Information Theory

- Claude Elwood Shannon, 1916-2001
- A mathematical theory of communication. The Bell System Technical Journal, July, October 1948
- Transmission, storage and processing of information
- Applications:
 - Physics, computer science, mathematics, statistics, economics, biology, linguistics, neurology, learning, etc
 - Medical image processing, computer vision, robot motion, etc
- Shannon entropy measures the information content or uncertainty of a random variable
- Mutual information measures the information transfer in a communication channel

Shannon Entropy

- Properties
 - $0 \leq H(X) = \log n$
 - $H(X) = \sum_{i=1}^{n} q_i H(Y_i) - \sum_{i=1}^{n} q_i \log q_i$
 - Binary entropy

- Shannon entropy of a discrete random variable X:
 - $H(X) = -\sum_{i=1}^{n} p_i \log p_i$

Shannon Entropy

- Discrete random variable X
 - $X: \{x_1, x_2, \ldots, x_n\}$, $p_i = p(x_i) = \Pr \{X = x_i\}$
- Shannon entropy of X: uncertainty, information

- How difficult it is to guess the values of a random variable
- Homogeneity or uniformity of a probability distribution

Information Channel

- Information channel
 - $X \rightarrow Y$
 - $H(Y|X) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} \log p_{ij}$
 - $H(X,Y) = -\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} \log p_{ij}$
 - $I(X;Y) = H(X) - H(Y|X)$

- Conditional entropy
- Joint entropy
- Mutual information: dependence, correlation, shared information
Inequalities

- **Jensen’s inequality**: if $f(x)$ is a convex function
 \[
 f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]
 \]

- **Log-sum inequality**
 \[
 \sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \geq \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i} \right) \log \frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} b_i}
 \]

- **Data processing inequality**: if $X \rightarrow Y \rightarrow Z$ is a Markov chain, then
 \[
 I(X,Y) \geq I(X,Z)
 \]

Jensen-Shannon Divergence

- **Jensen-Shannon divergence**
 \[
 JS(\pi, \ldots, \pi; p_1, \ldots, p_n) = \sum_{i=1}^{n} \pi_i D_{KL}(p_i \parallel q) - \sum_{i=1}^{n} \pi_i H(p_i)
 \]

- **Properties**
 - Concavity of entropy: $JS(\pi, \ldots, \pi; p_1, \ldots, p_n) \geq 0$
 - $JS(p(x_1), \ldots, p(x_n); p(y | x_1), \ldots, p(y | x_n)) = I(X,Y)$

Continuous Channel

- **Continuous entropy**
 \[
 H'(X) = -\int p(x) \log p(x) dx
 \]
 \[
 \lim_{x \to 0} H'(X^2) = H'(X)
 \]

- **Continuous mutual information**
 \[
 I'(X,Y) = \int p(x,y) \log \frac{p(x,y)}{p(x)p(y)}
 \]
 \[
 \lim_{x \to 0} I'(X^2,Y^2) = I'(X,Y)
 \]

- **$F(X,Y)$ is the least upper bound for $I(X,Y)$**
- **Refinement can never decrease $I(X,Y)$**
Information Bottleneck Method (IBM)

- Tishby, Pereira and Bialek, 1999
- Find a compressed signal \hat{X} that needs short encoding (small $I(X, \hat{X})$) while preserving as much as possible the information on the relevant signal Y.
- $I(X,Y)$
- $p(\hat{x} | x) \quad \hat{X} \quad p(\hat{x})
- I(\hat{X}, Y)$
- $p(y | \hat{x})$

Generalised Entropy

- Harvda-Charvát-Tsallis entropy (HCT)
- $H_\alpha(x) = \frac{1}{1-\alpha} \left(1 - \frac{1}{k} \sum_{i=1}^{k} p_i^\alpha \right)$
- $H_\alpha(x) = \lim_{\alpha \to 0} H_\alpha(x)$
- Generalised mutual information
- $I_\alpha(X,Y) = \frac{1}{1-\alpha} \left(1 - \frac{1}{k} \sum_{i=1}^{k} \sum_{j=1}^{k} p_{ij}^{\alpha} \right)$

Radiosity Method

- The radiosity method solves the problem of illumination in an environment of diffuse surfaces
- Continuous radiosity equation
- $B(x) = E(x) + \rho(x) \int F(x,y)B(y)\,dy$
- $F(x,y) = \frac{\cos \theta_x \cos \theta_y}{\pi r_{xy}^2}V(x,y)$

Agglomerative IBM

- Goal: find a clustering that minimizes the loss of mutual information
- Clustering or merging: loss of mutual information
- $I(X,Y) - I(\hat{X}, Y)$
- $p(\hat{x})JS(p(\hat{x}), ..., p(\hat{x}_n); p(y | \hat{x}_1), ..., p(y | \hat{x}_n))$
- $p(\hat{x}) = \sum_{i=1}^{n} p(\hat{x}_i)$
- The quality of each cluster \hat{x} is measured by the Jensen-Shannon divergence between the individual distributions in the cluster.

Radiosity Method

- Discrete radiosity equation
- $B_i = E_i + \rho \sum_{j} F_{ij} B_j$
- $F_{ij} = \frac{1}{A_i} \int_{A_i} \int_{A_j} F(x,y)\,dA_i dA_j$
- Form factor properties
- Reciprocity
- Energy conservation
- $\sum_{i} F_{ij} = 1$
Form Factor Computation

- Analytical solutions
 - Between two spherical patches
 \[F_{ij} = \frac{A_i}{A_j} \]

- Monte Carlo computation
 - Uniform area sampling
 \[\hat{F}_{ij} = \frac{1}{N} \sum_{k} F(x_k, y_k) \]
 - Uniformly distributed lines

Scene Information Channel

- The scene is modelled as an information channel
 \[\begin{array}{c|c|c}
 X & p_j | i & Y \\
 \hline
 p_i & \multicolumn{2}{c}{q_j} \\
 \hline
 F_{ij} & a_i \cdot F_{ij} & a_j
 \end{array} \]

Continuous Mutual Information

- By discretising a scene, a distortion or error is introduced: information loss
- From discrete to continuous
 - \(\Sigma \rightarrow f \)
 - \(F_{ij} \rightarrow F(x, y) \)
 - \(a_i = A_i / A_T \rightarrow 1 / A_T \)

\[I_m = \int_{x,y} \frac{1}{A_T} F(x, y) \log(A_T F(x, y)) \, dx \, dy \]

Refinement Criteria for HR

- In hierarchical radiosity (HR), the mesh is generated adaptively
- Oracles based on
 - Transformed power
 - Kernel smoothness
 \[\rho \cdot A_i \cdot F_{ij} \cdot B_j < \varepsilon \]

Scene Information Channel

- Positional entropy
 \[H_x = -\sum_{i} a_i \log a_i \]

- Scene entropy
 \[H_s = -\sum_{i} \sum_{j} a_i F_{ij} \log F_{ij} \]

- Scene mutual information
 \[I_s = H_x - H_s = \sum_{i} \sum_{j} a_i F_{ij} \log \frac{F_{ij}}{a_i} \]

Monte Carlo Computation

- Total area = \(A_T \)
- Lines cast = \(K \)
- Line segments = \(N \)

\[I^c_j = \frac{1}{N} \sum_{x,y} \log \left(\frac{A_i \cdot \cos \theta_i \cdot \cos \theta_j}{A_T} \right) \]

contribution of each segment
Discretisation Error

- Two basic results
 - If any patch is subdivided, I_s increases or remains the same
 - I_s' is the least upper bound to I_s

- Discretisation error $I_s - I_s' > 0$

 $I_s = 0.690$
 $I_s = 2.199$
 $I_s = 2.558$
 $I_s = 2.752$

Discretisation Error Between Two Patches

- Discretisation error between two elements: loss of information transfer

 $\delta_{ij} = I_{ij} - I_{ij}'$

 Monte Carlo integration

 $\delta_{ij} = \frac{AA}{k} \left[\frac{1}{N_y} \sum_{x=1}^{N_x} F(x, y_j) \log F(x, y_j) \right] \geq 0$

Information Transfer

- Mutual information matrix

 $I_{ij} = \sum_{x=1}^{N_y} \sum_{y=1}^{N_x} a_{ij} F_i(x, y) \log \frac{F_i(x, y)}{a_{ij}}$

 Information transfer from patch i

 $F_i = \sum_{y=1}^{N_y} \sum_{x=1}^{N_x} \int_{x=1}^{N_y} \int_{y=1}^{N_x} F(x, y) \log a_i(x, y) dx dy$

MI-based Oracle

- From radiosity equation and kernel-smoothness-based oracle

 $B_j = E_i + \sum_{j=1}^{N_y} \rho F_i B_j^*$

 $\rho \max(F_{ij}^*, F_{ij}^*, F_{ij}^*, F_{ij}^*) B_j < \epsilon$

- To MI-based oracle

 $\rho (I_{ij} - I_{ij}') B_j = \rho \delta_{ij} B_j < \epsilon$

Oracles for HR

- Kernel-smoothness-based

- MI-based

MI-based Oracle for HR

2684000 rays - 19000 patches - 10 lines FF
Generalised MI-based Oracle

\(D = 0.50 \) - 10 lines FF - 2684000 rays - 19000 patches

Generalised MI-based Oracle

\(D = 0.50 \) - 10 lines FF - 9268000 rays - 10000 patches

\(\chi^2 \)-Divergence-based Oracles

Kernel-Smoothness

Chi-Square

Hellinger

Adaptive Sampling

- Adaptive control of the sampling rate
- Image-Space
 - Intensity Comparison
 - Intensity Statistics
- Object-Space
 - \(f = 1 \frac{dI}{dI_{\text{max}}} \)
 - [Simmons and Séquin, 00]
- Hybrid (image+object spaces)

Pixel Measures

Point-sampling-based technique for image synthesis

Capture the pixel radiance

Finite set of samples

Information is lost

Information measure

Erroneous information

Adaptive sampling

Regions with high inhomogeneity illumination

Measure

More samples!
Pixel Colour Quality

- **For each channel** $p_i = \text{colour fraction of a ray}$

 - **pixel channel entropy** $H^c = -\sum_{i=1}^{n_c} p_i \log p_i$
 - **pixel channel quality** $Q^c = \frac{H^c}{\log N_c}$
 - **pixel colour quality** $Q^c = \sum_{i=1}^{n_c} w_i Q_i$

Channel perception coefficient

Colour system

Number of samples

Pixel Geometry Contrast

- **For each channel** $p_i^g = \text{geometric fraction of a ray}$

 - **pixel geometric entropy** $H^g = -\sum_{i=1}^{n_g} p_i^g \log p_i^g$
 - **pixel geometric quality** $Q^g = \frac{H^g}{\log N_g}$
 - **pixel geometric contrast** $C^g = 1 - Q^g$

Combination coefficient

Combination of colour and geometry

Pixel Colour Contrast

- **For each channel** $p_i^c = \text{colour fraction of a ray}$

 - **pixel channel contrast** $C^c = 1 - Q^c$
 - **pixel colour contrast** $C^c = \frac{\sum_{i=1}^{n_c} w_i C_i^c}{\sum_{i=1}^{n_c} w_i}$

Pixel channel colour average

Quality Map

- **Map of geometric quality**
- **Map of colour quality**

Supersampling

- **Uniform with 32 rays per pixel**
- **Average rays per pixel: 32**
Entropy-based Adaptive Sampling

Grouping property of Entropy

\[H(X) = -\sum_{i=1}^{q_i} q_i \log q_i \]

{\text{information acquired}}

\[H(Y_i) \]

{\text{hidden information}}

- \(H(X) \) = entropy of the whole image
- \(H(Y_i) \) = entropy of each root pixel
- \(q_i \) = colour probability of pixel \(i \)

The decomposition of \(H \) can be recursively extended to the subpixels

Results

Classic contrast

Variance-based contrast

Entropy-based contrast

Results

\[D_f(p,q) = \sum_{x} q(x) f\left(\frac{p(x)}{q(x)} \right) \]

\(f \)-Divergences as refinement criteria in RT?

- Distributions
 - \(\{p\} \) = Luminance \(L \) of \(N_S \)-samples
 - \(\{q\} \) = Uniform \(1/N_S \)

- Homogeneity: \(D_f(p,q) \)
- Importance: \(\text{avg}(L_i) \)
- Convergence: \(1/N_S \)

\(f \)-Divergence-based Adaptive Sampling

\[p_n = \frac{1}{N_S} \sum_{i=1}^{N_S} p_i \]

\[q_n = \frac{1}{N_S} \sum_{i=1}^{N_S} q_i \]

Kullback-Leibler

Chi-Square

Hellinger
Introduction

- Viewpoint selection is a new area in computer graphics with applications in fields such as scene understanding, volume visualization, image-based modeling, and molecular visualization.

- We propose a unified framework for viewpoint selection and mesh visibility/saliency/simplification based on an information channel between the set of viewpoints and the polygons of an object.

- Tools: entropy, mutual information, Jensen-Shannon divergence.

- This framework is based on the geometric characteristics of the object, but it can be extended to other characteristics.

- It is also valid for any set of viewpoints in a closed scene.

- What is a good viewpoint? Depending on our objective, the best viewpoint can be the most representative one or the most unstable one (maximally changes when it is moved within its close neighborhood).

- Representative views can help us to understand the object.

- Unstable views enable us to obtain critical viewpoints to capture the structure of the object.

Background and Related Work

- Information Theory

 - Information Channel
 \[X \rightarrow Y \frac{p(y|x)}{p(x)} \]

 - Conditional Entropy
 \[H(Y|X) = -\sum_{x,y} p(x,y) \log p(y|x) \]

 - Mutual Information
 \[I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) \]

 - Jensen-Shannon inequality
 \[JSE(p_1, p_2, \ldots, p_N) = H(\sum_{i=1}^{N} \pi_i p_i) - \sum_{i=1}^{N} \pi_i H(p_i) \geq 0 \]

- Related Work

 - Heuristic measure: Plemenos et al. [1996]

 - Viewpoint Entropy
 \[C(v) = \sum_{i=1}^{n} \left(\frac{p_i}{p_{\text{avg}}} \right) + \sum_{i=1}^{n} \frac{P_i}{P_{\text{avg}}} \]

 - Kullback-Leibler distance
 \[KL(v) = \sum_{i=1}^{N} \frac{a_i}{b_i} \log \frac{a_i}{b_i} \]

- Origins: Rigau et. al [2000], Vázquez et al. [2001-2006], Sbert. Et al [2005]
We formalize the viewpoint selection using an information channel

\[
P(o) = \sum_{v \in V} p(v) p(o|v)
\]

This framework is based on geometric characteristics

Viewpoint Mutual Information evaluation (I)

- **Best View**
- **Worst View**
- **Spheres**

Viewpoint Similarity and Unstability

Viewpoint Similarity

Any clustering over \(V \to \hat{V} \) or \(O \to \hat{O} \) reduce \(I(V,O) \)

\[
\Delta I(v_i, v_j) = I(V, O) - I(\hat{V}, \hat{O}) = p(v_i) p(o_i|v_i) - p(\hat{v}_i) p(\hat{o}_i|\hat{v}_i)
\]

\[
\Delta D(v_i, v_j) = D(v_i, v_j) = D(O|v_i, v_j)
\]

Viewpoint Mutual Information evaluation (II)

- **Model**
- **Heuristic**
- **Entropy**
- **VMI**

Viewpoint Similarity and Unstability

Viewpoint Unstability

The maximum change in view that occur when the camera position is shifted within a small neighborhood

\[
U(v_i) = \frac{1}{N_v} \sum_{j=1}^{N_v} D(v_i, v_j)
\]
Viewpoint Information Channel

- **Selection of n Best Views**
 - **Objective:** to select the minimal set of representative views
 - **Ideal proposal:** n views that maximize their JS (to capture the maximum information of the object)
 - **Greedy strategy:** to select successive views that maximize JS

![Image of view selection](image)

Viewpoint Clustering

- **Clustering algorithm**
 - Select the n best views
 - Assign each viewpoint to the **nearest** best viewpoint

![Image of view clustering](image)

Scene Exploration

- **Exploratory Tour**

![Image of exploratory tour](image)

- **Guided Tour**

![Image of guided tour](image)

Mesh Visibility

- **Reversion of the Channel**
 - Channel is reversed using the Bayes theorem

$$I(V,O) = \sum_{\alpha \in O} p(\alpha) \sum_{v \in V} p(v|\alpha) \log \frac{p(v|\alpha)}{p(v)}$$

- $I(V,O)$ is the polygonal mutual information
- Degree of correlation between the polygon α and the set of viewpoints

![Image of mesh visibility](image)
Mesh Visibility

- **Applications**
 - Important viewpoints
 - Importance at the viewpoint space
 - Selection according to geometry and saliency

Demo

- **Mesh Visibility**

Applications

- Relighting for *Non-Photorealistic Rendering*
 - Warping a color palette texture to the viewpoint sphere

- Color ambient occlusion + *NPR* technique
Mesh Visibility

- Applications
 - Relighting NPR + Coloroid Palettes

Mesh Saliency

\[S(\omega) = \frac{1}{N_\omega} \sum_{i=1}^{N_\omega} J(\omega, \omega_i) J(\omega, \omega_i) \geq 0. \]

Viewpoint Saliency

\[S(v) = \sum_{v \in \mathcal{V}} S(\omega)p(v|\omega) \]

Importance-based Viewpoint Mutual Information

\[
I(\omega, \mathcal{O}) = \sum_{v \in \mathcal{O}} p(\omega|v) \log \frac{p(\omega|v)}{p(\omega)} ,
\]

\[
p'(\omega) = \frac{p(\omega|v)}{\sum_{v \in \mathcal{O}} p(\omega|v)}
\]
View-based Object Recognition

System features
- VMI Sphere: View-based Shape descriptor
- Rigid registration system: Rotations (θ, ϕ)
- 642 viewpoints
- Fixed & Floating Sphere
- Metric

 \[\text{MSE}(A, B) = \sum_{i=1}^{N} (a_i - b_i)^2 \]
- Interpolator: Nearest Neighbour

Fixed

Floating

View-based Object Recognition

Results

VMI Spheres

Models

View Selection for Volume Data

- Viewpoint quality = visibility of data
- Visibility computation
- Information-theoretic measures for characteristic viewpoint estimation
 - Viewpoint entropy
 - Mutual information
- View selection approaches for
 - 3D scalar fields
 - 3D + time scalar fields
 - Objects in volume data
Focus of Attention

- Importance distribution among objects controls:
 - Characteristic view computation
 - Interactive focusing
- Characteristic view computation
 - View rating image and object weights
 - For every object + context
- Interactive focusing
 - Visual emphasis and cutaways
 - Changing the focus among objects

Goal

- Input: known and classified volumetric data
- High level request: show me object X
- Output: guided navigation to object X
Focusing Considerations

- Characteristic view
- Emphasis of focus object
- Guided navigation between characteristic views

Framework

- Interactive focus of attention
- Object selection by user
- Viewpoint transformation
- Cut-away and level of ghosting
- Object-space distance weight
- Visibility estimation
- Image-space weight
- Characteristic viewpoint estimation
- Interactive view of attention
- Focus discrimination
- Object selection by user
- Up-vector information

Characteristic View Estimation

- Information-theoretic framework for optimal viewpoint estimation
- For every view
- For every object

Characteristic Views

- Overview
 - All objects are visible
 - Visibility of objects is balanced
- Characteristic view of focus object
 - High visibility for focus object
 - If possible other objects also visible

View rating

- For every view
 - For every object
View Rating
- Visibility
 - High
 - Low
- Location in image
 - In image center
 - Outside center
- Distance to the viewer
 - Object close to the viewer
 - Far from the viewer

Characteristic Viewpoint Estimation
- Sets of views and objects are random variables
 - Views \(V = (v_1, v_2, v_3, \ldots, v_n) \)
 - Objects \(O = (o_1, o_2, o_3, \ldots, o_m) \)
- View rating (visibility, weights)
 - Information channel between \(V \rightarrow O \)
 - Conditional probability \(p(o_j|v_i) \)
- Mutual information between \(V \) and \(O \) expresses degree of dependence

Obtaining Characteristic Views
- Viewpoint mutual information is dependance between \(v_i \) and \(O \)
 - High values = high dependance
 - Small number of objects
 - Low average visibility
 - Low values = low dependance
 - Maximum objects visible
 - Object visibility is balanced
- Minimal VMI determines the best view

Overview
- All objects are visible
- Visibility of objects is balanced
- Characteristic view of focus object
 - High view rating (visibility) for focus object
 - If possible other objects also visible
Probability Transition Matrix

- Probability of the viewpoint
- Marginal probability of the object
- View rating of object \(o_j \) from viewpoint \(v_i \)

Characteristic Views

- Overview
 - All objects are visible
 - Visibility of objects is balanced
- Characteristic view at focus object
 - High view rating for focus object
 - If possible other objects also visible

Resulting Characteristic Viewpoints

- Interactive focus of attention
 - Characteristic viewpoint estimation
 - Focus discrimination
 - Cut-away and level of ghosting
 - Object selection by user
 - Importance distribution
 - Viewpoint transformation

Viewpoint Mutual Information

- Degree of correlation \(v_i \rightarrow O \)

\[
I(v_i, O) = \sum_j p(o_j | v_i) \log \frac{p(o_j | v_i)}{p(o_j)}
\]

Incorporating Importance

- Importance distribution
 \[
 I(v_i, O) = \sum_j p(o_j | v_i) \log \frac{p(o_j | v_i) \operatorname{im}(o_j)}{\sum_k p(o_k) \operatorname{im}(o_k)}
 \]
Emphasis of Focus Object

- Levels of sparseness
 - dense
 - max

Guided Navigation Between Objects

- Decreasing importance of Object \(X \)
 - De-emphasis of Object \(X \)
 - Change to overview

- Increasing importance of Object \(Y \)
 - Emphasis of Object \(Y \)
 - Change to characteristic view of \(Y \)

Refocusing

![Refocusing Diagram](image)

Example - Stag beetle

![Stag beetle Diagram](image)
Recent Work on Simplification

- **Geometry-Based**
 - Appearance-Preserving Simplification [Cohen98]
 - Simplifying Surfaces with Color and Texture using Quadric Error Metrics [GH98]
 - New quadric metric for simplifying meshes with appearance attributes [Hoppe99]
 - Mesh Saliency [LVJ05]

- **Viewpoint-Based**
 - Image-Driven Simplification [LT00]
 - Perceptual-Driven Simplification for Interactive Rendering [LH01]
 - Visibility-Guided simplification [ZT02]
 - Viewpoint Entropy-driven Simplification [CSCF07]

Application-Driven View Selection

Introduction

- Most simplification methods use some geometric distance to guide the simplification process.
- Recently, some works have developed methods guided by visual error metrics.
- In some real-time applications like computer games, the main requirement is visual similarity.
- We propose new simplification metrics which produce closer approximations to the original model based on Information Theory.

Pros and Cons

- **Geometry-Based**
 - The algorithm runs faster
 - Manage complex meshes
 - CAD, Scanned
 - Adjust geometric tolerance

- **Viewpoint-Based**
 - The algorithm runs slower
 - Deal with simple meshes
 - Games, Virtual Reality
 - Remove interior parts and preserves silhouette

Current Game Artists make the simplifications by hand
Viewpoint Entropy

- **Definition**
 - The **Viewpoint Entropy** gives a measure of the information provided by a point of view.
 - We take as a probability distribution the relative area of the projected polygons over the sphere of directions centered in the viewpoint v.

 \[H_v = - \sum_{i=1}^{Nf} \frac{a_i}{a_0} \log \frac{a_i}{a_0} \]

- **Where:**
 - N_f: number of polygons in the scene
 - a_i: projected area of polygon i over the sphere
 - a_{bg}: projected area of background in open scenes
 - a_0: total area of the sphere

The best viewpoint is the one that has maximum entropy, i.e., maximum information captured.

Simplification algorithm

```c
/* Compute $I_v$ for the original mesh $M$ */
Compute $I_v$ where $v=\{1,..,n\}$

/* Build initial heap of edge collapses */
for (v \in M)
    Perform collapse $v$
    Compute $I_v'$ where $v=\{1,..,n\}$
    Compute collapse cost $C_v$
    Insert ($v$, $C_v$) in heap $h$
    Undo collapse $v$
end for

/* Update the mesh */
while (heap $h$ not empty)
    Remove from heap $h$ the edge $e$ with lowest $C_e$
    Perform collapse $e$
    for (each $e'$ in neighborhood)
        Compute collapse cost $C_e'$
        Update ($e'$, $C_e'$) location in heap $h$
    end for
end while
```

Viewpoint Entropy

- **Error metric**
 - Defined as the sum of variations of viewpoint entropy for all viewpoints v'.

 \[c = \sum_{v} |H_v - H_v'| \]

- **Where:**
 - H_v: viewpoint entropy before an edge collapse
 - H_v': viewpoint entropy after an edge collapse

Experiments

- **Comparison**
 - **Algorithm**
 - QSLIM v2.0 [Gar97] Well-Know geometric simplification algorithm
 - **Tools**
 - Geometric error: METRO v4.06 [Cig98]
 - Visual error: RMSE [Lin00]

- **20 viewpoints regularly distributed over a sphere**
- **Resolution:** 256x256 images
- **PC:** Xeon 2.4 GHz, 1GB RAM, NVIDIA 7800 GTX 512MB
- **C++ implementation with OpenGL**
 - Vertex Buffer Objects & Frame Buffer Objects
Experiments H_V

<table>
<thead>
<tr>
<th>Model</th>
<th>Triangles</th>
<th>RMSE Error</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Original</td>
<td>Final</td>
<td>H_V</td>
</tr>
<tr>
<td>Fish</td>
<td>815</td>
<td>100</td>
<td>22.83</td>
</tr>
<tr>
<td>Galleon</td>
<td>4,698</td>
<td>500</td>
<td>36.84</td>
</tr>
<tr>
<td>Galo</td>
<td>6,592</td>
<td>500</td>
<td>12.40</td>
</tr>
<tr>
<td>Octopus</td>
<td>8,468</td>
<td>500</td>
<td>25.84</td>
</tr>
<tr>
<td>Porsche</td>
<td>10,474</td>
<td>1,000</td>
<td>8.28</td>
</tr>
<tr>
<td>Unicycle</td>
<td>13,810</td>
<td>1,000</td>
<td>11.06</td>
</tr>
</tbody>
</table>

Mutual Information

Definition

The Viewpoint Mutual Information defines an information channel between V and O

$$p(v) = \frac{1}{N} \sum_{o \in O} p(o | v)$$

The conditional probabilities of $p(o|v)$ are given by the relative area of the projected polygons over the sphere of directions centred at viewpoint v

$$I(V, O) = \sum_{o \in O} p(v) \sum_{o \in O} p(o | v) \log \frac{p(o | v)}{p(o)} = \frac{1}{N} \sum_{o \in O} I(V, O)$$

The error metric

Defined as the sum of variations of viewpoint mutual information for all viewpoints V

$$c = \sum_{i=1}^{N} [I_i - I'_i]$$

Experiments H_V

Comparison at several degrees of simplification of the Galleon model

Mutual Information

The mutual information for a given viewpoint

$$I(v, O) = \sum_{o \in O} p(o | v) \log \frac{p(o | v)}{p(o)}$$

High values mean high degree of dependence “highly coupled view”

Low values correspond to low dependence “more representative view”

Observe that

$$I(v, O) = K L(p(O | v) | p(O))$$
Experiments VMI

Original Shark T=734

QSim T=600

VMI C=20 T=400

Original Galo T=6,592

QSim T=500

VMI C=20 T=500

Original Hammer T=13,380

QSim T=600

VMI C=20 T=900

Original Elephant T=31,548

QSim T=900

VMI C=20 T=900

Geometric Error

Visual Error

Comparison at several degrees of simplification of the Shark model

Experiments VMI

Original Greekship T=9,510

QSim T=600

VMI C=20 T=600

Original Tree T=11,136

QSim T=600

VMI C=20 T=600

Experiments VMI

Kullback-Leibler

Definition

- The f-divergences quantifying the degree of discrimination between two probability distributions
- Kullback-Leibler distance

\[
KL(p \| q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}
\]

- Viewpoint Kullback-Leibler distance

\[
KL_v = \sum_{i=1}^{N_v} \log \frac{a_i}{A_i}
\]

Where a_i is the projected area of the polygon i, A_i is the actual area of the polygon i and A_T is the total area of the object

<table>
<thead>
<tr>
<th>Model</th>
<th>Triangles</th>
<th>RMSE</th>
<th>Metro</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shark</td>
<td>734</td>
<td>33,41</td>
<td>0,20</td>
<td>0,02</td>
</tr>
<tr>
<td>Galo</td>
<td>6592</td>
<td>12,40</td>
<td>0,05</td>
<td>0,08</td>
</tr>
<tr>
<td>Greekship</td>
<td>9510</td>
<td>17,20</td>
<td>0,21</td>
<td>0,11</td>
</tr>
<tr>
<td>Tree</td>
<td>11,136</td>
<td>20,73</td>
<td>0,11</td>
<td>0,20</td>
</tr>
<tr>
<td>Hammer</td>
<td>13,380</td>
<td>8,99</td>
<td>0,03</td>
<td>0,52</td>
</tr>
<tr>
<td>Elephant</td>
<td>31,548</td>
<td>25,32</td>
<td>0,08</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Visual ErrorGeometric Error

Comparison at several degrees of simplification of the Shark model
Kullback-Leibler

- The error metric
 - Defined as the sum of variations of Kullback-Leibler distance for all viewpoints v
 \[c = \sum_{v \in V} [KL_v - KL_v'] \]
 - The cost of the algorithm is higher than Entropy or Mutual Information due to the AT computation
 - Hidden polygons will be removed according to their actual area

Experiments KL_v

<table>
<thead>
<tr>
<th>Model</th>
<th>Triangles</th>
<th>RMSE Original</th>
<th>RMSE Final</th>
<th>RMSE Metro</th>
<th>RMSE QSim</th>
<th>RMSE Hv</th>
<th>RMSE KLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>815</td>
<td>22.83</td>
<td>11.57</td>
<td>12.98</td>
<td>0.09</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Galo</td>
<td>6,592</td>
<td>12.40</td>
<td>9.34</td>
<td>10.48</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Al Capone</td>
<td>7,124</td>
<td>17.66</td>
<td>11.47</td>
<td>12.07</td>
<td>0.03</td>
<td>0.08</td>
<td>0.03</td>
</tr>
<tr>
<td>Tree</td>
<td>11,136</td>
<td>20.73</td>
<td>16.96</td>
<td>18.04</td>
<td>0.11</td>
<td>0.13</td>
<td>0.04</td>
</tr>
<tr>
<td>Big, etc</td>
<td>13,594</td>
<td>16.50</td>
<td>15.97</td>
<td>15.44</td>
<td>0.08</td>
<td>0.05</td>
<td>0.03</td>
</tr>
<tr>
<td>Elephant</td>
<td>31,548</td>
<td>25.32</td>
<td>13.16</td>
<td>13.40</td>
<td>0.08</td>
<td>0.14</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Simplification Algorithm

/* Update the mesh */

while (heap h not empty)

Remove from heap h the edge e with lowest C_e

Perform collapse e

for (each e' in neighborhood e)

Compute collapse cost $C'_{e'}$

Update (e', $C'_{e'}$) location in heap h

end for

end while

Simplification Algorithm

/* Update the mesh */

while (heap h not empty)

Remove from heap h the edge e with lowest C_e

Perform collapse e

for (each e' in neighborhood e)

Compute collapse cost $C'_{e'}$

Update (e', $C'_{e'}$) location in heap h

end for

end while

Experiments KL_v

- Analysis on the number of cameras using Mutual Information

Simplification Algorithm

/* Update the mesh */

while (heap h not empty)

Remove from heap h the edge e with lowest C_e

Perform collapse e

for (each e' in neighborhood e)

Compute collapse cost $C'_{e'}$

Update (e', $C'_{e'}$) location in heap h

end for

end while

Experiments KL_v

- Analysis on the number of cameras using Mutual Information

Simplification Algorithm

/* Update the mesh */

while (heap h not empty)

Remove from heap h the edge e with lowest C_e

Perform collapse e

for (each e' in neighborhood e)

Compute collapse cost $C'_{e'}$

Update (e', $C'_{e'}$) location in heap h

end for

end while

Experiments KL_v

- Analysis on the number of cameras using Mutual Information
Conclusions and future work

- New viewpoint-driven simplification metrics based on Information Theory has been proposed.
- The metrics will be improved incorporating attributes (textures).
- We are working to reduce the computation time, although the simplification is an off-line process.