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complex (3D) datasets

digital representations of either physically
existing or designed objects that can be
processed by computer applications

single 3D models
sets of 3D models

* repositories

e scientific experiments
aggregates
assemblies
cities/geospatial
medical acquisitions




why reasoning about shape

* the shape is one of the most distinctive property
by which we characterize complex datasets

e the shape is realized by a geometry (data)

* the shape is one of the primary keys to
semantics (information)
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reasoning about shape today

gradual shift of paradigm in many scientific fields: from
physical prototypes and experience to virtual prototypes and
simulation
— CAD/PLM, Bioinformatics, Medicine, Cultural Heritage, Material
Science,..
technologies today
— graphics cards evolution
— 3D acquisition devices are becoming more and more commonplace
— computer networks may now rely on fast connections at low cost
— 3D printers are now able to produce not only mock-ups but even
end products
3D content is likely to become heavily present in tomorrow’s
networked and collaborative platforms
— in the residential domains, for networked entertainment and
virtual/gaming applications
— fabbing and personalization of 3D products



why us for « reasoning about shape »

* CNR-IMATI gang
— geo/topological analysis

— 3D and semantics

* since 2004.. 10 years anniversary! ﬁ

structure

* Hamid Laga gl

— computer vision
— statistical shape analysis \W/




similarity as a key to analyse 3D

e describe the content of this dataset

e use of similes
— shaped like, looks like, has the shape of, resemble,..

e use of descriptions referring to the functionality
— is a, used for, could be used for,..



similarity as a key to analyse 3D

* similarity and invariance

— Kendall [1977] suggests to consider invariance of the shape under
Euclidean similarity transformations: “shape is all the geometrical
information that remains when location, scale, and rotational
effects (Euclidean transformations) are filtered out from an object”

— ATTENTION: no default invariance group

e similarity and the observer

— [Koenderink 1990] focuses on the importance of the context:
“things possess a shape for the observer, in whose mind the
association between the perception and the existing conceptual
models takes place “

e similarity is a cognitive process which depends on the observer
and the context



similarity as a key to analyse 3D
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similarity, invariants and context

LA

geometric congruence

“natural semantics”

functional equivalence equivalence




similarity, invariants and context

* congruence

— two objects are congruent if one can be transformed
into the other by rigid movements (translation,
rotation, reflection — not scaling)

* % X




similarity, invariants and context

* congruence

— two objects are congruent if one can be transformed
into the other by rigid movements (translation,
rotation, reflection — not scaling)

P d not appropriate for a text
recognition system



similarity, invariants and context

e affinity

— preserves collinearity, i.e. maps parallel lines into

paralle
paralle

— equiva

lines and preserve ratios of distances along
lines

ent to a linear transformation followed by a

translation




similarity, invariants and context

e affinity

— preserves collinearity, i.e. maps parallel lines into

paralle
paralle

— equiva

lines and preserve ratios of distances along
lines

ent to a linear transformation followed by a

translation




mathematics and shape reasoning

* selection of invariants and development of approaches
to handle them

e shape descriptions to reduce the complexity of the
representation

descriptions

measure somehow

relevant properties of [ T Eohdl 1 |
3D objects...
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mathematics and shape reasoning

* selection of invariants and development of approaches
to handle them

e shape descriptions to reduce the complexity of the
representation

e appropriate similarity measures between shape
descriptions

descriptions real numbers

% =d_match( . )

Similarity
measures



outline

e Introduction: (Michi— 20 min)
* Part|: Geometric - topological analysis (Silvia - 50 min)
— basics spaces, functions, manifolds and metrics
— from rigid (Euclidean spaces) to intrinsic geometry (geodesic and theorema
Aegregium) to topology (Erlangen' paradigm)
— metrics between spaces
— applications
e Part ll: Statistical Shape Analysis (Hamid - 50 min)
— Statistical Shape Analysis on linear spaces
— Statistical Shape Analysis on non-linear spaces
— Applications
e Part lll: Structural Analysis of Shapes (Michela - 50 min)
— feature extraction, segmentation, graphs and skeletons

— from geometry and structure to semantics
* semantic annotation
* priors for shape correspondenc
* |earning 3D mesh segmentation & labeling
* functionality recognition

* Conclusions: (Michi — 5min)
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* Basic notions from geometry and topology
* |sometris and intrinsic shape properties

e Basic concepts of differential (and computational)
topology

* Applications

* Summary




* Basic notions from geometry and topology

— Spaces, functions, manifolds and shape deformations




Why topological spaces?

* to represent the set of observations made by the

observer (e.g., neighbor, boundary, interior,
projection, contour);

* to reason about stability and robustness

(e




Why functions?

* to characterize shapes
* to measure shape properties

* to model what the observer is
looking at

* to reason about stability

e to define relationships
(e.g., distances)




Continuous and smooth functions

* let X,Y topological spaces, f : X— Y is continuos if for
every open set VV C Y the inverse image f~1(V) is an
open subset of X

* let X be an arbitrary subset of R™; f : X— R™ is called
smooth if VxeX there is an open set UCRR" and a
function F: U—-R™ such that F = f|x on XnU and F has

continuous partial derivatives of all orders

| 8




Why manifolds?

* to formalize shape properties

* to ease the analysis of the shape
— measuring properties walking on the shape

— look at the shape locally as if we were in our
traditional euclidean space

— to exploit additional geometric structures which can
be associated to the shape

S




* 3-manifolds with boundary:
— a solid sphere, a solid torus, a solid knot

e 2-manifolds: °¢
— a sphere, a torus

e 2-manifold with boundary:

— a sphere with 3 holes,
single-valued functions (scalar fields)

1 manifold:
— acircle, aline




Which shape transformation?

* Not only congruence, translation, rotation,
scaling but also shrinking and non uniform
stretching




Shape transformations

affine transformation

"locally-affine" transformation elastic deformations and gluing




* Basic notions from geometry and topology
* |sometris and intrinsic shape properties

— Gaussian curvature, gedesics and diffusion geometry




The evolution of geometry

e Till “700: Cartesian coordinates,
Euclidean distances

— Extrinsic geometry

e 1825: Theorema Aegregium

— Intrinsic geometry

e 1872: Erlangen’s program -> topology

— Generic deformations




* a metric space is a set where a notion of distance

(called a metric) between elements of the set is
defined -

e formally,

Po
— a metric space is an ordered pair (X, d) where X is a set
and d is a metric on X (also called d|s'tance fu,nftlon)
a function * '

—d:XxXX-> R

— suchthatVx,y,z € X: ‘ '
e d(x,y) = 0; (non-n atlve) ’

e d(x,y) = 0iffx =y, (|dent|}
 d(x,y) =d(y, x); (symmetry)
e d(x,z) <d(x,y) +d(y,z) (triangle inequality)

i



What properties and invariants?

* howfararep,gqonXandp’,q onY?




Isometries

* anisometry is a bijective map between metric spaces that
preserves distances:

* 1 XY, dY(f(Xﬂ»f(xz)) = dyx(x1, X7 )

(X, dy) (Y, dy)

p q
_ " ”
;
—

* |ooking for the right metric space...

— the Euclidean distance d(x,y) = ?zl\/(xi —y; )?

— geodesic distances, diffusion distances, ...




Invariance and isometries

e a property invariant under isometries is called an
Intrinsic property

* examples:
— The Gaussian curvature K
— The geodesic distance

— Diffusion geometry




Principal curvatures

e the principal curvatures measure the maximum
and minimum bending of a surface at each point
along lines defined by the intersection of the
surface with planes containing the normal




Gaussian and mean curvature

* given k, and k, the principal curvatures at a
point surface

— Gaussian curvature K = kq k-
— mean curvature H = (ky + k,) /2

e according to the behavior of the sign of K, the
points of a surface may be classified as
— elliptic
— hyperbolic
— parabolic or planar



Examples




Conformal structure

e a conformal structure is a structure assigned to a
topological manifold such that angles can be defined

— in the parameter plane the definition of angles is easy

— to cover a manifold it could be necessary to consider
many local coordinate systems with overlapping

— if the transition function from one local coordinates to
another is angle preserving,
the angle value is independent
of the choice of the local chart

j
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Conformal structure&Riemann surface

e atopological surface with a conformal structure
is called a Riemann surface

e a 2-manifold (real) can be turned into a
Riemannian surface iff it is
— orientable
— metrizable

* a Mobius strip, Klein bottle, projective plan do
not admit a conformal structure



Geodesic distance

* the arc length of a curve y is given by fy ds
* minimal geodesics: shortest path between two
points on the surface

* geodesic distance between P and Q: length of the
shortest path between P and Q

* geodesic distances satisfy all
 the requirements for a metric

* a Riemannian surface carries
the structure of a metric space whose distance
function is the geodesic distance




Diffusion geometry

e The diffusion distance measures

— The heat diffusion on the shape between two points

— The probability of arriving from one point to another in a
random walk with a fixed number of steps

 The computation of diffusion is related to on the
Laplace operator:

Af =div(grad f) =V -Vf = V4f

 The Laplace-Beltrami operator generalizes the
Laplace operator to Riemannian manifolds

p



Laplace-Beltrami problem

¢ Af = —Af

e orthonormal eigensystem

B =¥l A = Ay,

A S < ..., A4i £ Ajsy... <+
* Discrete Laplace-Beltrami operator

M) = = 3wy [0 - 1))

: JEN(7)

N (i) index set of 1-ring of vertex p;
f (p;) function value at vertex p;
d; mass associated with vertex p;

w;; edge weights



Discrete geometric Laplacian

 Desbrun et al. (1999)
cot(a;;) + cot(B;))

W;J; —

; d; = a(i)/3

— the cotangent weights take into account the angles opposite to
edges,
the masses take into account the area around vertices

 Meyer et al. (2002)
d; = ay(i)
— cotangent weights, masses considering the Voronoi area

* Belkin et al. (2003, 2008)
— weights constructed using heat kernels

e Reuter et at. (2005, 2006)
— weak formulation of the eigenvalue problem

(AT, i) 2oy = = A, @) 2om)

with ¢; cubic form functions



Heat equation

* The heat kernel h;(x, y) represents the amount
of heat transferred from x to y intime t

he(6,y) = ) e Mty (v)
i>0
* Heat kernel (autodiffusion) function fsun et 2009, Gebai et

al 2009]

HKF;(x)=h:(x, x)

W




* Basic notions from geometry and topology
* |sometris and intrinsic shape properties

e Basic concepts of differential (and computational)
topology

— Homeomorphisms, topology invariants and basic concepts of
Morse theory




Which mathematics?

» differential (and computational) topology

— formal definition of the domain

(topological spaces) a
— invariants and properties (functions) P
P9

shape invariants

— isometries...

... but not only!



Homeo- & diffeo- morphisms

* a homeomorphism between two topological
spaces X and Y is a continuous bijection h: X—)Y
with continuous inverse h™1

h
=

e given Xc R™ and YcR™, if the smooth function
f:X— Y is bijective and f~1 is also smooth, the
function f is a diffeomorphism

-
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About transformations

* several transformations f: X — X' that can be
applied to a space X

homothety —

similarity c affinity

congruence C

Mobius homeo-
: transformation — | morphism
isometry C

quasi-isometry

are these transformations enough to describe a
shape and its relation to other shapes?
what else? can we define other invariants?



Why algebraic topology?

e algebraic topology associates algebraic invariants
to each space so that
two spaces are homeomorphic if they have the
same invariants

e approach: to decompose a topological space
into simple pieces that are easier to study (e.g.
to decompose a polyhedron into faces, edges,
vertices or a surface into triangles)



Many invariants

* algebraic topology

— Invariants: homeomorphisms

* what if we want to reason about shapes under
more invariants?

e critical points of functions may give good
characterizations of shape properties which
reflect different invariants




Morse theory & shape similarity

* to combine the topology of X with the quantitative
measurement provided by f

— f is the lens to look the properties of (X, f)
— different choices of f provide different invariants

* to construct a general framework for shape
characterization which if parameterized wrt the pair

1377

(X,9) (X, h) (X, 1)




Comparing shapes

* to assess how far two shapes (X, f) and (Y, g)

— a distance between topological spaces equipped with functions is
needed

same function,
different spaces

=

(5,)

%
~
“‘%%.
%
* natural pseudo-distance:

— shapes are similar if there exists

a homeomorphism between the

spaces that preserves the properties
conveyed by the functions




Scalar functions & shape descriptions

* Reeb graphs (Reeb 1946, Shinagawa&Kunii 1991, Biaso )
* Persistent topology (rerri, Frosini 1990, Edelsbrunn )

* Morse and Morse-Smale complexes (Edelsl:
2001, Edelsbrunner et al. 2003)

e applications
— shape segmentation/abstraction
— shape retrieval and classification

Biasotti S. et al.: Describing shapes by geometric—topological properties of real
functions. ACM Computing Surveys, 2008




Scalar functions & shape comparison

e Multi-variate functions (e.g textures) (siasotti et al 2008, Biasotti et al,
CGF, 2013]

* Functional ma PS [Ovsjanikov et al 2012, Rustamov et al 2013]

* Automatic selection of expressive functions (e.g. using a
clustering approach) [iasotti et al, caG, 2013]

e Learning descriptions (e.g. from kernels of Reeb graphs or
spectral prope rties) [Barra&Biasotti, Patt. Rec., 2013, Litman&Bronstein 2013]

 Feature selection [Bonev et al, cVIU 2013]



* Basic notions from geometry and topology
* |sometris and intrinsic shape properties

e Basic concepts of differential (and computational)
topology
* Applications
— Shape correspondence
— Attribute transfer
— Shape matching

* Summary



Application to 3D shape analysis

* Shape correspondence

— Finding correspondences between a discrete set of points on
two surface meshes

e Shape matching
— Quantifying the similarity between couples of objects
— Indexing a database

— ldentifying an object as belonging to a class




Intrinsic correspondence [LF2009]

* |looking for an intrinsic correspondence means
finding corresponding points such that the
mapping between them is close to an isometry

isometry

° idea: \

any genus zero surface can be
mapped conformally to the unit —

sphere \
¢4

ecpz 0 ? 0 qb;l‘

1-1 and onto conformal map of a sphere to itself (Mobius map): uniquely defined by three
corresponding points




Intrinsic correspondence [LF2009]

* Algorithm

1.

2.

3.

4.

5.

sampling points: local maxima of Gauss curvature &
(geodesically) farthest point algorithm

discrete conformal flattening to the extended complex
plane

compute the Moébius transformation that aligns a triplet
in the common domain

evaluate the intrinsic deformation error and build a
fuzzy correspondence matrix

produce a discrete set of correspondences

* pay attention to...
— what about higher genus surfaces?
— drawbacks of the discrete (linear) flattening technique



Comparing textured 3D shapes [Bc*13]




Comparing textured 3D shapes [Bc*13]

* photometric description

— the multidimensional persistence spaces and CIELab
coordinates

06

S. Biasotti, A. Cerri, D. Giorgi, M. Spagnuolo, PHOG: Photometric and geometric functions for textured shape
retrieval, CGF 2013




Comparing textured 3D shapes [Bc*13]

. hybrld geometrlc photometric description
— the geodesic distance weigthed with respect to the

Riemannian and ClELab spaces
S. Biasotti, A. Cerri, D. Giorgi, M. Spagnuolo, PHOG: Photometric and geometric functions for textured shape
retrieval, CGF 2013




Comparing textured 3D shapes [Bc*13]

* geometric description

— the intra-distance matrix of geometric functions
defined on the shane

S. Biasotti, A. Cerri, D. Giorgi, M. Spagnuolo, PHOG: Photometric and geometric functions for textured shape
retrieval, CGF 2013




e SHREC’13 dataset

— 10 classes of 24 textured models each
— two level classification

* highly relevant: models with same shape and texture
* marginally relevant: models with same shape

E S S SHEE Y
E-NE S SN




Performances

Average precision recall graphs
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Summary

e ...theright space

— rigid transformations (rotations, translations)
* Euclidean distances

— isometries/symmetries
* Riemannian metric

 curvature (but unstable to local noise/perturbations)
* geodesics, diffusion geometry, Laplacian operators, etc
— local invariance to shape parameterizations
e conformal geometry
— similarities (i.e. scale operations)
* normalized Euclidean distances
— affinity (and homeomorphisms)
* Morse theory

* persistent topology
* size theory




e ... asuitable shape description

— coarse coding (but fast)
* histograms
* matrices

— articulated shapes
* medial axes
* Reeb graphs

— overall global appearance
* silhouettes

— if shape loops are relevant
* graph-based descriptions
* persistent topology




Open issues

 Geometry, structure, similarity, context

— s 1T possib
functiona

— machine

e to understand something about
Itye

earning vs geometric-reasoning

— 3D query modalities

— what if shape is influenced/modified by the
contexte
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* Introduction and motivations
 Statistical Shape Analysis on linear spaces
e Statistical Shape Analysis on non-linear spaces

— Kendall’s shape space
— Square-Root Velocity representations

* Applications

* Summary




Statistical Shape Analysis Goals

Modeling the continuous variability in shape collections

 Comparing pairs or collections of shapes
— Ablity to say whether two (collections of) shapes are similar or not
— Localize similarities and differences

* Computing summary statistics
— Shape atlas: mean shapes, covariances, and high-order statistics.

e Stochastic modeling of shape variations

— Provide probability distributions, thus generative models,
associated with shape classes.

e Exploration of the shape space
— Interpolations and extrapolations
— Random generation of valid instances of shapes
— Statistical inferences, regressions and hypothesis testing.



Feature or descriptor-based analysis

A mapping of the shape space into
a (finite) (low) dimensional feature space

« X

- v

o

Shape space Feature space




Feature or descriptor-based analysis

A mapping of the shape space into
a (finite) (low) dimensional feature space

2D

* Morphological properties

(size, area, aspect ratio, symmetry, ...

* Fourier / wavelet descriptors
e Zernike moments

» Shape context (SC)
* Inner Distance-based Shape Context

* Shape distribution
e Curvature Scale Space

)

3D

* Morphological properties
(size, volume, aspect ratio, symmetry, ...)
3D Fourier / wavelet descriptors
e Zernike moments
» Spherical harmonics and spherical wavelets
» Shape context (SC)
* Shape distribution
* Spin images,
* Heat Kernel signatures
e Reeb graphs




Feature or descriptor-based analysis

The mapping is often not invertible

— Problem: Cannot compute summary statistics or perform statistical
inferences

Shape space Feature space

What is %(x1 +Xx,)?




Statistical shape analysis —a warm up

Landmark-based shape representations

X1

Xy

Vi
X | Vi
Xy | V2

—_—

xn yn

A shape as a set of Y

n anatomical landmarks ¥,

2 . )
P = {Pi = (x;,y;) ER%i= 17---”} Shape vector



Statistical shape analysis —a warm up

* A shape as a set of n ordered landmarks

P={pi=(x,vi)eR%i=1,...n}

* Shape is a property that is invariant to
translation, scale, and rotation

— Remove translation by centering shapes to their
center of mass

— Rescale the shapes such that ||p||* =3, |pi|* =1
* Pre-shape space

D={p=(pii=1...n) | Y. pi=0,|pll=1}.



Statistical shape analysis —a warm up

 |nvariance to rotation

— Given two shapes P and Q, rotate Q such that the SSD
between the corresponding landmarks is minimized

e Compute the Singular Value Decomposition (SVD) of the
matrix M = P x Q. Thatis, M = UZV*.
e The optimal rotation matrix that aligns Q to P 1s given by
O =UV’, with O € SO(2).
e Rotate Q with O. That1s Q <+ OQ.
* Shape space becomes S =D/ SO(d), where
— d =2 for 2D shapes

— d =3 for 3D shapes
* Perform statistical analysis in this space



Linear methods for statistical shape anal.

Assume that S is a vector space equipped with the Euclidean distance

_ 1
Mean shape x= Nzix,-.

Covariance matrix K Eigen decomposition of K
r * Leading eigenvalues ?}»k,

K= Z(Xl —X)(x; —X)". . Leading eigenvectors VJ-

StaﬁSﬁca”y feasible ShapeS Shape parameterizaﬁon
d
X:)—(-I-Z(kak, or € R U:\(alaaQa'“aad)-
i=1

Gaussian distribution on the parameters

a | d (X.,2
—log Pr( ):EZT_I_COHSL

i=1 "1



Application to 3D face analysis

3D morphable model for face analysis and synthesis

Image courtesy of Blanz and Vetter 1999

Blanz and Vetter. A Morphable Model for the Synthesis of 3D Faces. Siggraph 1999




Pipleline

e Database
— Laser scans of 200 faces (100 males, 100 females)

A 3D face is represented by
— Ashapevector X =(x, v, z;, e, X, V,, Z,)
— An appearance vector T =(r;,, g, b;, ..... ¥, 2, D)7
 Use N examplar faces to train the morphable model
— Normalize all the faces for translation, scale and rotation
— Put all the faces in one-to-one correspondences
— Run PCA on the shape and on the appearance vectors

d
X=X+ z O:Vvr, where o € R
i=1

Blanz and Vetter. A Morphable Model for the Synthesis of 3D Faces. Siggraph 1999




Application to 3D face analysis

Face shape space exploration

Image courtesy of Blanz and Vetter 2003

Blanz and Vetter (2003). Face Recognition Based on Fitting a 3D Morphable Model. IEEE PAMI 2003



Application to human body shape analysis

Exploration of the space of human body shapes

Image courtesy of Allen et al. 2003

Allen et al. 2003. The space of human body shapes: reconstruction and parameterization from range scans (Siggraph 2003)



Some facts ....

* Correspondence
— Assume that the landmarks are given and that they are in correspondence

* |nvariance
— Translation, scale
— Rotations — depends also on the quality of the correspondences
— How about re-parameterization ?

e Statistical analysis
— Assume that the population of shapes follows a Gaussian distribution.
— Is the distribution really Gaussian ?
— Can we fit distributions from the parametric or non-parameteric families ?



e Statistical Shape Analysis on non-linear spaces

— Kendall’s shape space
— Square-Root Velocity representations

* Applications

* Summary
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In: The Four Books of Human Proportions
by Albrecht Durer (1528)

Images courtesy of Wikipedia Commons and adapted from: A. Srivastava et al. / Image and Vision Computing 30 (2012) 398—416

Fig. 517. Argyropelecus Olfersi.

Fig. 518. Sternoptyx diaphana.

In: On Growth and Evolution
by D’Arcy W. Thompson (1917)




.. 1976 ...

e Ulf Granendar’s pattern theory (1976)

— Shape is not represented as such but as a deformation of
another, called template.




And to 1984 ...

e David G. Kendall (1984) — statistics into shape analysis

Shape is what is left when differences which can be attributed to
translations, rotations and dilations have been quotiented out

NOT EUCLIDEAN !

Normalization —> Shape space >l Assume a vector space

—_> (translation, ) _
scale, rotation) D={p=(pi,i=1...n) (PCA-based analysis)

Y pi=0{[|p|| = [} * Active Shape Models

_________ [Cootes et al. ]
* Morphable models
l [Blanz and Vetter 1999,
Allen et al. 2003,
Allen et al. 2006, ...]

Shapes as Landmarks
in correspondence

Non-linear manifold




Kendall’s shape space

Statistics directly on the manifold

e Sample (Karcher) mean

= arggfnég;ds(X, X;)
|k
(1) v = exp, ' (X5) (2) v= T ;Ui (3) 1< exp,(ev)

Slide adapted from A. Srivastava, ICIP2013 Keynote talk.

Kanti Mardaria and lan Dryden. In: Statistical Shape Analysis




Kendall’s shape space

Intrinsic covariance matrix

— Work on the tangent space 7,,(S) to the manifold
at the mean

(1) v; = exp;I(X,-) (2) ¢ = 1 Z(’Uz' — ) (vi — p)’*

— Statistical analysis on T,(S)
 Tangent PCA (TPCA)
* Probability models on 7},(S) (e.g., Multivariate normal, GMM)

— Project back the statistics on the manifold
using exponential map

Slide adapted from A. Srivastava, ICIP2013 Keynote talk.

Kanti Mardaria and lan Dryden. In: Statistical Shape Analysis




Issues with Kendall’s approach

* Landmarks selection and registration
— How to select landmarks on shapes ?
— Different selections may lead to different results
— Pre-defined sampling forces a specific registration

B1 (uniform sampling) 2 (uniform sampling) j3 2 (non-uniform sampling)

Srivastava et al. 2012. In: Image and Vision Computing.



From landmarks to continuous objects

Assume continuous objects and discretize only at the
implementation stage

Parameterize Shapes on a continuous domain D

J()=(x, y)

Closed curves Genus-0 surfaces



Parameterization provides registration

Initial parameterization After re-parameterization

of £,
Si(s) Py

J0Y

[ 15:66) = fao)lPds # [ 1) — fatar(e))IPds
D D




Parameterization provides registration

Initial parameterization After re-parameterization of £,

J1(s)

J0Y

Problem: ||| fioy— fao¥|| # || fi — f2




Parameterization provides registration

Re-parameterizations do not act by isometry
under the L? metric

| Fror—faon]l = ( / Ifl(v(S))—fz(v(S))Izds) _

1/2
(/D 1 f1(5) — f2(§)|2jv(3)_1d§) # || fi—fal

l

Often different from one

( 7 often is not area preserving)

Euclidean metric is not invariant to re-parameterization of the shapes




Invariance

 Re-parameterization is an additional nuisance group

— It needs to be removed in same way as
translation, scale and rotation

Compare surfaces using a Riemannian metric that is invariant to
scale, translation, rotation, and re-parameterization




Formulation

 Ashapespace F and a metric on this space
— Shapes become points on this space
— Pathes F are deformations (bending & stretching)

F*

arg min
F:[0,1] »F
F(O) =f1)
F(1) = fa

that align one shape to another
— Shortest pathes F* (geodesics) are optimal deformations
— Geodesic distance (length of F*) is a measure of dissimilarity

([ o, o a)

Length of F

f

F(t) F

F(0) :flj{

F(1) =1,

i

F:[0,11> &

Which shape space ? Which metric on this space ?




Formulation

Optimize over all possible rotations and diffeomorphisms

: . ' (1/2)
’Yrréulg | . [Orjlﬁl_) 7 ( /0 l«Ft (t), Fy(t))) | dt)
O € SO(3) F(0) = f1, F(1) =O0(f207) Metric

Shortest path (geodesic) between F(0) and F(1)
under fixed rotation and re-parameterization

Registration of f, onto f;
(finds optimal rotation and re-parameterization)



Step 1 - Representation

A 3D Shape as a continuous surface

* Normalize for translation

.2 £(s)lla(s)llds
feenterea(s) = £(s) _“fszfsz(lja(S)(llf)is '

* Normalize for scale

fscaled(s) — Jﬁ;-
V Js2 lla(s)llds

Genus-0 surfaces

Preshape space .% is the space of all normalized surfaces



Step 2 - Q-maps: Square Root Representation

Action of the

-m f rf izat
Q-map of a surface f re-parameterization

re-parameterization

Z 0:F — L2 L2 . foy

l representationl lrepresentatlon

q.

Q(f)(s) = a(s) = +/la(s)|/ (s)

areaof f ats € S?

g1 — q21l = 1|(q1,7) — (g2, Pl

Kurtek et al., A Novel Riemannian Framework for Shape Analysis of 3D Objects. CVPR 2010.



Riemannian metric on the space of Q-maps

The space of

normalized surfaces The space of Q-maps

“

Tf(gz) /\ L’
r wi = Qx, 5(v1)
f q < wy = Qx,f(v2)
1%

2 >

Metricon .% <€<——— Dot product on the space of Q-maps

(1)) = (Qupn),Qur2))  (oaswa) = [ (wi(9)wals))ds forwr.ws € T,(L”

1
Q* v) =

(a-ay)f++/lalv

Under this metric, the action of I on % is by isometries

Kurtek et al., A Novel Riemannian Framework for Shape Analysis of 3D Objects. CVPR 2010.




Pre-shape and shape space

* Pre-shape space
— Center and re-scale all surfaces
— Pre-shape space .% is the space of all normalized surfaces

e Shape space
— Rotation group SO(3): SOB3)x F —F: (0,f)=0f
— Reparameterization group: % xI'—= % : (f,y) =(foY)
— Equivalence classes represent each shape uniquely

[f] = closure{O(fo7y)|0 € SO(3) ye T}

— Shape space is the set of all equivalence classes

S ={lfllf €7}

Kurtek et al., A Novel Riemannian Framework for Shape Analysis of 3D Objects. CVPR 2010.



Geodesics in shape space

( Geodesic in pre-shape space
i i ( 1 F,(t), F,(£)))(1/? dt)
min R / (0RO
O € SO(3) \ F(0) = f1, F(1) =O(f207) Metric )

Geodesic in shape space

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Step 3 — Solving the optimization problem

( Geodesic in pre-shape space
i i ( 1 F,(t), F,(£)))(1/? dt)
min R / (0RO
O € SO(3) \ F(0) = f1, F(1) =O(f207) Metric )

Geodesic in shape space

* Step 3.1.

— Solve the inner optimization for fixed rotation and re-
parameterization (path straightening algorithm)

* Step 3.2.

— Solve the outer optimization over SO(3) and I

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Step 3.1. Solving the inner optimization

[
1
min min 2 (t), F, (1/2)
v € Lo, F:[0,1] = F (/o (F(0), (o) dt)
0 €50(3) \ F(0)=f1, F(1) = O(f207)

Path straightening
— Energy of a path

EIF)= [ (5 F))r

— Critical point of E is a geodesic
— Use gradient descent

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Step 3.2. Solving the outer optimization

(
i mi W(2), F, () /2
ma SR KCICRCIREE)
0 €50(3)| \ F(0) = f1, F(1) = O(f207)

Fix the parameterization, optmize over SO(3)

Standard Procrustes analysis

WA= [eq()ps)ds @ a=vuv? @ o*=vvT

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Step 3.2. Solving the outer optimization

(
min min L(8), Fy () (/2
pn, ([ emoroa)
0 €50(3)| \ F(0) = f1, F(1) = O(f207)

Fix the rotation, optimize over I 7* = arg min llgs — (g2, )II?
H2(y)

(1) Cost function
H2(y) = llg1 = (g2 VII* = llg1 — ¢(V)II>

(2) Mapping and differential (3) Gradient of energy
0(7) = (92,7) = \/Iy(q207) dy=Y (g1 — g2, 0.y, (b:))b:
Oiyg (D) = (1/2)(V-b)g2+Vqr-b i=1

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Construction of the orthonormal basis

e Basis for T, (I')
— Fourier-type basis (boundary constraints)
— Gradients of spherical harmonics

— Monomials (boundary constraints)

e Use Gramm-Schmidt to orthonormalize

Kurtek et al., Elastic Geodesic Paths in Shape Space of Parameterized Surfaces. |EEE Trans. On PAMI 2012.



Results — computing geodesics

 Hemispherical surfaces (e.g. Human Faces)




Results — computing geodesics

* Closed surface (biomedical applications)




Results — correspondences and geodesics

Isometric deformations

o o R

L[F*] = 0.1609

o e 7

L[F*] = 0.1369

Correspondences are color-coded

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — correspondences and geodesics

Isometric deformations

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — correspondences and geodesics

Elastic deformations

LT
inininimimmre

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — correspondences and geodesics

Elastic deformations

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — correspondences and geodesics

Missing parts

222 835

L[F*] = 0.0997

AR Al i

(L[F*] =0.1977)

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — correspondences and geodesics

Missing parts

egdadadalals

ARRRR T TR

L[F*] = 0.1983

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Statistical summaries

Mean shape (the Karcher Mean)
— Given a set of surfaces {f1,/>,...,/n} € F
— Karcher mean

n
[f] = arg min > " d([f], [f])
fles &

1) Start with an initial guess g. This can be chosen as one

of the elements of JF '
2) Compute the geodesic &; between ¢ and ¢; for every \ /

1=1,---,n.

]

3) Let v; € T5(C) be a tangent vector to &; at q.

4) The gradient of )V at ¢ is proportional to ¥ = Z Vj.

=1

5) Update ¢ with a small step in the direction of the /‘/
gradient ¥ and project back on the hypersphere. \\

6) Repeat steps 2 to 5 until convergence. N

Kurtek et al. (IPMI 2011), Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces



Statistical summaries

Covariance

1. Compute shooting vectors:
v; = F*(0) where F* is a geodesic between f and O} (f;o¥")

2. Use Gram-Schmidt to compute orthonormal basis of shooting vectors in
under

3. Project each of the shooting vectors onto this basis.

4. Use singular value decomposition to perform PCA.

49 Kurtek et al. (IPMI 2011), Parameterization-Invariant Shape Statistics and Probabilistic Classification of Anatomical Surfaces



Results — Statistical summaries

"
s

Mean shape Mean shape

Shape atlas

Mean shape Mean shape

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results — statistical summaries
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Kurtek et tics and Probabilistic Classification of Anatomical Surfaces




Results — statistical summaries
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59 Kurtek et al. (IPMI 2011), Parameteriza

tion-Invariant Shape Statis

tics and Probabilistic Classification

of Anatomical Surfaces



e Shape symmetrization and measure of asymmetry

Shape f f — H(V)f

(Reflection of f with
respect to arbitrary plane)

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results - Symmetry

e Shape symmetrization and measure of asymmetry

Shape f L(E*) = 0.1535 f=H(v)f

(Reflection of f with
respect to arbitrary plane)

Length of the path is a measure of asymetry

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results - symmetry

e Shape symmetrization and measure of asymmetry

WRee

L(F*) =0.0963

JLLLLLS

F*)=0.1189

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Results - symmetry

S Kurtek et al. (EG2013), Landmark-Guided Elastic Shape Analysis of Spherically-Parameterized Surfaces



Application to 3D shape analysis

e Shape differences

— Simultaneous correspondence (registration) and geodesics
(optimal deformations) and dissimilarity without descriptors !!

(isometric as well as elastic deformations, and missing parts)

* Summary statistics

— Compute mean shapes, covariances, and high-order statistics
of a collection of shapes.

e Stochastic modeling
— Develop models that capture the variability in shape classes

 Statistical inference
— Study hypothesis testing, likelihood ratios, etc.






Limitations

* Limited to genus-0 manifold surfaces
— Lack of proper (and efficient) parameterization of high genus surfaces

* Correspondence

— When deformations are drastic, the correspondence may fail
(issues with semantically similar but geometrically very different)

e Extensions
— High genus

— Non-manifold shapes




Open issues
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Related tutorials

1. CVPR 2012 tutorial on Differential Geometric Methods for Shape Analysis and Activity Recognition.
http://stat.fsu.edu/~anuj/CVPR_Tutorial/ShortCourse.htm

2. ICIP2013 keynote talk on Statistical Analysis on Non-linear Manifolds: Their role in advancing image
understanding. http://stat.fsu.edu/~anuj/pdf/Talks/Y2013/TalkFinalWithoutMovies.pdf
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Part IV. Structural analysis of shapes



e Shape understanding: from geometry and structure
to semantics

— Shape segmentation

— Structural representations
— Methods:

* Tailor, Plumber, Fitting Primitives, Fuzzy clustering, core
extraction (comparison), others (SDF, nearly convex
approximation, co-hierarchical analysis of shape structures,
consistent segmentation ...)

 From geometry to semantics in the context of
Virtual Humans

 Knowledge-driven shape annotation

* Prior knowledge for shape correspondence
— Semantic correspondence & functionality recognition



Knowledge about 3D shapes

 Knowledge related to the geometry

* Knowledge related to the
application domain

Fracture
lines

* Knowledge related to the context

Erosion

statue, base



From geometry to knowledge: Analysis

* Pb: extract and associate knowledge to 3D
shapes

* Shape Analysis: extracts knowledge implicitly
encoded in the geometry

* How?
— “Analysis is the process of observing and breaking
down a complex topic or substance into smaller parts

to gain a better understanding of it, describing such
parts and their relations with the whole.”

— From geometry to structure



From geometry to knowledge: Analysis

* From geometry to structure

— From geometric measures (volume, area, spatial
distributions ...)

— To Structural Shape descriptors (feature recognition,
segmentation, skeleton extraction)

:,ver tip

%“ -

siructyre semantics

v*""v//-;




From geometry to knowledge: Understanding

* Shape Understanding: recognize the object or its
part in a specific context (semantics,
functionality)

e How?

— Propagating labels from annotated models

— using a priori knowledge about the context

— Using supervised methods Contextual
information

i

g

siructure semantics




From geometry to knowledge: Annotation

* Shape Annotation: associates knowledge to
digital shapes and their components in a formal
manner

— context-driven annotation

- S u p p O rt re a S O n i n g Geometry Instancgow'edgeDBof:lealin Knowledge

Human )
-_body _

“t Girl Head |- _L'M

T | Girl_ Armi e |l Head f ﬁ




Structural Analysis

Characterization:

Evaluation of scalar functions over
the surface

Segmentation:

[l Bl |~ e 3

Identification of regions having
homogeneous properties (main
components or features of interest)

Structuring:

Extraction of subparts and their
spatial arrangement




Segmentation

e Studies on perception state that humans

recognize shapes by mentally segmenting them
into their (simpler) constituting parts

* Segmenting a digital model in parts with
homogeneous properties is needed in many
applications about shape:




Shape segmentation

* Approximation/compression

Collision detection
Modelling
Comparison
Morphing/Animation
Understanding




Shape segmentation

* Approximation/compression
* Collision detection

* Modelling

* Comparison

* Morphing/Animation

* Understanding




Shape segmentation

Approximation/compression

Collision detection
Modelling
Comparison
Morphing/Animation
Understanding




Shape segmentation

Approximation/compression

Collision detection
Modelling
Comparison

Morphing/Animation

Understanding




Shape segmentation

* Approximation/compression

Collision detection
Modelling
Comparison

Morphing/Animation

Understanding



Shape segmentation

Approximation/compression

Collision detection
Modelling
Comparison
Morphing/Animation
Understanding




Segmentation

e Typically builds on low-level characterization and
may be coded as a structural representation

[A. Shamir, “Segmentation Algorithms for 3D Boundary Meshes”, Eurographics 2006, State of the
Art Report]
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e M ={V,E,F} a mesh.
e S=V, E or F (typically F).
* A Segmentation
S ={M,, My, ..., M, }

is the set of sub-meshes induced by a partition
of S in k (disjoint) subsets.




 What are the features of a «good»
segmentation?
— Planar / curved segments?
— Smooth boundaries?
— Big vs small patches?
— Few / many segments?

* Depends on the application



Two main kinds of segmentation

Patch-based

| understand
what it is!!!

Segments are surface patches More intuitive, parts have a
having specific geometric volumetric nature and a specific

: - meaning.
properties (e.g. geodesic distance,
curvature, ...)



Segmentation as an optimization pb

 Given a mesh M ={V,E,F} and Se{V,E,F}, find a
disjoint partition of Sinto S,,...,S, such that the
function

J=J(S4,--,S)

is minimised (or maximised) according to a set of
constraints C.

[Shamir2008]




Constraints and Attributes

e Constraints describe the properties that the
partition (or the induced submeshes, i.e. the
segments) must satisfy

— Ex: max number of segments

— Ex: connectedness of submeshes
— The set of constraints might be empty
e Attributes pertain to elements (vertices, edges,

faces) and are evaluated during the optimization
process.



e Constraints describe the properties that the partition (or
the induced submeshes, i.e. the segments) must satisfy

— Cardinality
* Elements in a segment
* Number of segments

— Geometry
 dimension: area, diameter, radius,...
* Convexity, curvature
* Smooth boundary

— Topology
* Connectedness
e Disc-like



Attributes

e Attributes pertain to elements (vertices, edges,
faces) and are evaluated during the optimization
process.

— Distances (euclidean, geodesic)
— Planarity, normal direction

Structural Analysis

— Curvature, smoothness

— Similarity with primitives s 1

~ Simmetry Y \%

— Shape diameter function ™
cunamdatesiie TP

— swssaangemen: &Y




* Region growing
* |terative clustering

* Hierarchical clustering
e Spectral clustering

* Graph cut

* |Interactive methods

* Co-segmentation

e Supervised methods



* No optimal solution in general

Constraints &
attributes

Application
requirements

Technique Segmentation

 Some examples (focusing on “part-type” for
shape understanding)




Metamorphosis of Polyhedral Surfaces using

Decomposition.

e S.Shlafman, A. Tal, S. Katz. Metamorphosis of Polyhedral Surfaces using
Decomposition. Computer Graphics Forum, Volume 21 (2002), Number 3

iterative
clustering (K-
MEANS)

dihedral angle,
geodesic
distance

metamorphosis K-MEANS




Hierarchical mesh decomposition using fuzzy

clustering and cuts

 S.Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Trans. Graph. (SIGGRAPH), 3, 2003

Skeleton Dzl Iterative
. angles, :
extraction, ; clustering (+ HFCC
geodesic

deformation graph cut)

distance




Mesh Segmentation using Feature Point and Core

Extraction

 S. Katz, G. Leifman, and A. Tal. Mesh Segmentation using Feature Point and Core
Extraction. The Visual Computer, 21:8-10, 2005

Geodesic
dist.,
convexity

Implicit
method (+
graph cut)

Intuitive

: FPCE
segmentation




Hierarchical Mesh Segmentation based on Fitting

Primitives

e M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical Mesh Segmentation based on
Fitting Primitives. The Visual Computer, 22, 2006

Reverse
engineering,
feature
recovery,
denoising...

Hierarchical
clustering

Distance to

primitives HFP




Hierarchical Convex Approximation of 3D Shapes for

Fast Region Selection

e M. Attene, M. Mortara, M. Spagnuolo and B. Falcidieno. Hierarchical Convex
Approximation of 3D Shapes for Fast Region Selection. Computer Graphics Forum, Vol.
27, No. 5 (SGP'08 Procs.), pp. 1323-1333, 2008

Approximation,
region selection
(for
deformation,
editing)

Hierarchical
clustering

Volumetric

. HCA
convexity




Consistent mesh partitioning and skeletonisation

the shape diameter function

L. Shapira, A. Shamir, D. Cohen-Or. Consistent mesh partitioning and skeletonisation
using the shape diameter function. Visual Computer (2008) 24: 249-259

Shape
Diameter
function

skeletonization Graph cut SDF




From geometric to semantic VH

* All the pipeline: Tailor-Plumber-VH Annotation Q

e Characterization: “Tailor”
* Segmentation: “Plumber”
e Structuring: “Shape Graph”

e Context + Annotation:
“VVH Annotator”

e Semantics: Annotated mesh with
human body parts



* M. Mortara, G. Patané , M. Spagnuolo, B. Falcidieno, J. Rossignac.
Blowing Bubbles for the Multi-Scale Analysis and Decomposition of Triangle-
Meshes. Algorithmica, Vol. 38, pp. 227-248, 2003.




* Multi-scale morphological characterization of
vertices over neighbourhoods of increasing size

%\Q |

Topology

Geometric attributes




Tailor

DIP
FUNNEL




Tailor results




Tailor

e Skeleton
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* Segmentation into tubular features and “bodies”

e Based on the Tailor characterization

 Works in a multi-scale fashion wrt tube section &
size

 Computes axis and sections of each tubular
feature




M. Mortara, G. Patané, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Plumber: A Multi-scale Decomposition of
3D Shapes into Tubular Primitives and Bodies, Proc. of Solid Modeling and Applications, 2004

——

 Selection of the scale R

 Classification of vertices and
identification of seed limb region

 Tubular feature extraction

* Increase R and repeat
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Shape graph

* Nodes: Geometric attributes of segments

—Tubes: axis length & max turning,
section size caP-TUBE

—Blobs: volume
e Edges: type of junction
—Tube-tube |
—Tube-body (cap) o |
—Handle (Tube on Body or

Tube on Tube) ? N S




Virtual Humans

* Plumber is particularly suitable to locate human
limbs consistently.




Automatic annotation

M. Mortara, G. Patane, M. Spagnuolo “From geometric to semantic human body models”. Computers&Graphics
30 (2006) 185 — 196, 2006.

* |n specific domains it is possible to assign to each
segment a semantic annotation automatically.

e Virtual Human Context

* Shape graph + Geometric attributes -
of segments 'J

* Annotation function 2 ,‘_5’
a: S (segments) - L (labels) e

L= { head, neck, trunk, arm, hand,
palm, finger, fingertip, leg, foot } ‘




Segmented
model

v

Blob with max
volume «TRUNK

Algorithm

Tube with max length/section
<« NECK
adjacent cap « HEAD

4

A 4

Tubes adjacent to caps

with max length*section
« LEG

Adjacent caps « FOOT

Cap «HAND

A 4

tubes left « ARM

yes

no

A 4

Adjacent blob «
PALM; next adjacent
tubes « FINGER;
next adjacent caps «
FINGERTIP
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- Bodies Color Editor score for tube 4 for being the NECK: 0.65594
I | |[score for tube 5 for being the NECK: 0.743126
score for tube 6 for being the NECK: 4.01759
fnotate |
it | |[tube #6 got maximum score: annotated as NECK

body #6 annotated as HEAD

score for tube 2 for being a LEG: 186311
score for tube 3 for being a LEG: 190452
score for tube 4 for being a LEG: 634311
score for tube 5 for being a LEG: 654423
score for tube 6 for being a LEG: O

tube #5 got maximum score: first LEG annotated
-body #1 annotated as FOOT

tube #4 got second maximum score: second LEG annotated
-body #2 annotated as FOOT

tube #2 and tube #3annotated as ARMS
body #5 annotated as HAND

Rotx Rty Tolly body #4 annotated as HAND




Interactive Annotation

The key question is:

* |Isit possible to devise a segmentation algorithm that captures all
the shape features which have a meaning within a given context ?

* NOT IN GENERAL !!!

 Some contexts are too large to be exhaustively formalized, and
the “meaning” of a geometric feature must rely on a priori
knowledge of the observer

 Some features are far too complex to be described in formal
mathematical terms (e.g. the “face” of an animal)

 One segmentation is not enough!



Multi-Segmentation

* Solution: Pick the interesting features from
different shape segmentations

~ (b)

(b) Morse-based, (c) Plumber, (d) fitting



Framework Overview

Shape
A surface mesh Abstract
. Shape
Shape P
CG Tools A segmented mesh
Segmentation Plug-ins An N OtatO r
Domain
An OWL ontology

Knowledge Base

Once relevant features have been (geometrically) identified,
how should we tag them ?




The Ontology Browser

il ShapeAnnotator 3

Browser I 'Insl_:ance__,l Settings I

Link

superClass0f

Instance of “Head"”
<Head rdf.|D="Gr|_head">

<size rdf.datatype="http./Mww w3,
org/2001/XMLSchema#float">
723

<Jsize>

</Head>

ancel

Best-fitting
spere radius

Segmentmeters




Resulting Knowledge Bases

Knowledge Base

Geometry Instances Domain Knowledge
Girl Head
size = 7.23
Girl Arml
length = 58.00
o] L Part of
| Girl Footl Foot _— ,
Marco Attene, Francese¢o Robbiano, Michela Spagnuolo and Bianca Fa i di9O0tPhrt-based anndtation of
virtual 3D shapes . Proceedings of Cyberworlds 2007, Special| session—on the NASAGEM workshop

(Hannover, Germany, Oct. 27, 2007).
Semantic Annotation of 3D Surface Meshes based on Feature Characterization




Semantic correspondence & functionality recognition

* Shape as a graph

e Structural relationships btw parts

* Parts have geom. descriptors

* Context and context-aware similarity

* Unsupervised semantic correspondence

e Supervised functionality recognition




Structural relationships

Co-centricity Hierarchy /

Adjacency containment
Horizontal support

Side contact

e Structural similarity: Krel (R;,Rj) =1 iff R.—R,
0 otherwise




Geometric descriptors

e Shape Distribution [Osada et al. 2002]
e Size — radius of bounding sphere
* Aspect — eigenvalues of PCA

[ dsa —
s Z

i

\4

N\

e Geometric similarity: Kgeo (Kd, Ks, Ka)




Part similarity

* Two parts are similar if their geometry and
context are similar

* Model context using graph kernels

KP(Gla GQ: PA? PB) - KQE.G(PA? PB) X
Z KT‘EE(EJf)Kp_l (G].JGQJPS?PQ)

PseNgy (Pa)
PQENQQ (PR)

 Compare two nodes by comparing all walks of
length p

— Geometry of nodes and type of relationships






Functionality recognition

e Supervised learning algorithm
— Support Vector Machine (SVM)

* Use of non-linear kernels to model feature dependencies
 Flexibility (wrt the choice of the kernels)

e Decision function
FOO = sign() aitiK (X, X) + b)
i
* where X; are the selected support vectors, and «; are

positive weights, K (x, y) is a nonlinear kernel that quantify
the similarity between x and y



* Best matches using part context
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where did we start from?

* reasoning about shape is important
— computational theories for shape analysis
— application domains pose challenging issues

“Applied computer science is now playing the role which
mathematics did from the seventeenth to the twentieth centuries
providing an orderly, formal framework and exploratory apparatus
for other sciences”

Virtual Astronomy, Information Technology and the New Scientific Methodology
George Djorgovski (2005)



what did we learn?

* reasoning about shape is not an easy task
— role of the observer and context
— difficult to capture in formal rules

* reasoning about shape relies on advanced
mathematics
— geometric-differential approaches
— statistical shape analysis
— structure as a road to reach semantics



what do we need more?

* Derive symbolic representations of 3D data

— creating symbolic and editable representations out of
“sensed” data

— high-level editing independent of the underlying
geometric representation




what do we need more?

* Goal-oriented synthesis of 3D models

— Acquisition and capture of knowledge contributing to
the “goal”

— Methodologies for model generation (semantics-
oriented modeling of 3D objects)

— Creation of libraries of models in the form of
shape/function models




what do we need more?

e Documentation of 3D content

— annotation of single objects, scenes, and workflows:
the annotation is content, context and user
dependent;

— methodologies for annotation

* classification, propagation of the annotation via similarity
assessment and matching, ....

* massive annotation tasks : 3D city models ?

— how to maintain the annotation across workflows
that act on the representation?

— standards



did you enjoy the tutorial?!

* if not, well, good news....

.. this is the end !!




