Level of Detail (LOD) Models

Part One

Outline

- Layered versus Multiresolution Models
- A general multiresolution surface model: The MultiTriangulation
- Basic spatial queries on multiresolution models
- Answering spatial queries at variable resolution
- Construction paradigms: an example on terrains
- Extensions to parametric surfaces and volume data
Layered models
- description of a sequence of few meshes each of which represents an object at a different resolution

Multiresolution models
- description of a virtually continuous set of meshes representing an object at increasing resolutions

Layered Models
- Each mesh is obtained through simplification
- Each mesh is associated with a range of levels of detail
- The range is used as a filter to select a mesh from the sequence

Standard technology in OpenInventor™ and VRML
Disadvantages of layered models:

- Each mesh is stored independently: the number of meshes must be small, otherwise the model becomes huge
- Modest possibility to adapt resolution to application needs
- Unpleasant “popping” effects during the transition between different levels
- Resolution of each mesh is uniform

Multiresolution Models

- They provide a virtually continuous range of meshes representing an object at different resolutions
- The number of different meshes, which can be extracted from the model, is not fixed a priori, but it is a function of the data size, and can be huge (e.g., combinatorial)
- Resolution of a mesh can be variable in different parts of the object
Requirements for a Multiresolution Model

- Support to efficient query processing (e.g., extraction of surface representations in real time)
- Size of the model not much higher than size of the maximum resolution representation
- No cracks or abrupt transitions within a single mesh
- Smooth transition between representations at close resolutions

Intuitive Idea behind Multiresolution

- Surface representations at different levels of detail (LODs) can be obtained as a sequence of local modifications on an initial mesh (by simplification or refinement)
- Some modifications depend on others
- Some modifications are mutually independent
The “Heart” of a Multiresolution Model

- Initial mesh
- Collection of local modifications (triangle meshes) arranged into a partial order (described by a DAG)

A General Framework for Multiresolution: the MultiTriangulation

- A MultiTriangulation (MT) is a labeled DAG where
 - Nodes are triangle meshes
 - Arrows describe the partial order
...A General Framework for Multiresolution...

- Each local modification must be consistent
- **Consistent** modification of a triangle mesh:
 - If \(T \) is a triangle mesh, a mesh \(T_i \) is a **consistent modification** of \(T \) iff
 - \(T \) contains a submesh \(T'_p \) such that \(T'_p \) covers \(T_i \), and \(T_i \) has more triangles than \(T'_i \)
 - \(T_i \) is called the **floor** of \(T_i \)

\[
\begin{align*}
\text{consistent: } \quad & T \quad + \quad T_i \quad = \quad T'_i \\
\text{not consistent: } \quad & T \quad + \quad T_i' \quad = \quad ?
\end{align*}
\]

Expressive Power of a MultiTriangulation

- A subMT of an MT \(M \) is a subgraph \(M' \) where
 - \(M' \) contains the root
 - If \(T_i \) belongs to \(M' \), then all parents of \(T_i \) belong to \(M' \) as well
- Every subMT is an MT
Any mesh made of triangles in M is the boundary mesh of a subMT.

Boundary mesh:
mesh obtained by applying all modifications in the subMT to the root mesh.

Mesh at Maximum Resolution
boundary mesh associated with the MT itself.
Desirable Properties for a MultiTriangulation

- Linear growth:
 - the number of triangles of the MT is linear in the number of triangles in its boundary mesh

- Bounded width:
 - the number of triangles in any MT mesh is bounded from above by a constant

- Logarithmic height:
 - the maximum path length is logarithmic in the total number of arcs of the MT

Remark: bounded width ==> linear growth
Spatial Queries on an MT

Special cases of a general extraction query specified by:

- an accuracy condition:
 - specification of the LOD at which the mesh is queried
 - threshold function bounding the distance between the original surface and the mesh extracted from the MT

- a focus condition:
 - specification of the type of geometric operation defined by the query
 - focus set defining the area of interest of the query

Example:
maximum resolution inside a box

...Spatial Queries on an MT...

Accuracy Condition

- Threshold function \(\tau : \mathbb{R}^3 \rightarrow \mathbb{R} \)
- A triangle \(t \) is called valid iff its approximation error is lower than the minimum value of the threshold over \(t \)
- A triangle mesh satisfies \(\tau \) if all its triangles are valid

Examples of threshold functions:

- for arbitrary surfaces: increasing with the distance from the viewpoint, measured in 3D space
- for terrains: increasing with the distance from the viewpoint, measured on the x-y plane
Focus Condition

- Focus set F in \mathbb{R}^3
- A triangle t is called active iff $t \cap F$ is not empty
- A focus set describes the region of interest of the query

Examples of focus sets:
- Point: point location query
- Line/polyline: segment/line interference query
- Region: window query, region interference query
- Volume: view frustum

General Extraction Query (called Selective Refinement)

- Triangle mesh T, among all meshes described by the MT, such that
 - T has minimal size (minimal number of triangles)
 - all active triangles of T are valid
Two instances of the General Extraction Query

- Resulting mesh *globally defined*:
 - defined on the whole surface
- Resulting mesh *locally defined*:
 - defined only on the area of interest

Extraction Queries

- Extraction of a mesh *from scratch*:
 - *static extraction query*
- Extraction of a mesh by *updating* a previously extracted one:
 - *dynamic extraction query*
Globally Defined Static Extraction Query

- Given
 - a threshold function τ
 - a focus set F
- Retrieve a triangle mesh T such that
 - every active triangle of T is valid
 - T has minimum size

Globally Defined Dynamic Extraction Query

- Given
 - a threshold function τ, a focus set F
 - a subMT M'
- Retrieve a triangle mesh T such that
 - every active triangle of T is valid
 - the subMT M'' defining T is the closest to M'
 - where distance = number of nodes which must be added to / subtracted from M' to obtain M''
Algorithms for Extracting Meshes at Variable Resolution

- Algorithms for globally defined queries:
 - an algorithm for answering the static mesh extraction query
 - an algorithm for answering the dynamic mesh extraction query
- For an algorithm for the locally defined query in the static case, see (De Floriani et al., IEEE Visualization’98)

Static Extraction Algorithm
(De Floriani, Magillo, Puppo, 1997)

- Breadth-first traversal of the MT
 - A current subMT is maintained during traversal
 - The current mesh is the boundary mesh of the current subMT
- Initially, the current subMT contains just the root
- If some active triangle \(t \) of the current mesh is not valid, then
 - get the MT node \(T_i \) refining \(t \)
 - recursively add to the current subMT all parents of \(T_i \)
 - add \(T_i \) to the current subMT
- Repeat until either all active triangles are valid (the desired accuracy is achieved) or time is expired
Grey triangles are not valid
Focus set is a box

- Initial situation: green
- Triangle \(t \) is active and not valid
 - \(t \) is refined by \(T4 \)
 - \(\Rightarrow \) must add first \(T1 \), then \(T4 \)

- Add \(T1 \) to subMT
 - \(\Rightarrow \) red

- Add \(T4 \) to subMT
 - \(\Rightarrow \) orange

- All active triangles are valid
 - \(\Rightarrow \) stop
...Static Extraction Algorithm...

- Variable resolution with arbitrary threshold supported
- **Interruptibility:**
 - it converges to the exact solution by producing better and better approximations
- **Correctness:**
 - set of output triangles forms a boundary triangulation of a subMT
 - any boundary triangulation of smaller size does not satisfy the threshold
- **Time complexity:**
 - linear in the number of visited triangles
 - linear in the output size, if the MT has a linear growth

Dynamic Extraction Algorithm
(De Floriani, Magillo, Puppo, 1998)

- Two basic steps:
 - **Expansion step:**
 - refine the current mesh until all active triangles are valid
 - **Contraction step:**
 - coarsen the current mesh until it cannot be further coarsened without getting some active triangle which is not valid
 - Expansion *adds nodes* to the current subMT
 - proceed as in the static case
 - Contraction *removes nodes* from the current subMT
 - check all the nodes which are leaves of the current subMT
 - if a leaf node T_i can be removed without getting some invalid active triangle, then remove T_i and update the current mesh
Expansion
- Initial situation: orange
- Triangle \(t \) is active and not valid
 - \(\Rightarrow \) must add \(T_3 \)
- Add \(T_3 \) to sub\(MT \)
 - \(\Rightarrow \) blue
- all active triangles are valid
 - \(\Rightarrow \) stop expansion

Contraction
- initial situation: blue
 - leaves: \(T_4, T_3 \)
- examine leaf \(T_4 \)
 - \(\Rightarrow \) remove \(T_4 \)
 - \(\Rightarrow \) yellow
 - \(\Rightarrow \) \(T_1 \) becomes a leaf
...Dynamic Extraction Algorithm...

Contraction continues

- Examine leaf T_3
 - do not remove T_3
 - \implies still yellow

- examine leaf T_1
 - remove T_1
 - \implies red

- no more leaves
 - \implies stop

Correctness:

- set of output triangles forms a boundary mesh of a subMT
- removing a node from the final subMT makes the boundary triangulation violate the threshold

Time complexity:

- linear in the number of visited triangles
- linear in the sum of the input size and of the output size, if the MT has a linear growth
Experimental Comparison of Static and Dynamic Approaches

- Terrain dataset (maximum resolution: 32,250 triangles)
- Threshold increases with distance from a moving viewpoint
- Focus set is a view frustum

<table>
<thead>
<tr>
<th>iter.</th>
<th>output triangles</th>
<th>swept triangles</th>
<th>time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>static</td>
<td>dyna.</td>
</tr>
<tr>
<td>5</td>
<td>2681</td>
<td>11663</td>
<td>326</td>
</tr>
<tr>
<td>15</td>
<td>2734</td>
<td>11900</td>
<td>38</td>
</tr>
<tr>
<td>25</td>
<td>2736</td>
<td>11902</td>
<td>260</td>
</tr>
<tr>
<td>35</td>
<td>2758</td>
<td>11996</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>2792</td>
<td>12114</td>
<td>134</td>
</tr>
<tr>
<td>55</td>
<td>2640</td>
<td>11450</td>
<td>14</td>
</tr>
<tr>
<td>65</td>
<td>2688</td>
<td>11688</td>
<td>212</td>
</tr>
<tr>
<td>75</td>
<td>2708</td>
<td>12014</td>
<td>266</td>
</tr>
<tr>
<td>85</td>
<td>2710</td>
<td>11770</td>
<td>207</td>
</tr>
<tr>
<td>95</td>
<td>2682</td>
<td>11644</td>
<td>90</td>
</tr>
</tbody>
</table>

Bunny dataset (maximum resolution: 69,451 triangles)

- Threshold is zero, focus set is a moving box

<table>
<thead>
<tr>
<th>iter.</th>
<th>output triangles</th>
<th>swept triangles</th>
<th>time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>static</td>
<td>dyna.</td>
</tr>
<tr>
<td>5</td>
<td>2230</td>
<td>4166</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>2426</td>
<td>5094</td>
<td>158</td>
</tr>
<tr>
<td>25</td>
<td>2572</td>
<td>5776</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>2690</td>
<td>6354</td>
<td>50</td>
</tr>
<tr>
<td>45</td>
<td>2749</td>
<td>6713</td>
<td>268</td>
</tr>
<tr>
<td>55</td>
<td>2745</td>
<td>6667</td>
<td>134</td>
</tr>
<tr>
<td>65</td>
<td>2602</td>
<td>5858</td>
<td>634</td>
</tr>
<tr>
<td>75</td>
<td>2688</td>
<td>6312</td>
<td>56</td>
</tr>
<tr>
<td>85</td>
<td>2690</td>
<td>6372</td>
<td>20</td>
</tr>
<tr>
<td>95</td>
<td>2584</td>
<td>5836</td>
<td>270</td>
</tr>
</tbody>
</table>
How to Construct a “good” MT

- Shape of the MT versus construction strategy
- An MT can be built from a sequence of local modifications on an initial (coarse or fine) mesh: construction sequence
- A construction sequence is generated through a mesh refinement or mesh simplification process
- See (De Floriani, Magillo and Puppo, IEEE Visualization’97) for algorithms to build an MT from a construction sequence

Requirements for a Construction Algorithm

- Good compression ratio: reduced size of any extracted mesh
- Linear growth: small overhead factor
- Bounded width
- Logarithmic height
...How to Construct a “good” MT...

Why Such Requirements?

An example:
point location on an MT at variable resolution

Cost depends on:
- width
- height
- size of the visited subMT

Evaluation of Construction Strategies

- Theoretical and experimental evaluation of the shape of the MT based on the algorithm used for generating the construction sequence
- We have performed such evaluation in the case of terrains considering four different variants of the vertex removal strategy
...How to Construct a “good” MT...

- **Method 1:**
 - remove an arbitrary maximal set of independent vertices of bounded degree

- **Method 2:**
 - as method 1, but always starting from the vertex causing the smallest error increase

- Methods 1 and 2 guarantee:
 - linear growth
 - bounded width
 - logarithmic height

Error-driven selection of method 2 maintains “important” vertices close to the root

...How to Construct a “good” MT...

- **Method 3:**
 - remove the vertex with bounded degree causing the smallest error increase

- **Method 4:**
 - remove the vertex causing the smallest error increase

- Method 3 guarantees:
 - linear growth
 - bounded width
 - no logarithmic height

- Method 4 guarantees:
 - none of the three properties
...How to Construct a “good” MT...

Experimental evaluation of the four methods

- Data set: 128 x 128 grid of elevation data from US Geological Survey
- Size of the triangulation at maximum resolution: 32,258 triangles

<table>
<thead>
<tr>
<th>Method</th>
<th>Size of the MT</th>
<th>Height</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>91642</td>
<td>29</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>86181</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>89170</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>84963</td>
<td>89</td>
<td>13</td>
</tr>
</tbody>
</table>

Compression Factor

- Evaluation based on extraction of meshes at different LODs
- Ratio between the size of the output and the size of the mesh at maximum resolution

<table>
<thead>
<tr>
<th>LOD</th>
<th>res. 2%</th>
<th>res. 5%</th>
<th>res. 10%</th>
<th>res. 20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.99</td>
<td>.60</td>
<td>.47</td>
<td>.27</td>
</tr>
<tr>
<td>2</td>
<td>.99</td>
<td>.56</td>
<td>.47</td>
<td>.27</td>
</tr>
<tr>
<td>3</td>
<td>.97</td>
<td>.11</td>
<td>.07</td>
<td>.02</td>
</tr>
<tr>
<td>4</td>
<td>.96</td>
<td>.13</td>
<td>.048</td>
<td>.014</td>
</tr>
</tbody>
</table>
MT for Modeling Free-Form Surfaces

- An MT can be built:
 - from an initial refined triangle mesh through a simplification approach (we use the vertex decimation algorithm by Cignoni, Montani and Scopigno, 1997)
 - from scattered data through a sculpturing approach (Boissonnat, 1994; Veltkamp, 1993; Bajaj et al., 1996, De Floriani et al., ICPR'98)
 - from contours: initial mesh built by connecting contours lying on adjacent planes (Fuch et al., 1977; Boissonnat, 1988; Geiger, 1993)
 - from a parametric surface description: data are a collection of adjacent patches; refinement approach applied to the boundary curves and then to the interior of each patch (De Floriani, Magillo, Puppo, ICIAP’97)

More on the MT

Implementation of the MT as a Library
- Independent of how the construction sequence is generated
- Library written in C++, tested on both SGI and PC platforms
- It implements:
 - several extraction algorithms as well as several internal encoding structures
 - a collection of threshold functions and focus sets
 - algorithms for building an MT from a given construction sequence

Extension to Volume Data Representation
- MT definition is independent of the dimension of the space
- The definition of MT for tetrahedral meshes directly extends the one for triangle meshes
- We are currently developing a library for 3D MT (in collaboration with Cignoni, Montani, and Scopigno)
References

- Multidimensional extension and other models in the MT framework: De Floriani, Magillo, Puppo, DGCI'99
- Construction of an MT from triangle meshes: De Floriani, Magillo, Puppo, IEEE VIS'97
- Construction of an MT from parametric surfaces: De Floriani, Magillo, Puppo, ICIAP’98
- Construction of an MT from scattered points: De Floriani, Magillo, Puppo, ICPR’98
- VARIANT (a terrain modeling system): De Floriani, Magillo, Puppo, ACM GIS 1997
- Data structures and extraction algorithms: De Floriani, Magillo, Puppo, IEEE VIS’98

Our web page:
http://www.disi.unige.it/research/Geometric_modeling/