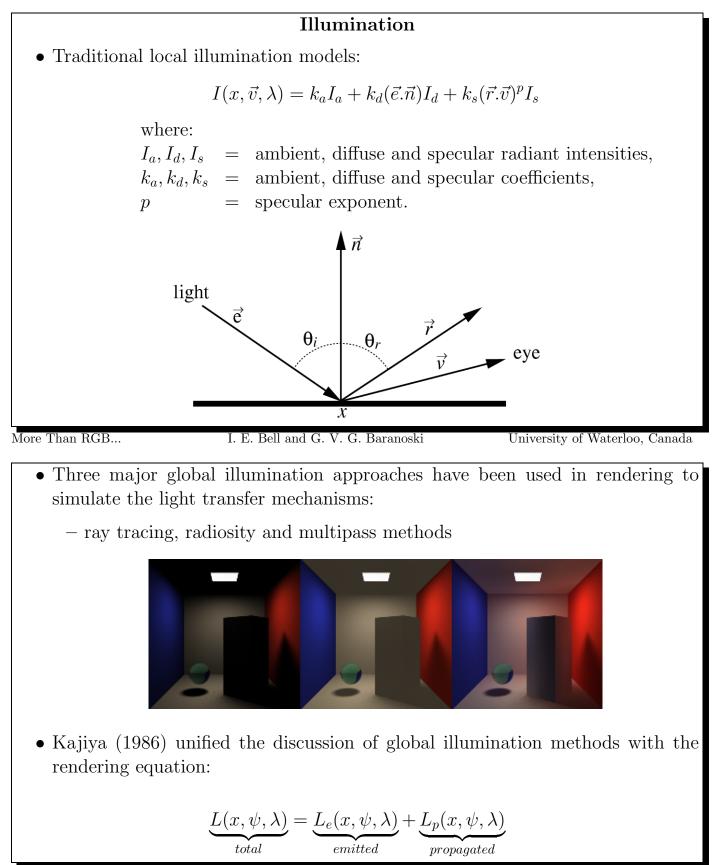
University of Waterloo, Canada

• SPF (scattering probability function) is given by:

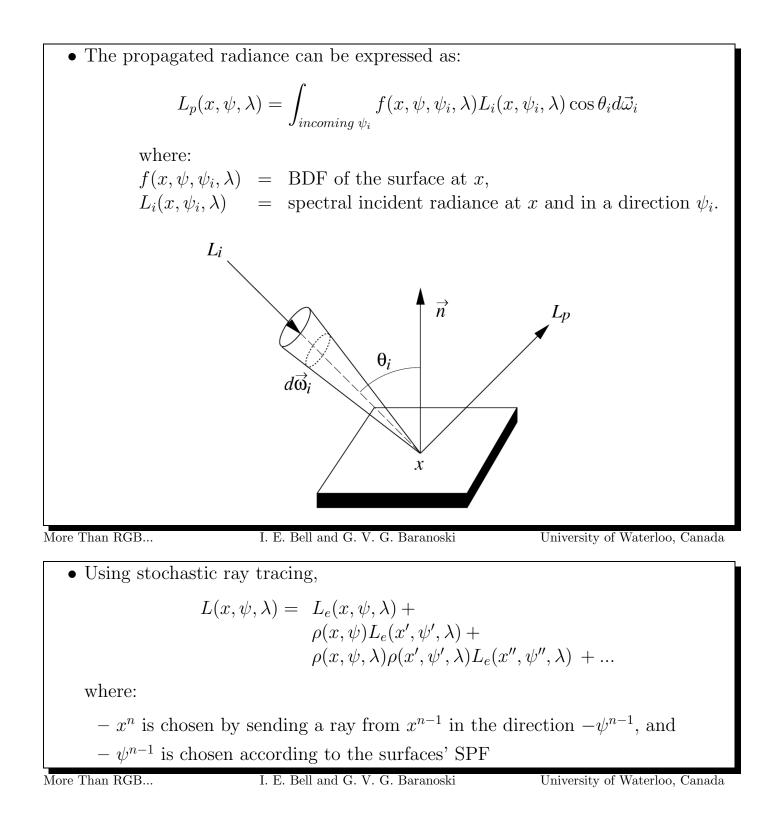
$$s(x, \psi_i, \psi_o, \lambda) = \frac{dI(x, \psi_o, \lambda)}{\rho(x, \psi_i, \lambda) d\Phi(x, \psi_i, \lambda)}$$

where:

 $dI(x, \psi_o, \lambda) =$ radiant intensity reflected at x and in a direction ψ_o , $\rho(x, \psi_i, \lambda) =$ reflectance of the surface at x,


 $d\Phi(x,\psi_i,\lambda)$ = radiant flux incident at x and in a direction ψ_i .

• BRDF and SPF have a simple relationship:


$$s = f_r C cos \theta_o$$

where C is the constant that enforces the unit area constraint for a probability density.

More Than RGB...I. E. Bell and G. V. G. BaranoskiUniversity of Waterloo, Canada• Energy conservation: $\rho(x, \psi_i, 2\pi, \lambda) = \int_{outgoing \psi} f_r(x, \psi_i, \psi_o, \lambda) \cos \theta d\vec{\omega} \leq 1, \quad \forall \psi_i$ • For a perfect diffuse surface: $f_r(x, \psi_i, \lambda) = \frac{\rho(x, \lambda)}{\pi}$ $s = \frac{\cos \theta_o}{\pi}$ I. E. Bell and G. V. G. BaranoskiUniversity of Waterloo, Canada

I. E. Bell and G. V. G. Baranoski

• Aspects often	omitted in rendering applications:		
- reflectance	e and transmittance positional depen	ndence	
- reflectance	– reflectance and transmittance angular dependence		
• Major limitat	ions of current rendering pipelines in	clude:	
– low resolu	tion spectral sampling due to:		
* lack of	f data		
* costly	algorithms		
– poor color	r management		
– unpredict	able color reproduction		
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada	
	Subtractive Color		
• the effect of il light with ene	luminant $\Phi(\lambda)$ striking a surface with ergy $\Phi(\lambda)\rho(\lambda)$	n reflectance $\rho(\lambda)$ is to reflect	
-	odel does not account for fluorescence handled separately	e, and the spatial distribution	
\bullet the absorption	n of light energy by the surface is sub	btractive	
• translucent fil passes throug	lters act in a similar way, absorbing h them	part of the light energy as it	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada	
	Subtractive Color		
	ive color can be modeled by addition lly multiplicative	in a vector space, subtractive	
	ters, in the simplest case the trans r of the illuminant to give $\Phi(\lambda)\tau(\lambda)$	mittance $\tau(\lambda)$ multiples the	
	in photographic sensitometry to int ngths to give a single number for tra		
	• an additive approach is possible by taking logarithms:		
– opacity is	the inverse of transmittance, $O = 1/2$	T	
	the logarithm of opacity, $D = \log_{10} C$		
	closely stacked can then be modeled		
	oproach is very useful, but ignores sca		
- the simple ap	readine , or aboran, but ignored bee		

Subtractive Color

- reflective surfaces can be thought of as one or more thin film layers on a substrate
- often scattering effects must be considered in the layers, and in the substrate
- considerably more complex to model than additive color
 - characterize by model
 - characterize by measurement

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Linear Models of Spectra

- spectral power distributions (SPDs) are continuous functions of wavelength $\Phi(\lambda)$
- measuring instruments like luminance meters have sensitivity $\sigma(\lambda)$, and return a single number $s = \int_{\mathcal{V}} \Phi(\lambda) \sigma(\lambda) d\lambda$
- more convenient to model with vectors that sample the continuous functions, so $\mathbf{s}=\sigma^t\phi$
- spectrophotometers then return multiple samples $s_i = \sigma_i^t \phi$, or in matrix form $\mathbf{s} = \mathbf{S}\phi$

More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Linear Models of Spectra

- spectrophotometers can sample at 10nm, 5nm, 2nm, or even 1nm intervals
- this can give as many as 300 samples in the visible spectrum
- remote sensing data may have thousands of samples, including the near infrared (NIR) and infrared (IR) regions
- it is often useful to reduce the amount of data by using a basis **B**, so that individual spectra can be written $\mathbf{s} = \mathbf{B}\mathbf{c}$ for some coefficient vector \mathbf{c}
- long vectors of spectral data can then be replace by the potentially shorter coefficient vectors

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Linear Models of Spectra

- choosing an appropriate basis **B** is usually carried out with *Principal Component* Analysis (PCA)
- one possible implementation is the singular value decomposition, (SVD)
- for restricted sets of spectra, and also for reflectances, the SVD yields a lowdimensional basis that approximates high-dimensional data well
- this approach can be used for
 - compression of the spectral data
 - filtering out noise
 - identifying the main axes of variation
- the best results are found by carefully choosing the spectra on which to perform the SVD

More Than RGB...

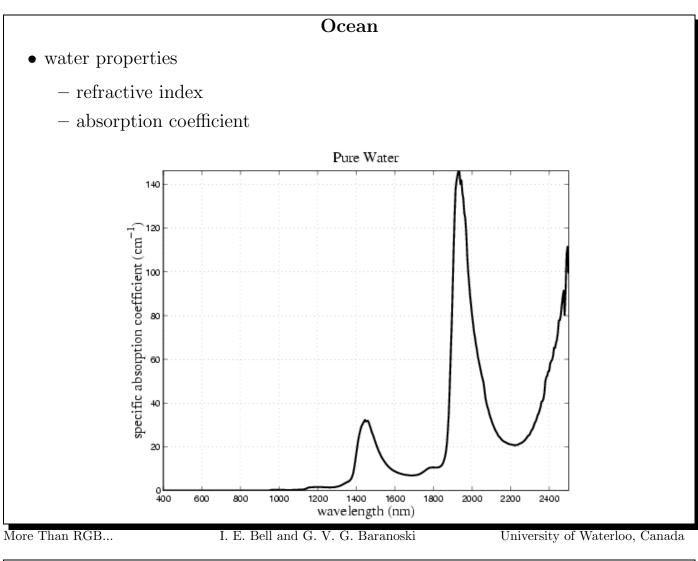
I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

II. SPECTRA AND PERCEPTION 1. Applications

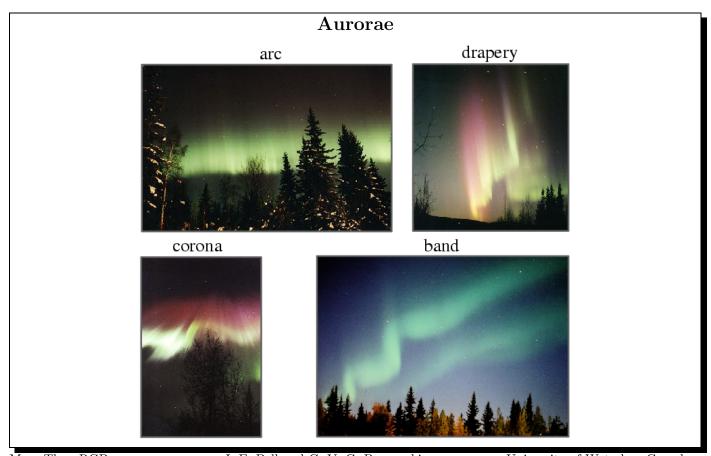
- Spectral distribution of light in Nature:
 - scattering
 - * Rayleigh
 - * Mie
 - * Reflective-refractive
 - absorption
 - emission
- Simulation:
 - physically and biologically-based rendering

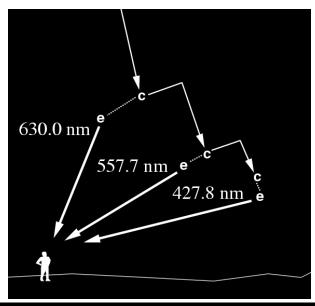
More Than RGB...


I. E. Bell and G. V. G. Baranoski

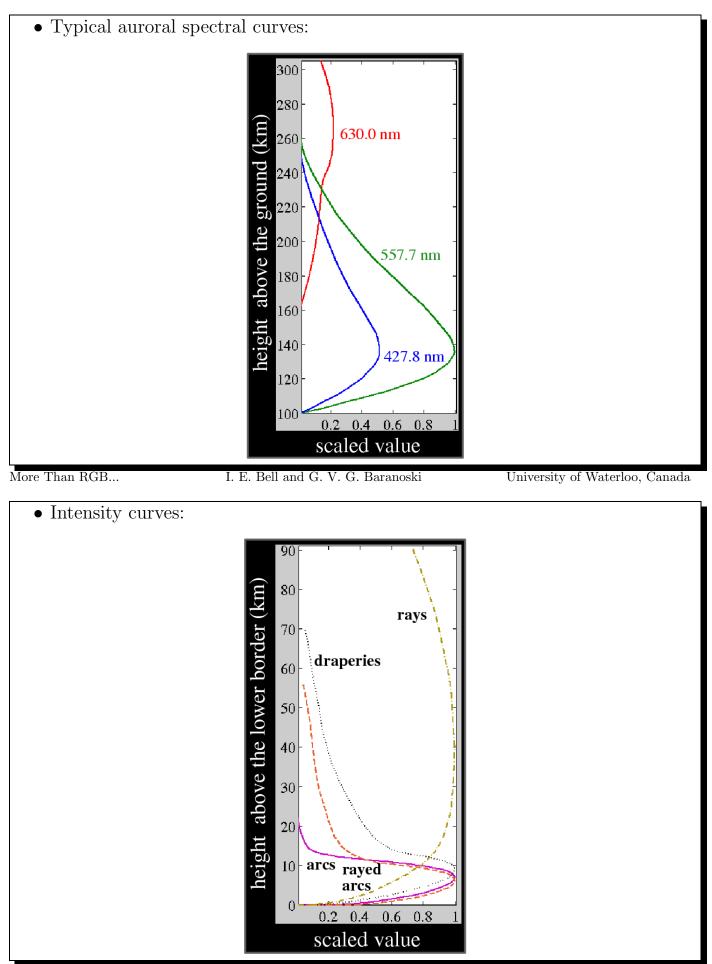
- Rayleigh scattering
 - gases $(O_2, N_2, \text{etc.})$: inversely proportional to wavelength (light in the blue region is preferentially scattered)
- Mie scattering
 - cloud cover: reflect a proportion of the blue wavelengths, but cause very little change in the long wavelengths (600 800nm)
 - haze or dust: reduction in the proportion of blue light and an increase in the proportion of red light
- Absorption
 - ozone
 - water

I. E. Bell and G. V. G. Baranoski

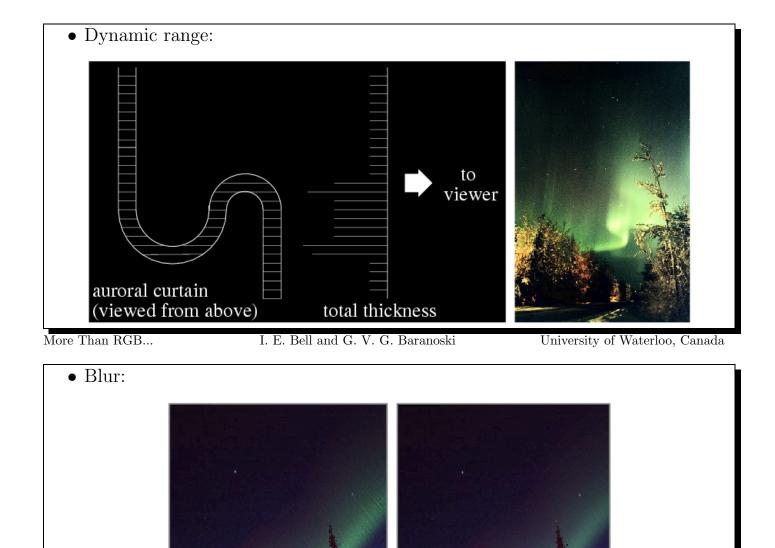

- Daylight
 - diffuse skylight (D-light)
 - * high proportion of blue light
 - direct sunlight (I-light)
- Related atmospheric phenomena:
 - purple light: scattering of light from stratospheric dust
 - * direct reddened sunlight combines with indirect blue scattered light to produce a purplish hue
 - rainbows: refraction of light by water droplets and ice


- particulate material
 - inorganic: weathering of terrestrial rocks and soils
 - colored dissolve matter (CDOM) or yellow matter
 - -organic: bacteria, phytoplankton and zooplankton
 - * Example: Emilianania huxleyi
 - · $\rho = 0.39$ at blue wavelengths (compared to $\rho = 0.02$ to 0.05 for typical ocean waters)
 - \cdot milky white or turquoise appearance
 - environmental conditions: incident radiance and bottom conditions

I. E. Bell and G. V. G. Baranoski



I. E. Bell and G. V. G. Baranoski


- A. J. Angstrom, "Spectrum des Nordlichts", 1869
- Strongest auroral spectral emissions:
 - atomic oxygen green line (delay 0.7s)
 - atomic oxygen red line (delay 110s)
 - ionized nitrogen blue band (delay 0.001s)
- Correlation with height

I. E. Bell and G. V. G. Baranoski

I. E. Bell and G. V. G. Baranoski

without local blurwith local blurMore Than RGB...I. E. Bell and G. V. G. BaranoskiUni

University of Waterloo, Canada

Nebulae

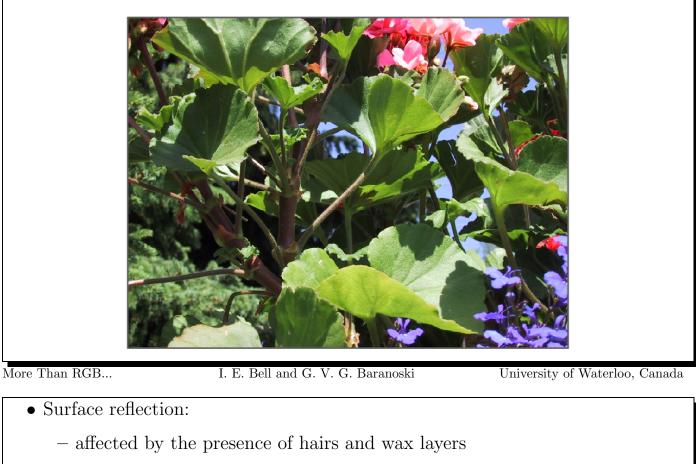
• Clouds of interstellar dust and gas within our own galaxy made visible by their interactions with nearby stars or star remnants.

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

- Types:
 - Emission nebulae: clouds of high temperature gas ionized by ultraviolet radiation

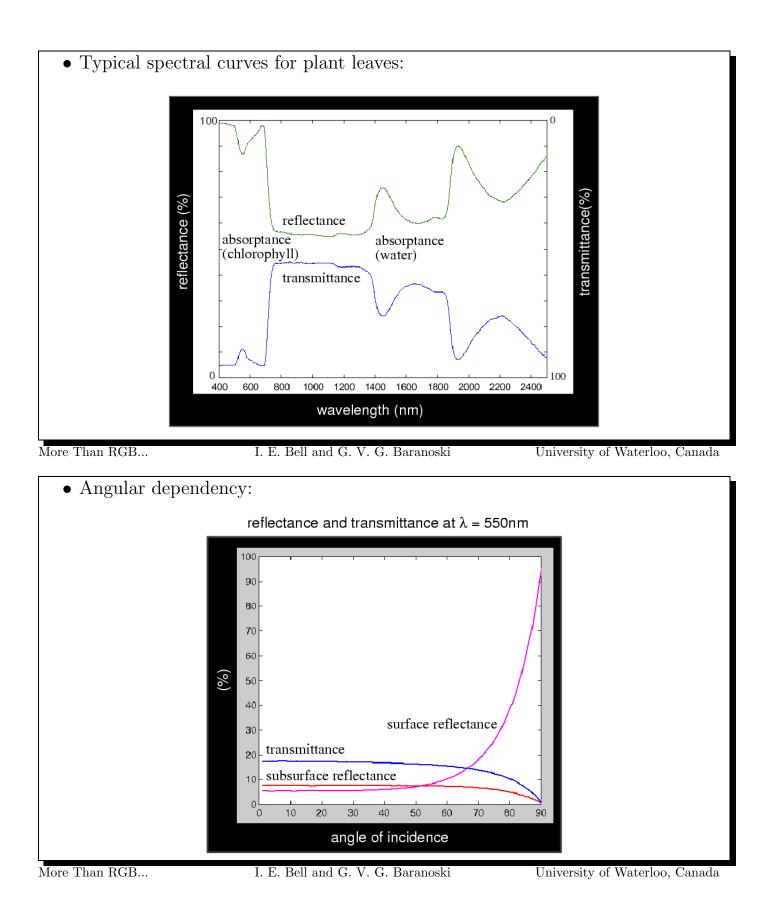

 \ast usually red due to the hydrogen spectral line 656nm

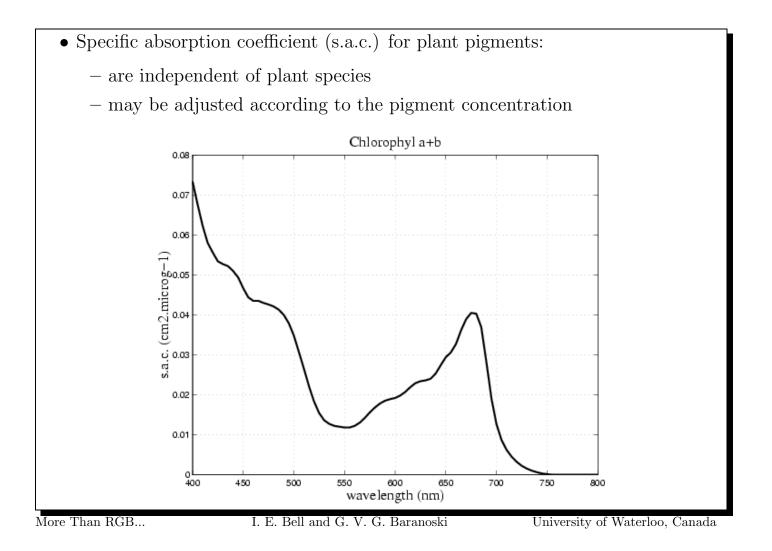
 Reflection nebulae: clouds of dust reflecting and scattering light from nearby stars

* usually blue because scattering is more efficient for blue light

- Planetary nebulae: ejected matter from a low mass star near the end of the star's life
 - * green "forbidden" lines of oxygen are stronger in these nebulae
- Supernova remnants: ejected matter from a high mass star near the end of the star's life
- Dark nebulae: clouds of dust blocking light

Plants

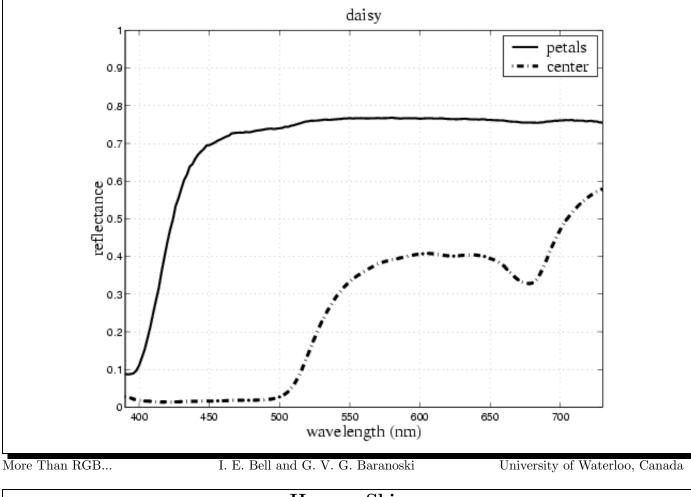



- Subsurface reflection and transmission
 - affected by the internal distribution of tissues
- Absorption

- affected by the presence of pigments (*e.g.*, chlorophyll), water and dry matter

More Than RGB...

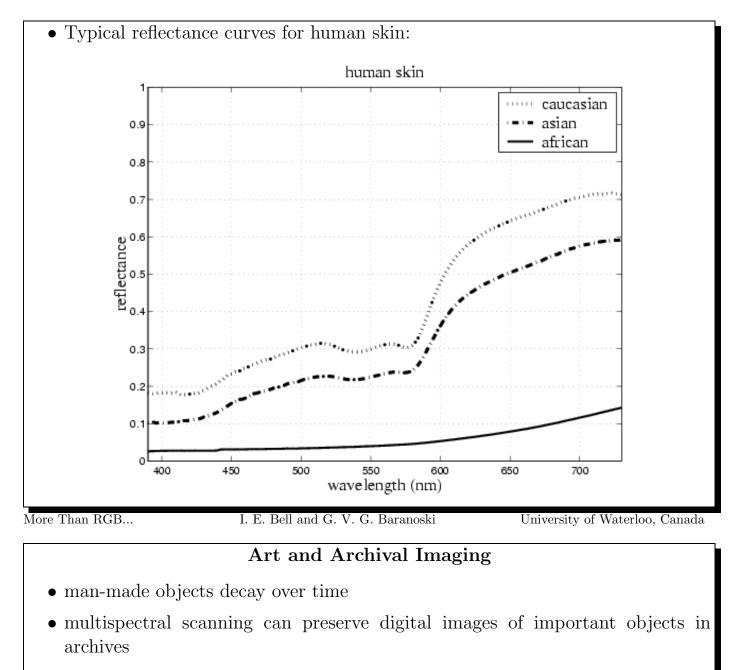
I. E. Bell and G. V. G. Baranoski


- Other pigments found in plant leaves:
 - carotenoids
 - * are usually red, orange, yellow or brown
 - \ast are associated with chlorophyll in the chloroplasts
 - \ast their yellow colors are evident in many autumn leaves

- xanthopylls (yellow pigments)
- anthocyanins (red and purple pigments)
- tannins (brown pigments)
- problems to determine their concentration

I. E. Bell and G. V. G. Baranoski

- Typical pigments found in flowers:
 - anthocyanins, carotenoids and UV-absorbing flavone
- Examples of reflectance curves for flowers:



Human Skin

- Surface reflection:
 - affected by the presence of hairs, oiliness and water content
- Subsurface reflection and transmission
 - affected by the internal distribution of tissues
- Absorption
 - affected by the presence of pigments (melanin, hemoglobin and carotene)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

- for analysis
- for reproduction
- scanning cameras can also be used to continuously monitor documents and works of art
- even two-dimensional objects present many challenges, as they not only have diffuse reflection, but gloss, surface texture, and so on

I. E. Bell and G. V. G. Baranoski

	Art and Archival Ima	ging
• multispectral cam filters	neras are usually monochroma	atic CCD cameras with various
• filters may be pla source and object		ra lens, or may be between light
• from 3 to 12 or m	nore filters are used	
• choosing the best channel informati		as must optimize the recorded
– the light sour	ce	
- the camera se	ensitivity	
- the object properties, eg. types of paint or ink		
fore Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Art and Archival Ima	ging
useful form, usual	—	nust be converted into a more
color or reflectance		nt to give an estimate of object
		nt to give an estimate of object errors can result from
	ce at each pixel ss and surface texture issues, e	
• even ignoring glos	ce at each pixel ss and surface texture issues, e nation	
• even ignoring glos – uneven illumi	ce at each pixel ss and surface texture issues, e nation alignment	
 even ignoring glos – uneven illumit – poor camera a – chromatic abe 	ce at each pixel ss and surface texture issues, e nation alignment	
 even ignoring glos – uneven illumit – poor camera a – chromatic abe 	ce at each pixel ss and surface texture issues, e nation alignment erration	
 even ignoring glos – uneven illumit – poor camera a – chromatic abe – registration of 	the at each pixel ss and surface texture issues, e nation alignment erration f multiple images (mosaicing)	

• but with enough channels, and carefully-chosen algorithms, fairly accurate image reconstruction is possible

More Than RGB...

I. E. Bell and G. V. G. Baranoski

2. Perceptual Response and Color light energy is physical color is *psychophysical*: partly from energy stimulating the cones in the retina partly from processing by the human visual system often easier to measure and predict the physical component psychophysical aspects of color perception include light adaptation and chromatic adaptation

- color constancy
- simultaneous contrast
- color appearance models attempt to characterize these qualities

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Light Adaptation and Chromatic Adaptation

- *light adaptation* is the change in the visual system to compensate for different intensities of illumination
- *chromatic adaptation* is the change in the visual system to compensate for different spectral power distributions of illumination

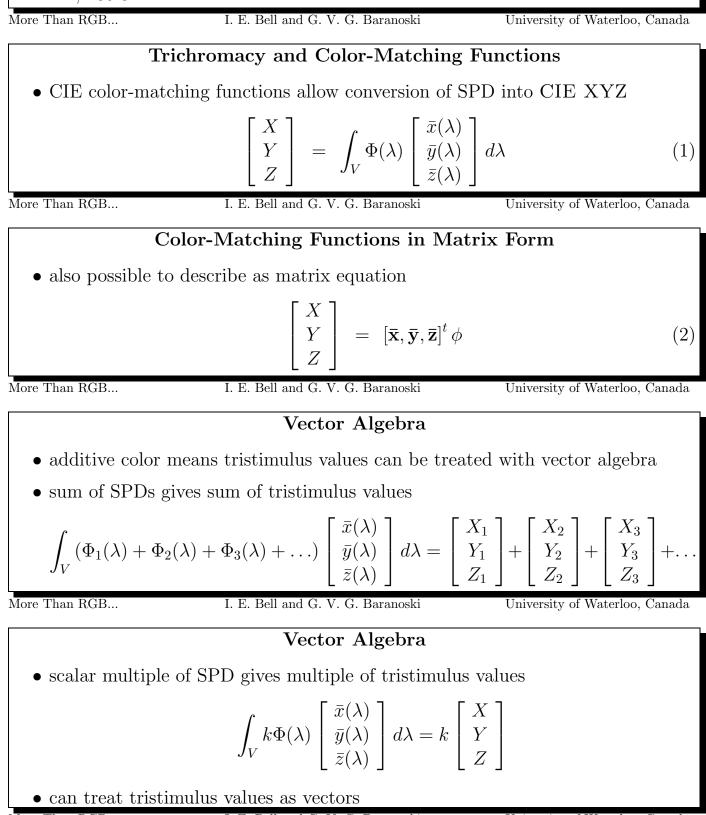
re Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Color Constancy	
	y is the tendency of a object to ap and colors of illumination	opear the same color under
•	anana appears yellow in sunlight, flu n under strongly colored illumination	
- if the bane	ana under different illuminants is ex	amined in isolation radical

 if the banana under different illuminants is examined in isolation, radical color shifts are seen

 \bullet the human visual system tends to factor out the overall illumination

More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Simultaneous Contrast


	Simultaneous Contrast	
_	<i>ontrast</i> is the tendency of a object to to its surround	take on a hue and lightness
• interaction bet	ween cones in the retina	
• boundaries bet	ween colored regions are enhanced	
– Mach band	ing	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Early Color Experiments	5
1	riments showed that white light coupus series of colors called the <i>spectrum</i>	1 0 1
- color a pro	perty of the light, not the objects	

- Maxwell quantified the wave aspects of light for electromagnetism
- Grassman's Laws showed the three-dimensional aspects of color
- Maxwell's color matching experiments demonstrated that most target colors could be matched by the additive combination of three primary light sources
- adding one of the primaries to the target allowed all colors to be matched
 - effectively subtraction of one primary from the others
- linear combinations of three primaries can match any target color

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Human Visual System	
• light energy pas	ses through the lens of the eye to the	he <i>retina</i>
• the retina conta	ins	
- the blind spe	ot, where the optic nerve passes to	the brain
- the <i>fovea</i> , w	here <i>cone photoreceptors</i> are concer	ntrated
- rod photored	reptors	
• rods are more se	ensitive to low levels of light, <i>scotop</i>	pic vision
• the cones are m	ore sensitive in daylight, $photopic \ v$	vision
	y responsible for color vision, and g, Medium, and Short wavelengths	· · ·

Commission Internationale de l'Eclairage (CIE)

- defined CIE Standard Observer color-matching functions in 1931 called $\bar{x}(\lambda), \bar{y}(\lambda), \bar{z}(\lambda)$
- result of color-matching experiments using three light sources at 700 nm, 546.1 nm, 435.8 nm

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Chromaticity Values

- due to light adaptation, is often convenient to separate *luminance* Y from remaining color information, *chrominance*
- CIE chromaticity values x and y are defined by

$$x = \frac{X}{X + Y + Z} \tag{3}$$

$$y = \frac{Y}{X + Y + Z} \tag{4}$$

$$z = \frac{Z}{X + Y + Z} \tag{5}$$

$$= 1 - x - y \tag{6}$$

- \bullet plots on the chromaticity or *horseshoe diagram* inherit vector space properties
- note *spectrum locus* for monochromatic colors

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Perceptually Uniform Space	ces
• many other dev	vice-independent 3D color spaces exi	ist
• CIE LAB was	created to be a <i>perceptually uniform</i>	m space
– Euclidean d	listance corresponds to perceived co	lor difference
• in fact is only p	oseudo-uniform	
• nominal white p	point $[X_n, Y_n, Z_n]^t$ becomes $[100, 0, 0]$	$]^t$ in CIE LAB
• this white-point	t mapping adjusts for light adaptati	ion
	n CIE XYZ to CIE LAB factors : ystem to luminance	in nonlinear response of the

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Perceptually Uniform Spaces

• conversion from CIE XYZ to CIE LAB is given by [from Hardeberg 2001]:

$$L^* = 116f(Y/Y_n) - 16 \tag{7}$$

$$a^* = 500 \left[f(X/X_n) - f(Y/Y_n) \right]$$
(8)

$$b^* = 200 \left[f(Y/Y_n) - f(Z/Z_n) \right]$$
(9)

where

$$f(\alpha) = \begin{cases} \alpha^{1/3}, & \alpha \ge 0.008856\\ 7.787\alpha + 16/116, & otherwise \end{cases}$$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Just Noticeable Differences

- Euclidean distance in CIE LAB measures color difference
- this distance measure is called $\Delta E_{ab}(1976)$ or ΔE
- a ΔE of 1.0 is often considered a Just-Noticeable Difference (JND) between two colors placed side-by-side
- there remains much debate about the correct value of ΔE to make a JND
- there is also a ΔE_{94} standard (1994)

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

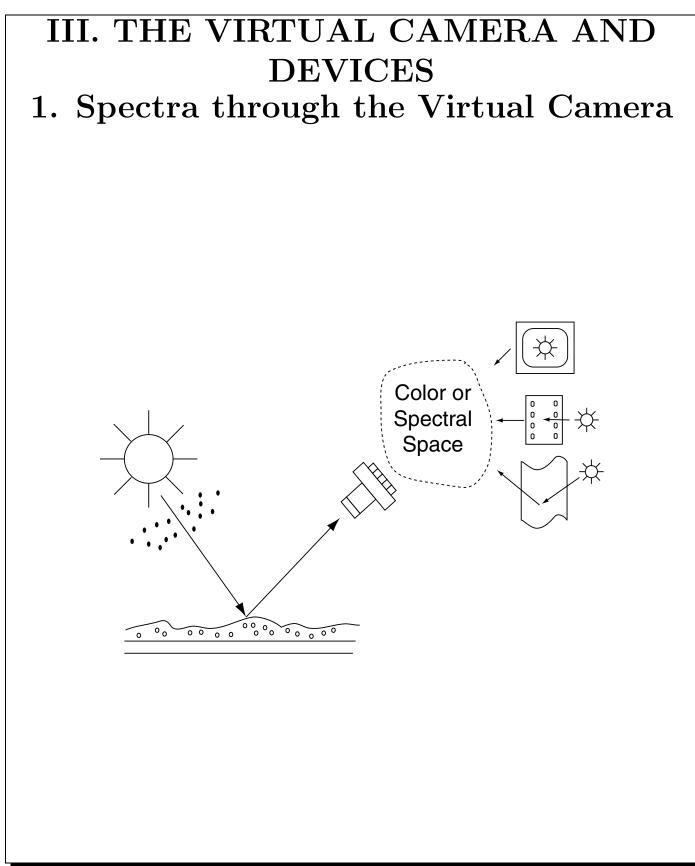
Luminous Efficiency and Metamerism

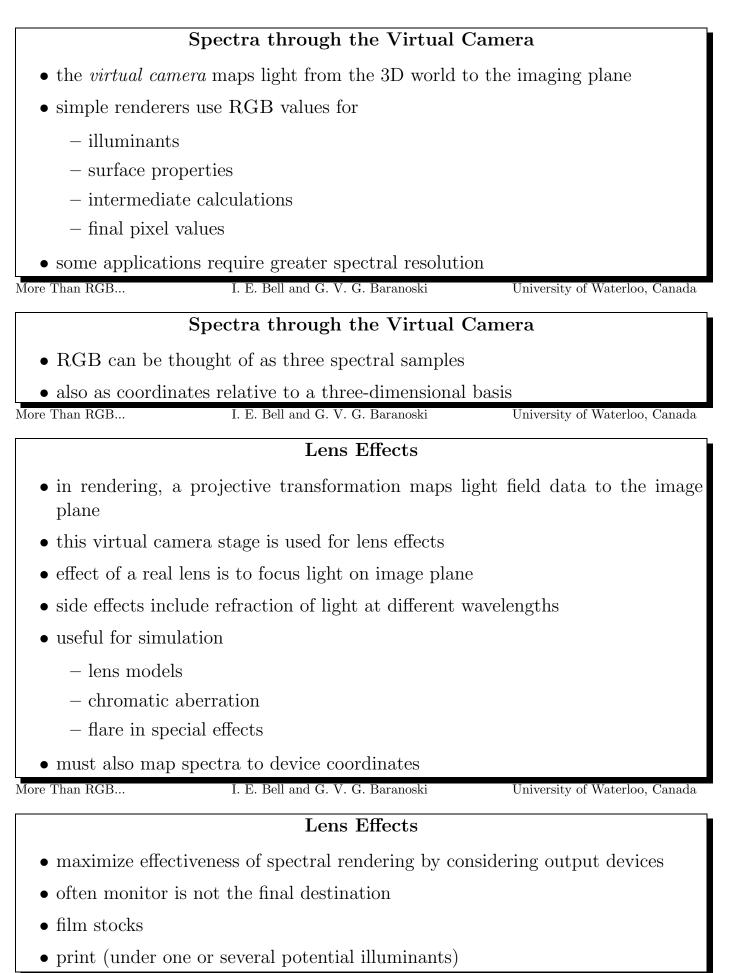
- photopic observer has spectral luminous efficiency (or efficacy), $V(\lambda)$
- scotopic observer $V'(\lambda)$ shifted towards blue, Purkinje shift
- can compute response to illuminant $\Phi(\lambda)$ with

$$\int_V \Phi(\lambda) V(\lambda) d\lambda$$

• quantities making use of $V(\lambda)$ involve the term *luminous*

More Than RGB...


I. E. Bell and G. V. G. Baranoski


Metamerism

- spectra have no color
- continuous spectra form an infinite-dimensional space
- three types of human receptors (cones)
- mapping is many-to-one
- there may be many spectra giving the same color sensation
- \bullet phenomenon is called metamerism
- \bullet spectra that are equivalent to black under a given illuminant are called $metameric\ blacks$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

I. E. Bell and G. V. G. Baranoski

	Filters	
• in theatre, pho- ing effects	otography and film, filters are importa	ant to creating specific light-
• RGB values p	oorly simulate light filtration	
• with spectral r	endering, more accurate rendering is	s possible
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Filters	
• easy to manip tance	ulate the entire image by multiplyin	g spectra by filter transmit-
– Bouguer's	Law (or Lambert's law of absorption	1)
• this allows bal	ancing for appropriate film stock	
• can also manip	oulate individual lights	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Virtual Camera vs Digital Ca	amera
• digital camera	similar to virtual camera	
• light enters len	ns, strikes image plane	
• is rasterized in	to array of pixels	
– digital can RGB for e	neras often use RGGB array with int each pixel	terpolation, rather than true
– more expe	nsive cameras use the full array	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Virtual Camera vs Digital Ca	amera
• digital camera	s suffer from some defects	
– linearity of	f array makes high dynamic range im	naging difficult
– dark curre	nt noise	
– blooming i	n CCD array	
• can avoid thes	e artifacts in virtual camera	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

	Managing Spectral Data	1
• spectral data	usually treated as a vector	
• more specification	ally, array of coordinates relative to so	ome basis
• how many dir	mensions are needed?	
• how to choose	e basis?	
• how much pro	ecision is needed in coordinates?	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Managing Spectral Data	ı
• multispectral	cameras exist	
– usually m	onochrome CCD cameras with many	filters
-16 or more	e channels	
• spectrophotor	neters can give 1 nm samples: 300 di	mensions
• very costly to pixel	maintain high-resolution images with	h this much information per
• used for speci	alized image archiving, research	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Managing Spectral Data	ì
• prefer instead	to have sensible spectral basis	
havin for		
- basis for	typical application reflectances	
	typical application reflectances typical application illuminants	
- basis for t		oth shape, few high frequen-
basis for ttypical reflect	typical application illuminants	oth shape, few high frequen- University of Waterloo, Canada
 basis for t typical reflect cies 	typical application illuminants ances, transmittances often have smo	University of Waterloo, Canada
 basis for t typical reflect cies 	typical application illuminants ances, transmittances often have smo I. E. Bell and G. V. G. Baranoski Principal Component Anal	University of Waterloo, Canada
 basis for t typical reflect cies More Than RGB statistical tec 	typical application illuminants ances, transmittances often have smo I. E. Bell and G. V. G. Baranoski Principal Component Anal	University of Waterloo, Canada ysis
 basis for t typical reflect cies More Than RGB statistical tec used for many 	typical application illuminants ances, transmittances often have smo I. E. Bell and G. V. G. Baranoski Principal Component Anal ; hnique	University of Waterloo, Canada ysis
 basis for t typical reflect cies More Than RGB statistical tec used for many can be used for 	typical application illuminants ances, transmittances often have smo I. E. Bell and G. V. G. Baranoski Principal Component Anal ; hnique y applications where principal axes of	University of Waterloo, Canada ysis variance are required

Principal Component Analysis

- singular value decomposition of matrix $M_{m \times n}$ gives
 - $-U_{m \times m} S_{m \times n} V_{n \times n}^t = M_{m \times n}$

- columns of orthogonal $U_{m \times m}$ are eigenvectors of symmetric MM^t

- columns of orthogonal $V_{n \times n}$ are eigenvectors of symmetric $M^t M$

 $-S_{m \times n}$ is matrix with general diagonal entries w_i , the singular values of M

More Than RGB...

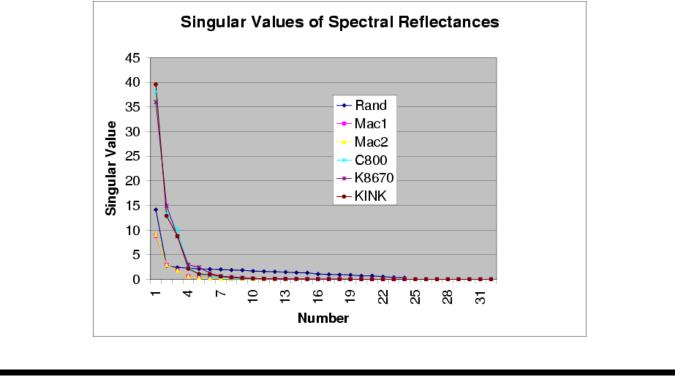
I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Principal Component Analysis

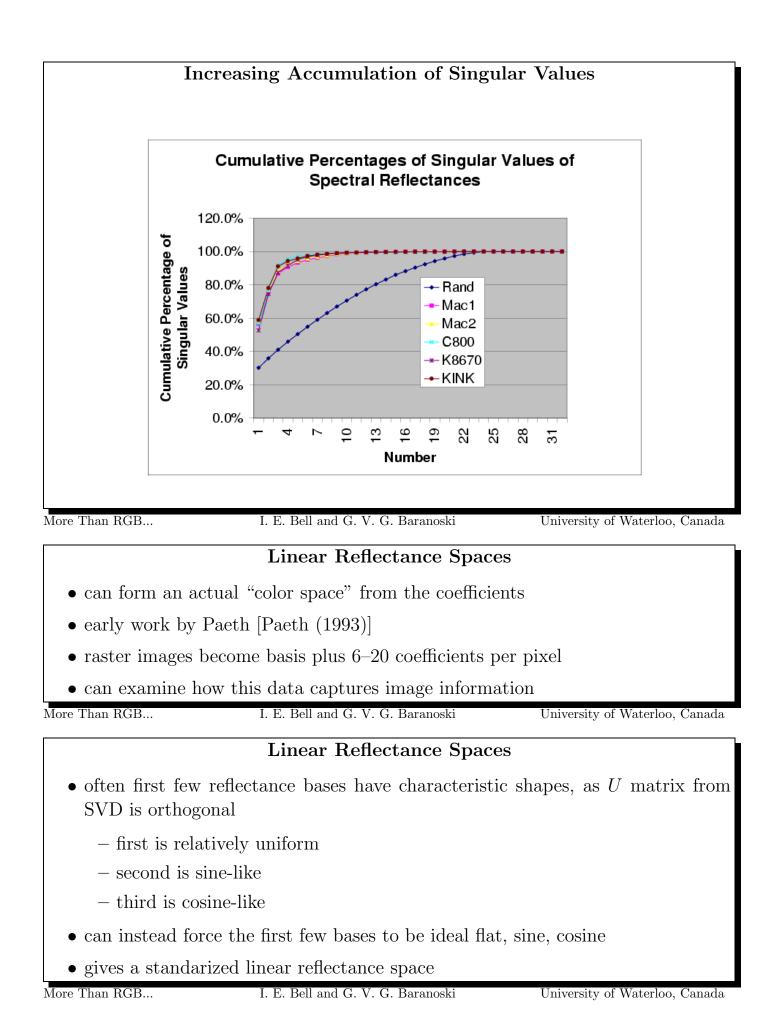
- axes are determined in order of significance
- \bullet diagonal entries of S decrease, and reveal how much variation is accounted for in each axis
- can use columns of U as basis
- for natural reflectances, there is debate over how many bases are sufficient: it depends on the application
- \bullet 6 often account for at least 95% of the variation

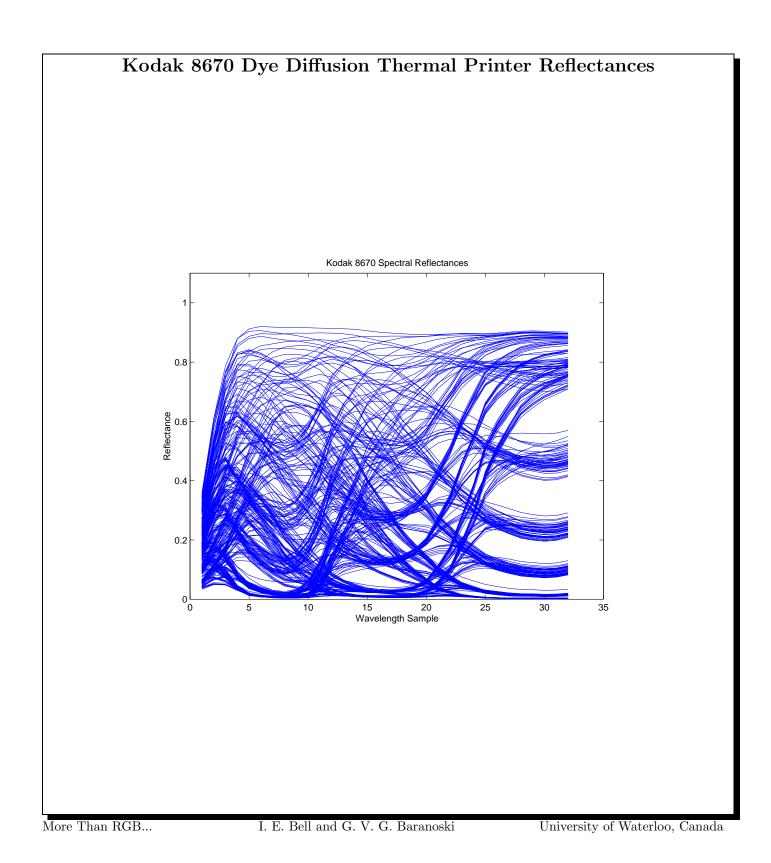
- can add singular values to determine total contribution


• up to 20 or more are used

More Than RGB...

I. E. Bell and G. V. G. Baranoski


Decreasing Singular Values


- 1. Random reflectances
- 2. Macbeth color checker (1)
- 3. Macbeth color checker (2)
- 4. Canon CLC800 laser printer
- 5. Kodak 8670 dye diffusion thermal printer
- 6. Kodak inkjet printer

More Than RGB...

I. E. Bell and G. V. G. Baranoski

I. E. Bell and G. V. G. Baranoski

2. Device Characterization and Gamuts

- most devices have analog components with continuous behavior
 - electron guns in monitor
 - dye diffusion system, ink jets in printer
 - optoelectronic components in scanner, digital camera
- device inputs/outputs usually have discrete behaviour
 - monitor, scanner, camera RGB
 - printer CMY, CMYK or RGB
- model discrete or continuous behavior?

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Ideal Characterization Functions

- can measure analog properties of devices (necessary to build them), but inconvenient generally
- instead take discrete measurements
- assume these measurements sample a continuous function that models device behavior
 - is reasonable approach, due to analog device components
 - expect continuous and smooth device behaviour between samples
 - if not, device will be unpopular
- \bullet never actually access the continuous behavior, due to discrete channels of device
- watch for quantization issues

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Ideal Characterization Functions

- assuming underlying smooth function is convenient mathematically
 - can analyze behaviour of vector field, $f: \mathcal{R}^3 \to \mathcal{R}^3$
 - can differentiate to get Jacobian
 - can choose sensible interpolants based on local smoothness
 - can invert with some hope of efficiency, robustness
- what is the ideal characterization function?
- what operations are needed with the functions?

Using Characterization Functions: Evaluation

- for an output device, have mapping $f: \mathcal{D}_O \to \mathcal{C}$
- \mathcal{D}_O is domain of output device
- \mathcal{C} is colour space
- function evaluation predicts or *proofs* device behavior
- building functions of this type involves characterization by model, or by measurement and interpolation
 - fairly straightforward
 - don't usually need to evaluate function at out-of-gamut points (eg negative RGB)
 - challenge is efficiency

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Using Characterization Functions: Inversion

- output device characterization is usually *inverted*, however
- want $f^{-1}: \mathcal{C} \to \mathcal{D}_O$
- inverse function answers question: how to output color c?
- characterization function should do more than fit device data, should also be easy to invert
- must first check that device measurements are well-behaved
 - is the device behavior inherently invertible?
 - quantization, device noise may suggest not
- may prefer invertibility of characterization over accurate data fitting

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Using Characterization Functions: Composition • for *color management*, must ship color data between devices • characterize monitor with $f_M : \mathcal{D}_M \to \mathcal{C}$ • characterize printer with $f_P : \mathcal{D}_P \to \mathcal{C}$ • to proof printer colors on monitor, want system characterization $f = f_M^{-1} \circ f_P : \mathcal{D}_P \to \mathcal{D}_M$ • to print monitor colors accurately, want system characterization $f = f_P^{-1} \circ f_M : \mathcal{D}_M \to \mathcal{D}_P$ • need *composition* of characterization functions More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada Using Characterization Functions: Gamut Mapping • may not want exact colorimetric reproduction between devices - devices have different *qamuts* - *qamut mapping* may be necessary to adjust colors to suit new device, new viewing environment - preserve user's rendering intent

- the gamut mapping is also applied by composition
 - to print monitor colors with gamut mapping g, want system characterization $f = f_P^{-1} \circ g \circ f_M : \mathcal{D}_M \to \mathcal{D}_P$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Using Characterization Functions: Projection

- one remaining difficulty: may want to output colors device can't handle
- such colors are outside the device gamut: *out-of-gamut colors*
- for an output device, characterization function $f: \mathcal{D}_{\mathcal{O}} \to \mathcal{C}$
- have inverse characterization function $f^{-1}: \mathcal{C} \to \mathcal{D}_O$
- usually try to have $f \circ f^{-1} \equiv I$ and $f^{-1} \circ f \equiv I$
 - tricky in practice due to quantization errors and numerical problems
 - must be especially careful at gamut edges
- inverse function can't always handle colors outside range of f
- need separate *projection* function to project out-of-gamut colors onto or into the device gamut

More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Using Characterization Functions: Projection

- projection often slower than optimized evaluation or inversion
- prefer to work on unique image colors (not do expensive calculation for each pixel)
- many projection approaches
 - clipping out-of-gamut colors to gamut edge versus compressing all colors
- makes representation of exterior of gamut very important

More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Using Characterization Functions: Summary

- operations on characterization functions include
 - evaluation
 - inversion
 - composition
- \bullet additional function of projection
- \bullet essentially want an algebraic group of functions
 - group has functions $\{f\}$ as elements, composition (\circ) as binary operation
 - domain and range of functions must be identical (\mathcal{R}^3 will do)
 - group has closure (functions are one-to-one and onto)
 - projection is method of forcing closure
- group concept is theoretically attractive, hard to ensure in practice

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
Linear Characterization Functions		
• best possible m	nodel is linear: $f(\vec{x}) = M\vec{x}$	
 infinitely di 	ifferentiable	
– efficient to	evaluate	
- easy to inve	ert (if invertible matrix)	
- composition	$n \rightarrow product of invertible matrices$	
* extreme	ly efficient: multiple operations con	npress to one matrix
– if functions	map all of \mathcal{R}^3 , no need for projection	ion
– actually do	have a group	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

	Monitor Characterization Fun	oction
\bullet never quite ha	we ideal linear model in practice	
• monitor chara	cterization is close	
• but limited ra	nge of RGB awkward	
• mapping normalized RGB to normalized XYZ is one way of ensuring closure:		
– domain, ra	ange of f now unit cube	
– nonlineari	ty swept under carpet by LUTs	
— use norma	lization factors to return to reality	
• other devices	are unfortunately not so well-behaved	l
• piecewise lines	ar approaches are possible	
fore Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
С	haracterization by Model: CRT	Monitors
• cathode ray to	lbes (CRTs)	
\bullet same technolo	gy as color television	
- red, green	, blue phosphors on screen	
– phosphors	excited by R, G, B electron guns	
– phosphor	luminance proportional to gun voltag	e to some power
fore Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	CRT Monitors	
\bullet frame buffer –	\rightarrow display [from Berns (2000)]	
	$R_{lin} = \left[k_{g,r}\left(\frac{RLUT[d_r]}{d_{max}}\right) + k\right]$	$\left[\delta_{O,r}\right]^{\gamma_r}$
\bullet frame buffer h	olds d_r for red channel	
• for 8-bit channel \bullet	nels $d_{max} = 255$	
\bullet red gain and ϕ	offset, $k_{g,r}$ and $k_{o,r}$	
• gamma γ_r		
\bullet result is linear	fized R_{lin} value, if RLUT is built corre	ectly
• similar equation	ons for G_{lin} and B_{lin}	
• can use matrix	x to convert $R_{lin}, G_{lin}, B_{lin}$ to CIE XY	Z
Iore Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

CRT Monitors

• attempt to build RLUT, GLUT, BLUT so as to compensate for gamma

• curve is to the power $1/\gamma$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

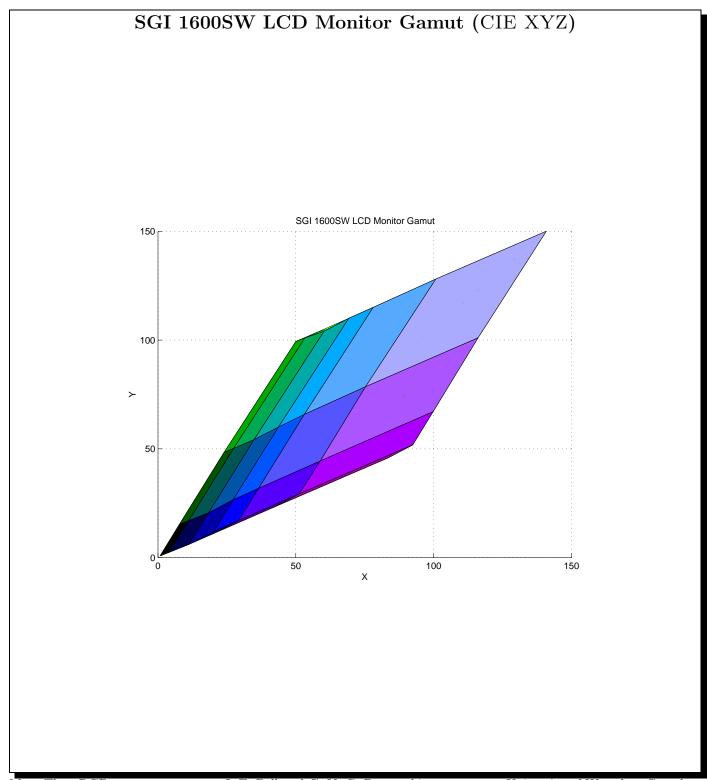
Monitor Metamerism

- note that matching monitor XYZ to object XYZ is risky
 - viewing conditions are often different
 - there is considerable metamerism with monitor
- could use larger matrix to convert to spectral representation

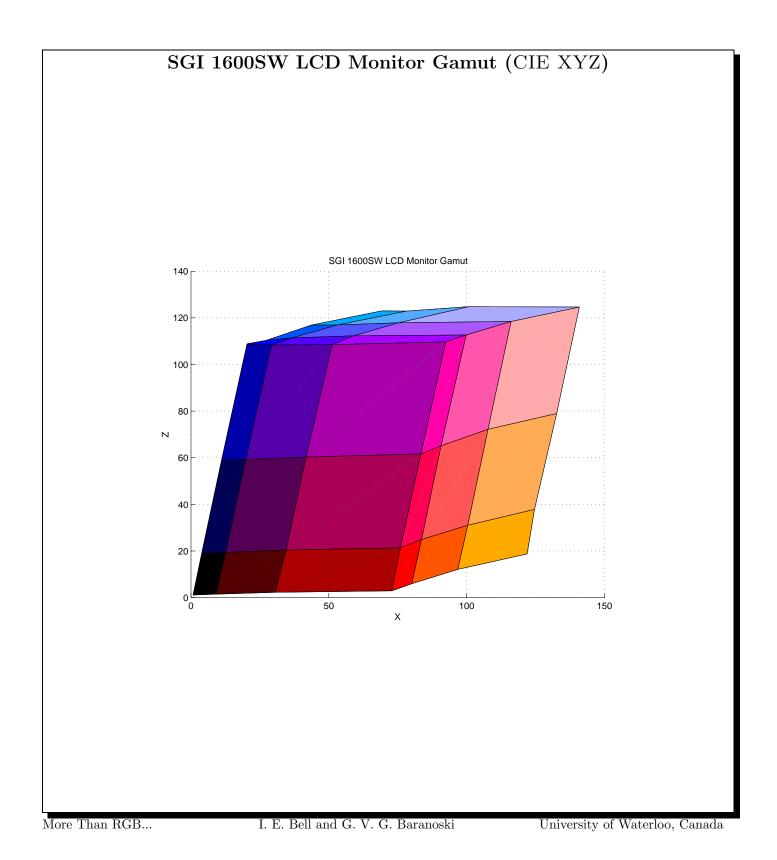
More Than RGB...

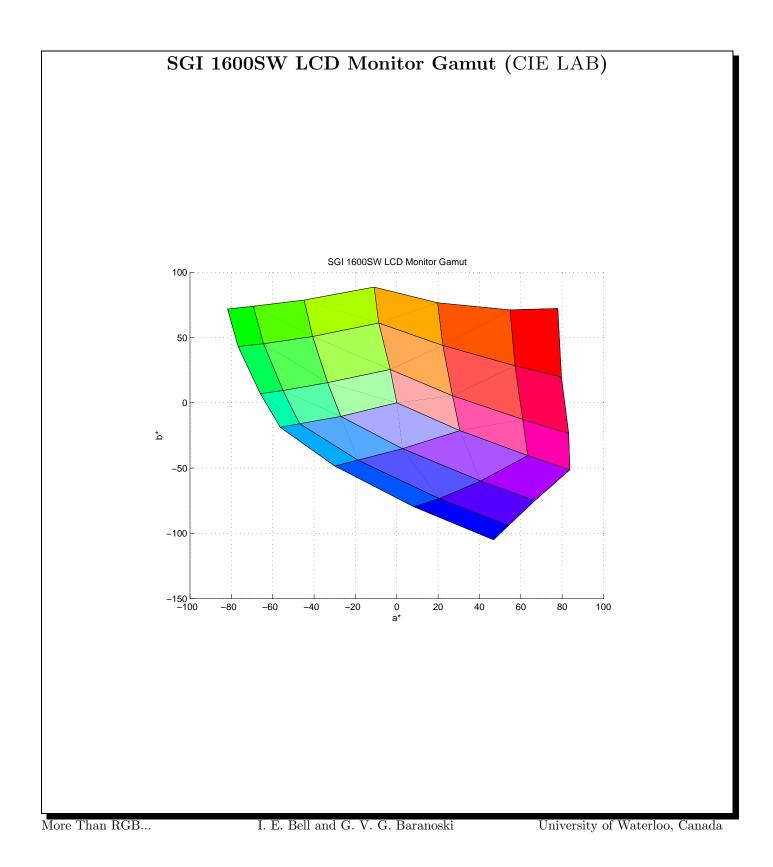
I. E. Bell and G. V. G. Baranoski

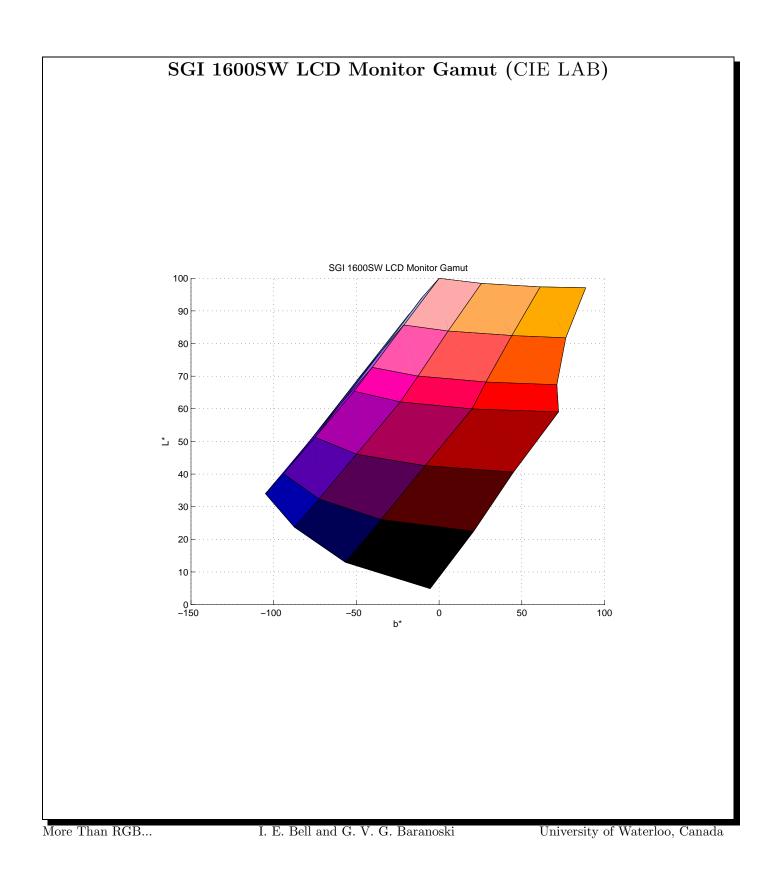
University of Waterloo, Canada

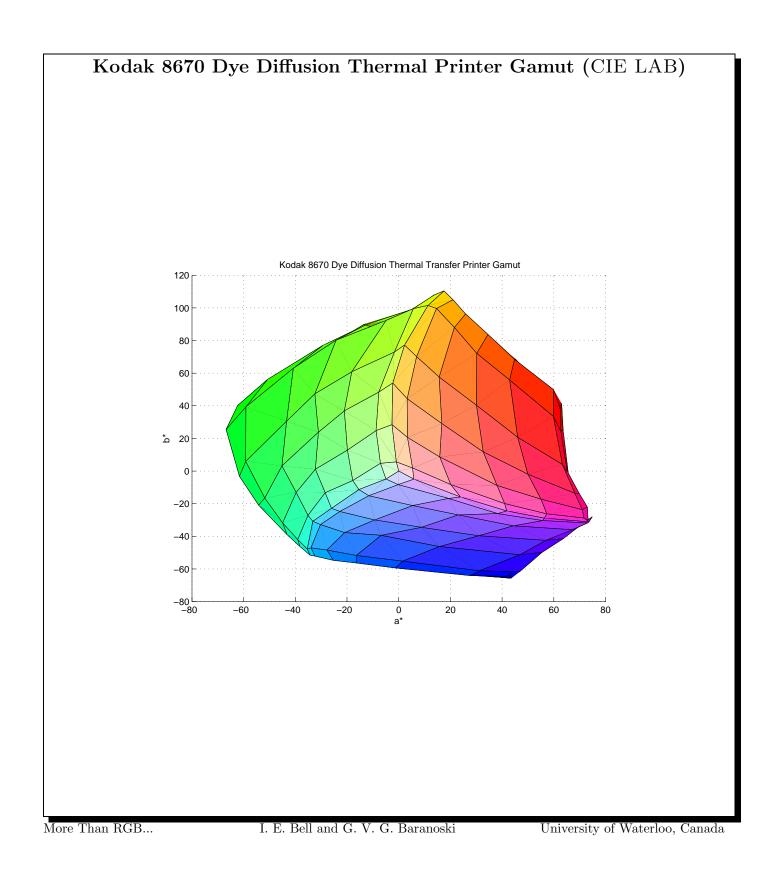

Characterization by Model: Printers

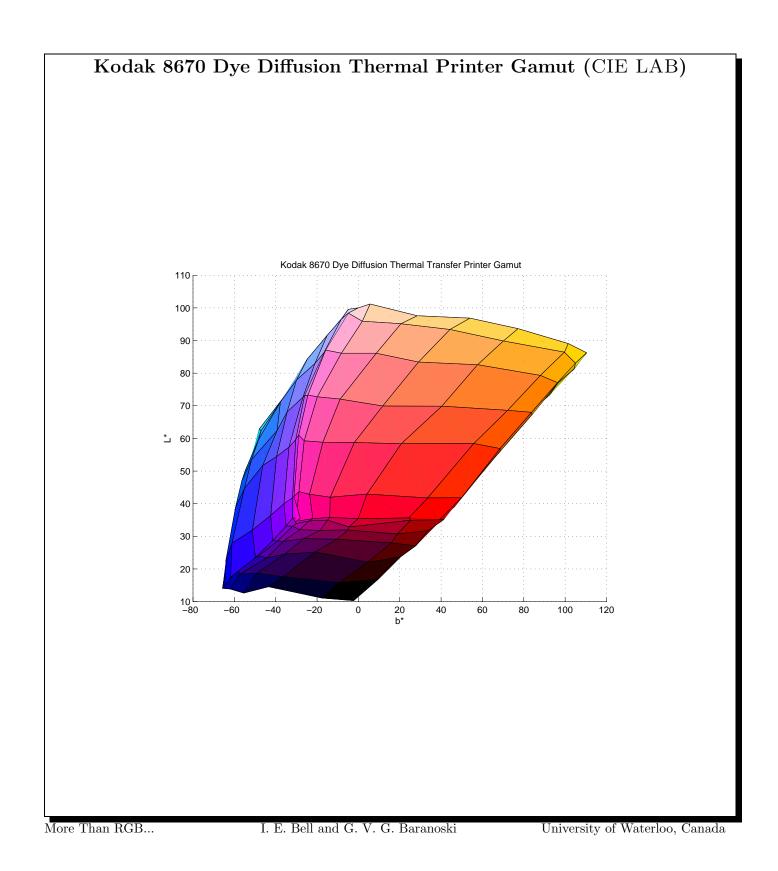
- challenging area due to variety of technologies, both subtractive and additive mixing, and errors due to device noise and quantization
- characterization by model
 - Neugebauer model is often the first step (intended for halftoning)
 - Emmel/Hersch model for inkjet printers
 - Berns model for dye diffusion thermal transfer printers
- characterization by measurement

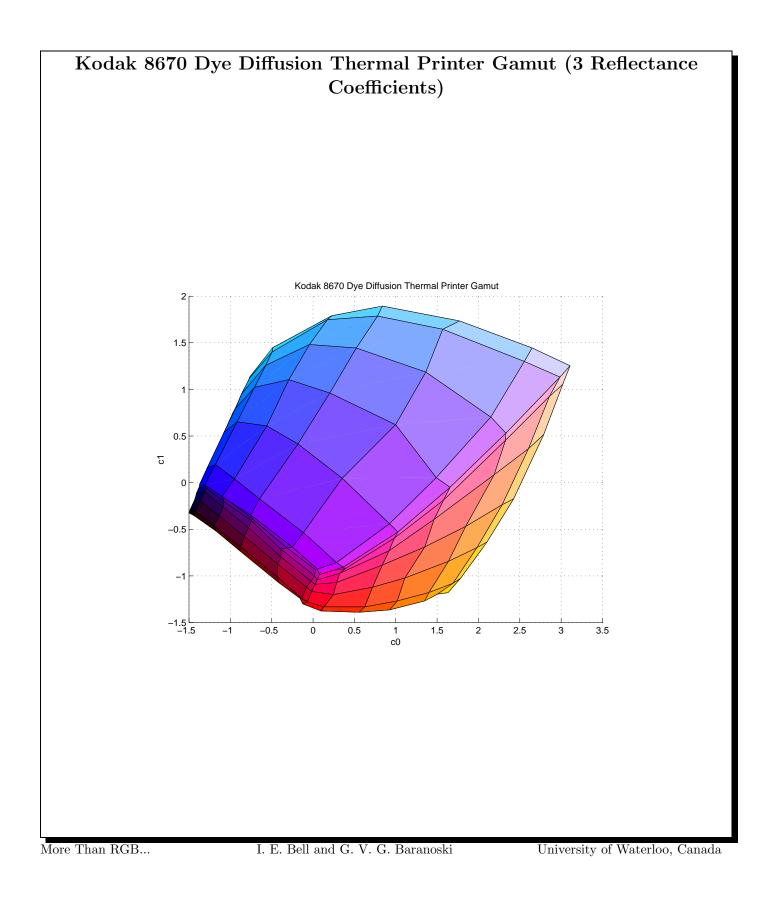

– more generic approach

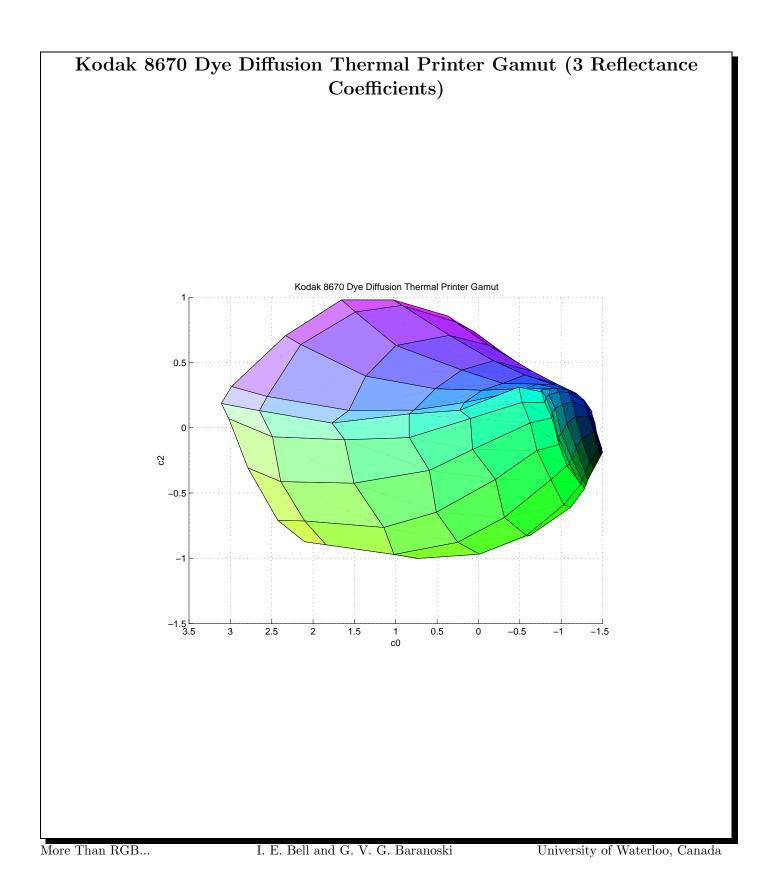

More Than RGB...


I. E. Bell and G. V. G. Baranoski




I. E. Bell and G. V. G. Baranoski





	Spectral Gamuts	
\bullet linear reflectan	ce coefficients	
– high-dimer	sional space	
- correlated	with color spaces	
– greater acc	curacy with more coefficients	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

IV. GAMUT MAPPING AND COLOR MANAGEMENT 1. Gamut Mapping

- for characterization by measurement of output devices, often map rectilinear device input samples to unstructured points in a color space
 - easy and fast forward mapping \boldsymbol{f}
 - inverse mapping f^{-1} harder
 - * helps if f is smooth
 - * still require root finder
- unstructured data to unstructured data is a more symmetric problem
 - regression commonly used
 - can correct errors with table interpolation methods
- still want this kind of composition, gamut mapping

$$f = f_P^{-1} \circ g \circ f_M : \mathcal{D}_M \to \mathcal{D}_P$$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Characterization by Measurement

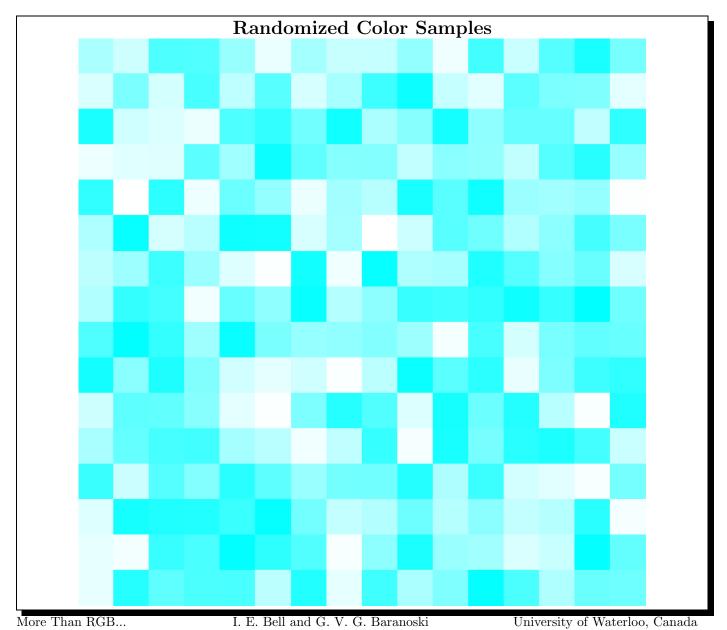
- for output device, measure colors produced
- characterize device with $f(\mathbf{x}) = \mathbf{y}$, where $\mathbf{x}, \mathbf{y} \in \mathcal{R}^3$
- higher dimensions are possible
 - printing presses, or six-ink printers
 - modified data, as with linear reflectance models
- must develop interpolation methods for functions of this type

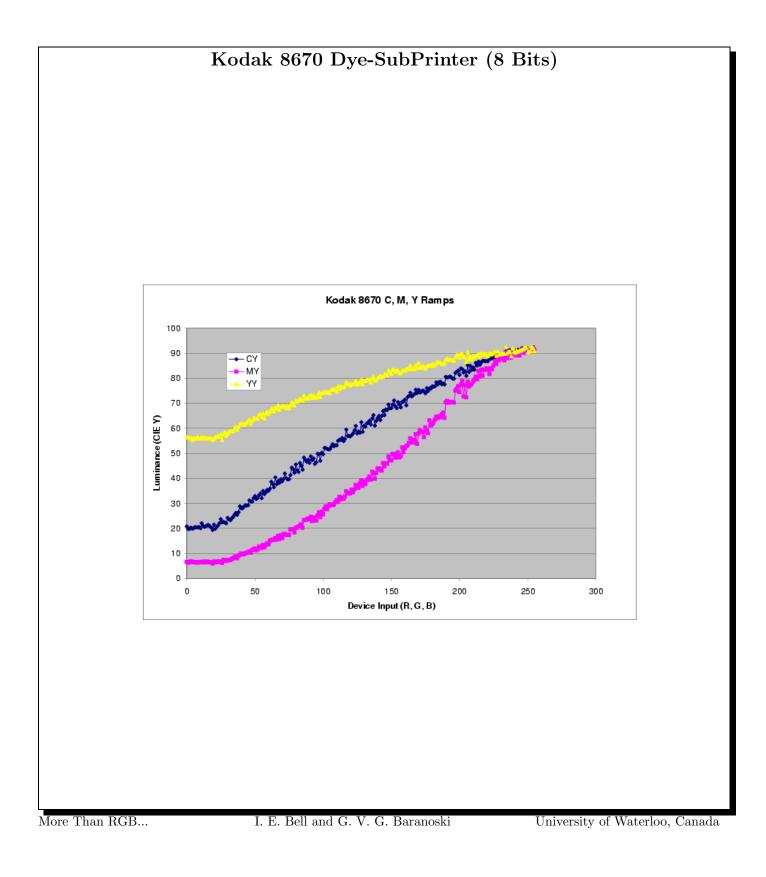
More Than RGB...

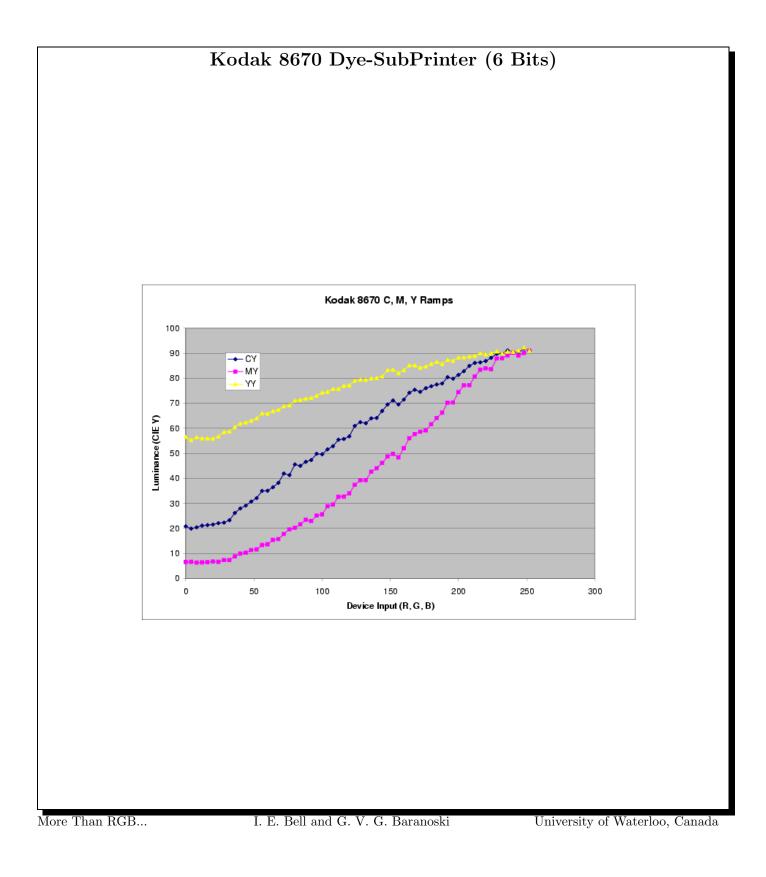
I. E. Bell and G. V. G. Baranoski

LUTs for Output Devices • model is $f(\mathbf{x}) = \mathbf{y}$ • **x** is device inputs like RGB or CMY • y is device output colors, measured in a space like CIE XYZ • easier to model than input devices - have complete control over device inputs to be measured - can choose samples \mathbf{x}_i in convenient grid - input channels have well-defined range (like 0 to 255 for 8-bit RGB) I. E. Bell and G. V. G. Baranoski More Than RGB... University of Waterloo, Canada Look-Up Tables (LUTs) • devices deal with quantized color components • 8 bits of R, G, B gives 24-bit color ("true color") • could store table of $2^{24} \approx 16$ million y values $-\mathbf{x}$ values implied by table indexes - if quantize y with 3 bytes also, gives 48 MB table, is possible I. E. Bell and G. V. G. Baranoski More Than RGB... University of Waterloo, Canada Look-Up Table for All Possible Inputs • Advantages: - no interpolation needed - very fast • Disadvantages: - impractical to measure 16 million entries (although could measure fewer, interpolate with spline)

- doesn't scale well to more bits, more dimensions
- prefer to use less memory
- device may be too noisy to require this kind of precision (eg most printers)


More Than RGB...


I. E. Bell and G. V. G. Baranoski


CMY Ramps

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Look-Up Tables with Interpolation

- look-up tables for all possible inputs may not be needed
- device and measurement noise casts doubt on data
 - must take multiple measurements of single image to find instrument variance
 - must take measurements of multiple images to find device variance
- smooth interpolation of measured data is reasonable approach

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Measurement	
• when measuring	g anything, should keep track of	
– number of r	measurements	
– for each con	mponent	
* min and	l max	
* mean		
* variance	e or standard deviation	
• can determine	from this data whether normal distr	ribution is appropriate
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
I	nterpolation/Approximation wi	ith LUTs
• find distribution	n of errors in device colours	
• put error bars of	on graphs	
• find interpolation	on/approximation method that	
– has appropr	riate smoothness for device	
– passes thro	ugh error bars	
* approxim	mating noisy data, or	
* interpol	ating averaged, accurate data	
– is sufficient	ly fast	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Linear Interpolation in 1D

- have samples x_j for various j
- know $y_j = f(x_j)$
- want $\hat{f}(\cdot) \approx f(\cdot)$
- algorithm for computing $\hat{y} = \hat{f}(x)$:
 - 1. Find interval $[x_i, x_{i+1}]$ enclosing x, so that $x_i \leq x < x_{i+1}$
 - 2. Compute affine combination: $x = \bar{\alpha}x_i + \alpha x_{i+1}$, where

$$\bar{\alpha} = 1 - \alpha \tag{10}$$

$$\alpha = \frac{x - x_i}{x_{i+1} - x_i} \tag{11}$$

3. Apply same affine combination to corresponding y_i , y_{i+1}

$$\hat{y} = \bar{\alpha}y_i + \alpha y_{i+1} \tag{12}$$

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Linear Interpolation in 11	D
• linear interpola	ation	
- is fast		
- interpolate	s the data	
– has undefin	ned derivatives at data points (is not	s smooth)
- is a linear	(degree one) spline curve	
More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Bilinear Interpolation in 2D

- looking for function approximating f(x, y) = z
- have samples x_i in x and y_j in y
- know function values at Cartesian product grid points, $f(x_i, y_j) = z_{i,j}$
- algorithm for computing $\hat{z} = \hat{f}(x, y)$:
 - 1. Find interval $[x_i, x_{i+1}]$ enclosing x, so that
 - 2. Find interval $[y_j, y_{j+1}]$ enclosing y, so that $y_j \leq y < y_{j+1}$
 - 3. Compute affine combination: $x = \bar{\alpha}x_i + \alpha x_{i+1}$
 - 4. Compute affine combination: $y = \overline{\beta}y_j + \beta y_{j+1}$
 - 5. Apply same affine combination to corresponding $z_{i,j}$

$$\hat{z} = \bar{\alpha} \left(\bar{\beta} z_{i,j} + \beta z_{i,j+1} \right) + \alpha \left(\bar{\beta} z_{i,j+1} + \beta z_{i+1,j+1} \right)$$
(13)

$$= \sum_{I=0}^{1} \sum_{J=0}^{1} [\alpha, \beta]^{\langle I, J \rangle} z_{i+I, j+J}$$
(14)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Bilinear Interpolation in 2D

- can implement recursively
 - 1D interpolation of two 1D interpolation problems
 - efficient and easy to code
- or can use explicit sum of $2^2 = 4$ vertices of enclosing cell

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Trilinear Interpolation in 3D

- can implement recursively
 - 1D interpolation of two 2D interpolation problems
- or can use explicit sum of $2^3 = 8$ vertices of enclosing cell

$$\hat{w} = \sum_{I=0}^{1} \sum_{J=0}^{1} \sum_{K=0}^{1} [\alpha, \beta, \gamma]^{\langle I, J, K \rangle} w_{i+I, j+J, k+K}$$
(15)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Other Linear Interpolation Methods

- trilinear interpolation is degree one tensor product spline
- may think next step in complexity is degree two (quadratic) tensor product spline
- there is an intermediate method: *sequential linear interpolation (SLI)* [Allebach et al]
- idea is to allow new samples with each recursive call, for adaptive refinement

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Sequential Linear Interpola	ation
\bullet for bilinear cas	e, wanting $\hat{z} = f(x, y)$	
• first step is as	with linear interpolation, find enclo	sing $[x_i, x_{i+1}]$
• let $\hat{z} = \bar{\alpha}\bar{g}_i(y)$ -	$+ lpha g_i(y)$	
• function $\bar{g}(y)$ p	performs linear interpolation on same	ples $\{\bar{y}_j\}$
• function $g(y)$ p	performs linear interpolation on same	ples $\{y_k\}$, a different set
\bullet can generalize	to trilinear case	
• fairly easy to in	mplement in hardware	
fore Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada
	Smooth Interpolation	
\bullet tensor product	spline methods	
– generalizes	well to higher dimensions	
- smooth fur	nctions	
– additional	complexity	
• simplex spline	methods	
– Delaunay t	riangulation or tetrahedrization	
– barycentric	e interpolation	
– generalizin,	g to higher dimensions, higher degre	ees is harder
	I. E. Bell and G. V. G. Baranoski	

Using a Data Fitter to Avoid Inversion

• characterization by measurement can use a data fitting algorithm

- regression plus table interpolation is essentially a fitter

- in cases like scanner characterization, there is no structure to the data points in either space
- so there is no advantage to the forward mapping (as with trilinear interpolation over a grid)
- if mapping between spaces of equal dimension, like $\mathcal{R}^3 \to \mathcal{R}^3$, can
 - treat as a symmetric problem
 - fit in either direction
 - fit to avoid needing an explicit inversion
- composition of many mappings can be re-fit, expressed as one mapping

More Than RGB	I. E. Bell and G. V. G. Baranoski	University of Waterloo, Canada

Linear Regression

• linear regression without constant term

$$XYZ_{pred} = M_{3\times3} * RGB$$

• linear regression with constant term

$$XYZ_{pred} = M_{3\times 4} * RGB$$

• can be extended by adding higher degree terms

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Quadratic Regression

- linear fit not usually good enough for scanners
- can use more than just R, G, B, 1 as terms
- add in $\mathbb{R}^2, \mathbb{G}^2, \mathbb{B}^2, \mathbb{R}\mathbb{G}, \mathbb{G}\mathbb{B}, \mathbb{R}\mathbb{B}$ for quadratic regression

$$XYZ_{pred} = M_{3 \times 10} * RGB2$$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Cubic Regression

• add in $\mathbb{R}^3, \mathbb{R}^2G, \mathbb{R}^2B, \mathbb{R}G^2, \mathbb{R}GB, \mathbb{R}B^2, \mathbb{G}^3, \mathbb{G}^2B, \mathbb{G}B^2, \mathbb{B}^3$ for cubic regression

 $XYZ_{pred} = M_{3 \times 20} * RGB3$

More Than RGB...

I. E. Bell and G. V. G. Baranoski

University of Waterloo, Canada

Optimization

- mapping image pixels through polynomial can be expensive
- helps to identify unique RGB values with a color quantization algorithm
 - simple binning or hashing methods also possible
- can do matrix operations in hardware
- or can use look-up table if $x \in [0, 255]$
 - $\operatorname{let} KLUT[x] = k * x$
 - $let QLUT[x] = x * x, \dots$
 - can implement conversion RGB \rightarrow RGB2 with look-up tables
 - matrix multiplication becomes adds and look-ups

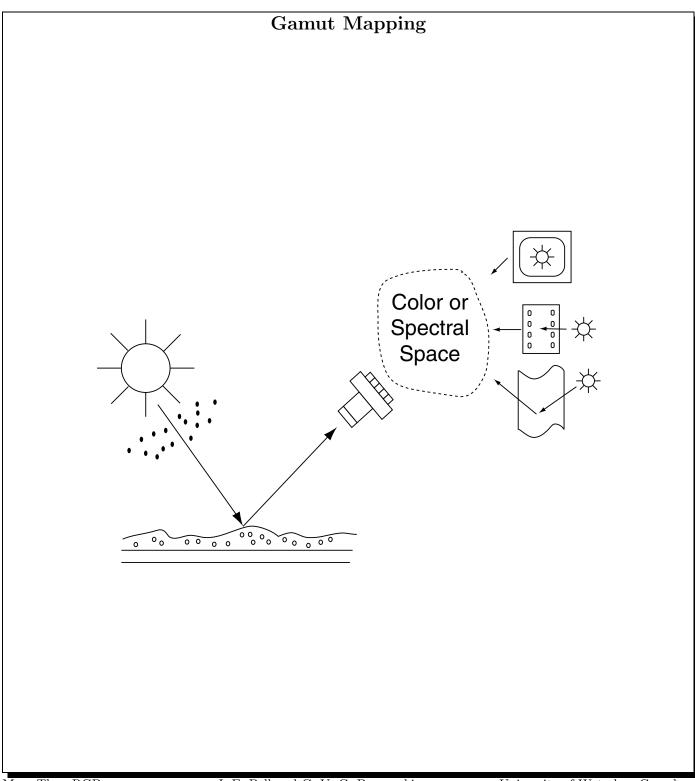
 More Than RGB...
 I. E. Bell and G. V. G. Baranoski
 University of Waterloo, Canada

 Regression and Sequential Linear Interpolation

 • linear regression gives first approximation to data

 • sequential linear interpolation accounts for residual

 • both methods scale to higher dimensions


 • both methods can yield invertible functions

• regression can also be paired with spline methods

L E Bell and C V C Baranoski	University of Waterloo, Canada
1. D. Den and G. V. G. Daranoski	University of Waterioo, Canada
	I. E. Bell and G. V. G. Baranoski

Spline Interpolation

- piecewise linear approach is a degree one spline
- can generalize to
 - higher degree
 - Bezier curves
 - B-splines

More Than RGB...

I. E. Bell and G. V. G. Baranoski

Gamut Mapping	
• guidelines from Stone, Cowan, Beatty (1988)	
1. The gray axis of the image should be preserved.	
2. Maximum luminance contrast is desirable.	
3. Few colors should lie outside the destination gamut.	
4. Hue and saturation shifts should be minimized.	
5. It is better to increase than to decrease the color saturation.	
More Than RGB I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada	
Black- and White-Point Mapping	
• mapping black point and white point is first step is aligning the neutral axes	
• getting equal steps of gray to match is second step (Lamming and Rhodes)	
More Than RGB I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada	
Out-of-gamut Projection	
• composition of functions may give some points outside the destination device gamut	
\bullet must project them into the gamut, using either	
- a continuous method (gamut compression)	
– a clipping method	
• Stone, Cowan, Beatty recommend a continuous method that leaves a few points outside the gamut	
- desaturation	
- contrast scale factor	
– the umbrella transform	
More Than RGB I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada	
Geometric Methods	
• computational geometry approach to avoid out-of-gamut colours, perform tetra- hedral interpolation and extrapolation [Hardeberg (2001)]	
\bullet gamut-mapping can be carried out in linear reflectance space	
• virtual camera as a gamut-mapping agent	
More Than RGB I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada	

2. Challenges in Multispectral Management

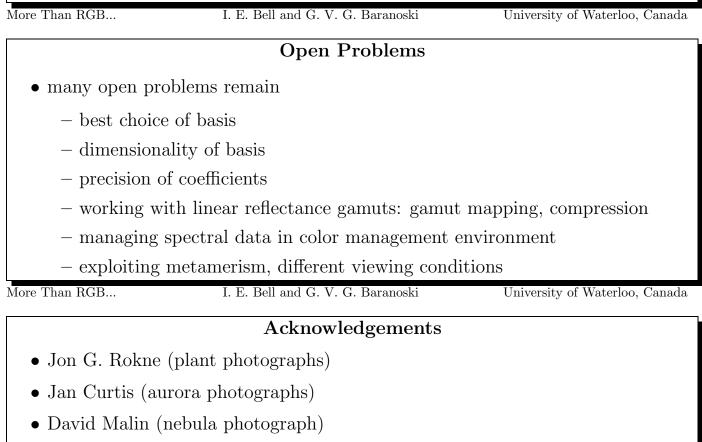
- color management systems are evolving
- they have not been the magic bullet to solve all color problems
- but they are a helpful first step
 - for simple "snapshot-quality" color reproduction
 - to consolidate and identify the problem areas
 - to provide a framework for future development

More Than RGB... I. E. Bell and G. V. G. Baranoski University of Waterloo, Canada

Challenges in Multispectral Management

- challenges include
 - greater accuracy of color reproduction
 - more adaptability to new input and output technologies
 - * more channels
 - * greater bit depth
 - * greater resolution
 - * variable/adaptive channels, resolutions
 - better gamut mapping and gamut compression
 - improved color appearance models
 - better quantification of rendering intent

More Than RGB... I. E. Bell and G. V. G. Baranoski


Working with Spectral and High-Dimensional Data

- have seen many applications of spectral data
 - simulation of natural phenomena (sky, aurorae, ocean)
 - spectral acquisition (spectrophotometers, multispectral camera)
 - modeling of color devices (printers, film)
- is also possible to improve colorimetric accuracy with spectral calculations
 - extra scanner channels
 - high-dimensional models of printers
 - using extra degrees of freedom for matching in various viewing environments

Conclusions

For *multispectral management*:

- characterize devices spectrally
- choose optimal spectra/reflectances for SVD
- work in common spectral space
 - device gamuts containing image gamuts
 - simulation spectra
- adjust virtual camera for "exposure" that suits intersection of gamuts,
- adjust simulation for best gamut usage
- find best reproduction for user's *spectral rendering intent*
- implement mappings efficiently with characterization by model or by measurement

- Peter Shirley (images)
- Stephane Jacquemoud (data)

More Than RGB...

I. E. Bell and G. V. G. Baranoski

References

- G.V.G. Baranoski, J.G. Rokne, P. Shirley, T. Trondsen and R. Bastos, Simulating the Aurora Borealis, In Proceedings of the 8th Pacific Graphics, pp. 2-14, 2000.
- G.V.G. Baranoski and J.G. Rokne, *Light Interaction with Plants*. ACM Siggraph 2002 Course Notes.
- I. E. Bell, Spline-based tools for Conventional and Reflective Image Reproduction, PhD thesis, University of Waterloo, 1996.
- R. Berns, *Billmeger and Saltzman's Principles of Color Technology*, 3rd ed, John Wiley & Sons, 2000.
- A.S. Glassner, Principles of Digital Image Synthesis, Morgan Kaufmann, 1995.
- R. Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag, 1989.
- J. Y. Hardeberg, Acquisition and Reproduction of Color Images: Colorimetric and multispectral approaches, Dissertation.com, 2001.
- R. W. G. Hunt, *Measuring Color*, 3rd ed, Fountain Press, 1998.
- R.S. Hunter and R.W. Harold, *The Measurement of Appearance*, John Wiley & Sons, 1987.
- D.B. Judd and G. Wyszecki, *Color in Business, Science and Industry*, John Wiley & Sons, 1975.
- H. R. Kang, *Color Technology for Electronic Imaging Devices*, SPIE Optical Engineering Press, 1997.
- D.K. Lynch and W. Livingston, Color and Light in Nature, Cambridge University Press, 1995.
- M. Minnaert, Light and Color in the Outdoors, Springer-Verlag, 1993.
- C.D. Mobley, *Light and Water: Radiative Transfer in Natural Waters*, Academic Press, 1994.
- J. Morovič, *To Develop a Universal Gamut Mapping Algorithm*, PhD thesis, University of Derby, 1998.
- A. W. Paeth, *Linear Models of Reflective Colour*, PhD thesis, University of Waterloo, 1993.
- G. Wyszecki and W. S. Stiles, *Color Science: Concepts and Methods, Quantitative Data and Formulae*, 2nd ed, John Wiley & Sons, 1982.