Numerical Linear Algebra
with examples in geometry processing

Gaël Guennebaud
Outline

• How to choose the right solver?
 – dense, sparse, direct, iterative, preconditioners, FMM, etc.
• Smoothness?
• Quadratic constraints
• Overview of other classical building-blocks
A zoo of linear solvers
SVD

• Singular Value Decomposition

\[A = V \Sigma W^* \quad \rightarrow \quad x = A^+ b = W \Sigma^+ V^* b \]

– Welcome default behavior:
 • over-constrained \(\rightarrow \) Least-Square solution
 • rank-deficient \(\rightarrow \) Least-Norm solution

– Down-side:
 • involve iterative decomposition algorithms
 • overkill for linear solving?
QR decomposition

- Least-square solution: \(x = P R^{-1} Q^T b \)
- with column-pivoting \(\rightarrow \) rank revealing

- rank-deficient:

\[
A P = Q \begin{pmatrix} R_1 & R_2 \\ 0 & 0 \end{pmatrix}
\]

\(\rightarrow \) complete orthogonalization (eliminate \(R_2 \))

\[
A P = Q \begin{pmatrix} T_{11} & 0 \\ 0 & 0 \end{pmatrix} Z
\]

\(\rightarrow \) yields minimal norm solution :)
LU decomposition

\[AP = LU \]

- based on Gaussian elimination
- good for square, non symmetric problems
- mostly useful for sparse problems
Cholesky decomposition

- For SPD matrices:
 \[A = LL' \]

- For symmetric indefinite matrices:
 \[P^T A P = LDL' \]

- as fast
- numerical stability:
 - pivoting
 - or 2x2 diagonal blocks
Dense solvers – Summary

- **Cholesky**: Used for symmetric (well-conditioned) problems.
- **LU**: Solves square problems.
- **QR**: Solves LS/LN problems.
- **SVD**: Solves multi-dimensional analysis, polar dec., etc.

Speed vs. Robustness

- **Speed** increases from bottom to top:
 - SVD → QR → LU → Cholesky
- **Robustness** increases from top to bottom:
 - Cholesky → LU → QR → SVD

Important Concepts
- Normal equation
- Well conditioned
- Polar decomposition
Example

- Scattered data interpolation/approximation
 - problem statement

input:
- sample positions \(p_i \)
- with associated values \(f_i \)

output:
- a **smooth** scalar field \(f : \mathbb{R}^d \rightarrow \mathbb{R} \)

s.t., \(f(p_i) \approx f_i \)
Discretization

• Decomposition on a set of basis functions

\[f(x) = \sum_j \alpha_j \varphi_j(x) \]

– linear LS minimization:

\[\alpha = \text{argmin} \sum_i \| \sum_j \alpha_j \varphi_j(p_i) - f_i \|^2 \]

– plus, \(f \) has to be \textbf{smooth}

 • how to mathematically defines “smooth”?
 → seek for a (poly-)harmonic solution:

\[\Delta^k f = 0 \]
Smoothness & RBF

- **Solution 1:** Enforce smoothness by construction
 - Choose (poly-)harmonic basis functions:
 \[\Delta^k \varphi_i = 0 \]
 - Example: Radial Basis Functions
 - centered at nodes \(q_j \):
 \[f(x) = \sum_j \alpha_j \varphi(\|x - q_j\|) \]
 - polyharmonic splines:
 \[\varphi(t) = t^k, \quad k = 1, 3, 5, \ldots \]
 \[\varphi(t) = t^k \ln(t), \quad k = 2, 4, 6, \ldots \]
 - thin-plate spline:
 \[\varphi(t) = t^2 \ln(t) \]
RBF in practice

- Leads to a **dense** LS problem:

\[
\begin{bmatrix}
 \vdots & \vdots \\
 \varphi(\|p_i - q_j\|) & \vdots \\
 \vdots & \vdots \\
\end{bmatrix} \cdot \alpha = \begin{bmatrix} f_i \end{bmatrix} \iff A \alpha = b
\]

- Choice of the \(q_j \)?
 - take \(q_j = p_j \) \(\rightarrow \) interpolation!

- Solver choice?
 - square & non-symmetric \(\rightarrow \) LU

- Conditioning
 - depends on the sampling
RBF in practice

- Globally supported basis
 - storage: $O(n^2)$
 - solving: $O(n^3)$
 - 1 evaluation: $O(n)$
 → very expensive for numerous nodes
 - max: a few thousands
 - For n large: Fast Multipole Method (FMM)
 - iterative and hierarchical approach
 - somewhat complicated, rarely used in practice
Global to Local Basis

• Solution 2: enforce smoothness through a PDE
 - the key problem is now to solve for
 \[\Delta^k f = 0 \]
 - subject to boundary constraints, e.g.: \(f(p_i) = f_i \)
 - advantage:
 • enable locally supported basis functions
 (e.g., box-splines)

→ Finite Element Method (FEM)
Laplacian equation

- Example: $\Delta f = 0$
 - fundamental in many applications
 - interpolation
 - smoothing
 - regularization
 - deformations
 - parametrization
 - etc.

\[
\Delta f = \nabla \cdot \nabla f = \frac{\partial^2 f_x}{\partial x^2} + \frac{\partial^2 f_y}{\partial y^2} + \ldots
\]
FD Discretization

• Example on a 2D grid
 - finite differences

 \[
 \Delta f(i, j) = \left(\frac{f(i-1, j) + f(i+1, j) + f(i, j-1) + f(i, j+1)}{4} \right) - f(i, j) = 0
 \]

 - Matrix form: \(\mathbf{L} \mathbf{f} = 0 \)
FEM Discretization

• Leads to a **sparse** linear system of equations

\[Lu = 0 \quad \text{with} \quad L_{i,j} = \langle \nabla \varphi_i, \nabla \varphi_j \rangle \]

- \(L \) is called the *stiffness* matrix
- \(\varphi_i \) are compactly supported \(\rightarrow \) most of the \(L_{i,j} = 0 \)
- \(L \) is usually huge, e.g.
 - \(\sim \) number of pixels of an image
 - \(\sim \) number of vertices of a mesh

\[\rightarrow \text{How to exploit sparsity in linear solvers?} \]
FEM Discretization

- On a triangular mesh
 - \(\Phi_i \) = linear basis (aka barycentric coordinates)
 - famous “cotangent formula”:

\[
L_{i,j} = \langle \nabla \Phi_i, \nabla \Phi_j \rangle = \cot \alpha_{ij} + \cot \beta_{ij}
\]

\[
L_{i,i} = - \sum_{v_j \in N_1(v_i)} L_{i,j}
\]
Sparse representation?

• Naive way: `std::map<pair<int,int>, double>`

• Compressed `{Row,Column} Storage`
 - the most commonly used

 \[
 \begin{array}{cccccccc}
 0 & 3 & 0 & 0 & 0 \\
 22 & 0 & 0 & 0 & 17 \\
 7 & 5 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 14 & 0 & 8 \\
 \end{array}
 \]

 \[
 \begin{array}{cccccccc}
 \text{Values:} & 22 & 7 & 3 & 5 & 14 & 1 & 17 & 8 \\
 \text{InnerIndices:} & 1 & 2 & 0 & 2 & 4 & 2 & 1 & 4 \\
 \text{OuterStarts:} & 0 & 2 & 4 & 5 & 6 & 8 \\
 \end{array}
 \]

 - need special care to “assemble” the matrix
 • warning: might be time consuming!
 - variant: store small blocks
Sparse solver classifications

- Direct methods
 - Simplicial versus Super{nodal, frontal}
 - Fill-in ordering

- Iterative methods
 - Preconditioning

- Multi-grid & Hybrid methods
Direct methods

- General principle
 - adapt matrix decompositions to sparse storage
 - Cholesky, LU, QR, etc.

- Main difficulties:
 - matrix-updates introduce new non-zeros
 → need to predict their positions to avoid prohibitive memory reallocation/copies
 → need to reduce the number of new non-zeros (fill-in)
 - scalar-level computation is slow
 → need to leverage dense matrix operations
Fill-in

- Fill-in depends on row/column order!
 - i.e., on the arbitrary choice of the numbering of the unknowns & constraints
 - pathological example:

```
<table>
<thead>
<tr>
<th>Sparse input</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>

```

\[
\text{dense factors : (}
\]
Fill-in

• Fill-in depends on row/column order!

 – i.e., on the arbitrary choice of the numbering of the unknowns & constraints

 – pathological example:

\[
\begin{bmatrix}
L & U
\end{bmatrix}
\]

sparse input

after re-ordering

sparse factors :)
Fill-in

• Fill-in depends on row/column order!
 – i.e., on the arbitrary choice of the numbering of the unknowns & constraints
 → re-ordering step prior to factorization

• tricky:
 – must be faster than the factorization!
 – must trade numerical stability!
 – must preserve symmetry
Fill-in ordering

• Many heuristics
 – Band limiting
 – Nested discestion
 – approximate minimum degree (AMD)
 • symmetric and symmetric variants
Performance issue

- Sparse structure
 - indirect memory accesses
 - bad pipelining
 - bad cache usage
- Need to leverage dense matrix computations
 - several variants: multinodal, multifrontal, etc.
 - makes sense for not too sparse problems
 - e.g., Poisson eq. on a 3D domain
Direct solvers – summary

- Typical pipeline to solve $Ax=b$

```
pre-ordering

structure analysis

numerical factorization

solve (back/forward substitutions)

X
```

- A: matrix assembly

- A: (same structure but different numerical coefficients)

- b: (has many as you want, can even be a matrix)
Direct solvers – summary

• Pros
 – solve for multiple right-hand sides
 – very fast for very sparse problems (e.g., 2D Poisson)

• Cons
 – high memory consumption
 • ok for 2D domains
 • huge for 3D domains
 – (very) difficult to implement
Iterative methods

- Jacobi iterations, Gauss-Seidel
 - stationary methods based on matrix splitting:
 - Jacobi \[x^{(i+1)} = D^{-1}(b - R x^{(i)}) \]
 \[A = D + R \]
 - Gauss-Seidel \[x^{(i+1)} = L^{-1}(b - U x^{(i)}) \]
 \[A = L + U \]
 - easiest to implement but...
 - slow convergence
 - needs to be diagonally dominant (or SPD)
Iterative methods

- Conjugate Gradient (CG)
 - non-stationary method
 - SPD: convergence with decreasing error
 - principle
 - descent along a set of optimal search directions:
 \[
 \left[d_1, \ldots, d_i \right]
 \]
 with \(d_j^T A d_i = 0 \)
Conjugate Gradient

- In practice
 - dominated by matrix-vector products: \(A d_i \)
 - no need to “assemble” the matrix \(A \)
 - operator approach
 - easy to implement on the GPU
 - much faster convergence with a pre-conditioner
 - Jacobi, (S)SOR → easy, matrix-free and GPU friendly
 - Incomplete factorization → more involved
• Conjugate Gradient for Least-Square problems
 – The bad approach: form the normal equation
 \[A^T A x = A^T b \]
 – LSCG
 • solve for the normal equation without computing \(A^T A \)
 • numerically more stable
 • matrix-free & GPU friendly
Iterative methods

- Iterative methods for non-symmetric problems
 - Bi-CG(STAB)
 - close to CG but...
 - convergence not guaranteed
 - error may increase!
 - GMRES
 - error monotonically decreases but...
 - may stall until the n-th iteration!
 - memory consumption
 - has to store a list of basis vectors (hundreds)
Sparse solvers – Summary

<table>
<thead>
<tr>
<th></th>
<th>memory</th>
<th>mat-free</th>
<th>multiple rhs</th>
<th>2D domain</th>
<th>3D domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct (simplicial)</td>
<td>-</td>
<td>-</td>
<td>***</td>
<td>***</td>
<td>*</td>
</tr>
<tr>
<td>Direct (with dense blocks)</td>
<td>-</td>
<td>-</td>
<td>***</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>Iterative methods</td>
<td>***</td>
<td>***</td>
<td>-</td>
<td>*</td>
<td>***</td>
</tr>
</tbody>
</table>

- **Symmetry** Positive Definite is important
 - simpler implementation
 - up to an order of magnitude faster
 - more robust
Solver Choice

• Questions:
 - Solve multiple times with the same matrix?
 • yes → direct methods
 - Dimension of the support mesh
 • 2D → direct methods
 • 3D → iterative methods
 - Can I trade the performance? Good initial solution?
 • yes → iterative methods
 - Hill conditioned?

• Still lost? → online sparse benchmark → demo
Let's go back to our Laplacian problem...
Laplacian problem

- Laplacian matrix on a triangular mesh

\[\Delta u = 0 \iff L u = 0 \]

- with \(L_{i,j} = \cot \alpha_{ij} + \cot \beta_{ij} \), \(L_{i,i} = -\sum L_{i,j} \)

- symmetric
- conditioning depends on triangle shapes
- SPD for well shaped triangles
- solver choice: direct simplicial \(LDL^T \)
Laplacian problem

\[\Delta u = 0 \iff L \mathbf{u} = 0 \]

- This is an abstract problem
 - need to add constraints to make it meaningful
- Fix values at vertices, i.e., \(u_i = \bar{u}_i \) for some \(i \)
 - remove smoothness constraints at these vertices
 - and reorder:

\[
\begin{bmatrix}
L_{00} & L_{01} \\
L_{10} & L_{11}
\end{bmatrix}
\begin{bmatrix}
\mathbf{u} \\
\bar{\mathbf{u}}
\end{bmatrix} =
\begin{bmatrix}
0 \\
\theta
\end{bmatrix}
\Rightarrow
L_{00} \cdot \mathbf{u} = -L_{01} \cdot \bar{\mathbf{u}}
\]

- problem is still SPD :)}
Laplacian problem

• Add linear constraints: \(Cu = b \)

 - Solution 1:
 • reduce the solution space through the null-space of \(C \)
 • reduce problem size :)
 • problem is not symmetric anymore :(
Laplacian problem

- Add linear constraints: $Cu = b$

 - Solution 2:

 - Lagrange multipliers yields

 $$
 \begin{bmatrix}
 L & C^T \\
 C & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 u \\
 \lambda \\
 \end{bmatrix} =
 \begin{bmatrix}
 0 \\
 b \\
 \end{bmatrix}
 $$

 - not SPD :(
 - but symmetric indefinite \rightarrow LDLT if well conditioned
Regularizing homogeneous equations

with

quadratic constraints
A first example

- How to fit a hyper-plane through points?
 - Search a plane with center \mathbf{c} and normal \mathbf{n} to a set of points \mathbf{p}_i
 - Minimize least-square error:
 $$E(\mathbf{c}, \mathbf{n}) = \sum_i \left((\mathbf{p}_i - \mathbf{c})^T \mathbf{n} \right)^2$$
 - Subject to $\|\mathbf{n}\| = 1$

→ at a first glance, non linear problem...
Plane fitting

- $E(c,n)$ minimum when its derivative wrt. c vanish:

$$\frac{\partial E(c,n)}{\partial c} = ... = -2n n^T \sum_i (p_i - c) = 0$$

- implies that

$$\sum_i (p_i - c) = 0 \quad \Rightarrow \quad c = \frac{1}{n} \sum_i p_i$$
Plane fitting

- Reformulate $E(c,n)$:

$$E(c,n) = n^T \left(\sum_i (q_i - c)(q_i - c)^T \right) n = n^T C n \rightarrow \min$$

- subject to $\|n\| = 1$

- Lagrange multiplier: $n^T C n - \lambda (n^T n - 1) \rightarrow \min$

- Differentiate on n yields an eigenvalue problem:

$$C n = \lambda n$$

- residual: $n^T C n = \lambda$

$\rightarrow n$ is eigenvector of smallest eigenvalue
A second example

- How to fit an hyper-sphere to points?
 - Search a sphere with center \(c \) and radius \(r \) to a set of points \(p_i \)
 - Minimize least-square error:

\[
E(c, r) = \sum_i (\|p_i - c\| - r)^2
\]

- non-linear energy → see previous session (need an initial guess)
- numerically unstable for flat area (\(c, r \to \infty \))
Sphere fitting

• Linearized energy:

\[
E(c, r) = \sum_i \left(\| p_i - c \|^2 - r^2 \right)^2
\]

\[
= \sum_i \left(c^2 - r^2 - 2 p_i^T c + p_i^2 \right)^2
\]

\[
= \sum_i \left(u_c + p_i^T u_1 + p_i^2 \right)^2
\]

- metric is not Euclidean anymore
- still unstable for flat area
Sphere fitting

- Linearized energy:

\[
E(c, r) = \sum_i \left(\|p_i - c\|^2 - r^2 \right)^2
\]

\[
= \sum_i \left(c^2 - r^2 - 2p_i^T c + p_i^2 \right)^2
\]

\[
= \sum_i \left(u_c + p_i^T u_1 + p_i^2 \right)^2
\]

\[
= \sum_i \left(u_c + p_i^T u_1 + u_q p_i^2 \right)^2
\]

- metric is not Euclidean anymore
- again, needs to avoids trivial solution \(u = 0 \)
Algebraic sphere fitting

• Some bad ideas:
 – fix some values, e.g.: \(u_q = 1 \)
 – linear equality: \(\sum_j u_j = 1 \)
 – unit norm: \(\| \mathbf{u} \| = 1 \)

• What do we want?
 – be invariant to similarity transformations
 – mimic Euclidean norm
Algebraic sphere fitting

• Solution:
 - constraint $\|\nabla f(x)\|=1$ at $f(x)=0$
 - algebraic distance close to Euclidean one nearby region of interest

• In practice:
 $u^T Q u = 1$
 - with Q symmetric
 - solve E over the unit ball induced by Q
Quadratic constraints

- The general problem is now:
 - minimize $\| A \mathbf{u} \|^2$
 - subject to $\mathbf{u}^T Q \mathbf{u} = 1$
 - through Lagrange multipliers, we end up with a *generalized eigenvalue* problem:
 $$ A \mathbf{u} = \lambda Q \mathbf{u} $$
 - residual $= \lambda$
 - \mathbf{u} is the eigenvector of the smallest eigenvalue
Quadratic Constraints

• Other examples:
 – Unsigned surface reconstruction
 – Smooth n-direction fields

• Taking home message
 – the choice of the regularization norm is crucial!
 – taking $\|x\| = 1$ is unlikely the right choice!
Eigenvalue problems

• How to solve?
 • closed forms 2x2 and 3x3
 • iterative algorithms otherwise
 • need only the largest → Power iterations
 - fast, easy, GPU-friendly, sparse-friendly
 - be careful with repeated eigenvalues
 • need only the smallest → Inverse Power iterations
 - slightly more tricky: needs a linear solver

• Can-it be considered as a direct method?
 • numerically no, but
 • it provides many of the advantages of simple linear problems such as analytic derivatives
Other classical approaches in geometry processing

- **Alternate solution**
 - chicken-egg problems
 - fix one part of the equation, solve for the second part
 - fix the second part, solve for the first one
 - repeat
 - ex.: ARAP energy

- **Barriers**
 - replace inequality constraints with penalty functions
 - much more tricky than it looks like
Other classical approaches in geometry processing

• Smooth functions on meshes
 – linear basis are unnecessarily numerous
 – compute a small set of smooth eigenfunctions
 • typically: a few hundreds
 • many kernels, e.g., heat-kernel, Laplacian
 – your solution becomes “smooth by construction”
 – permits to work with medium-size dense algebra
 – overheads: initialization, conversions, storage