

EUROGRAPHICS 2006.

EG 2006 Course on Populating Virtual Environments
with Crowds

Organiser: Daniel Thalmann

Address: EPFL-VRlab, CH 1015 Lausanne

e-mail: Daniel.Thalmann@epfl.ch

Phone: +41-21-693-5214

Fax: +41-21-693-5328

URL: http://vrlab.epfl.ch

Lecturers: Daniel Thalmann (EPFL), Carol O’Sullivan (Trinity College), Pablo de Heras Ciechomski (EPFL), Simon

Dobbyn (Trinity College)

Keywords: population, crowd simulation, informed virtual environments, autonomous agents

Necessary background and potential target audience
for the tutorial: experience with computer animation is
recommended but not mandatory. The course is intended
for animators, designers, and students in computer sci-
ence.

Detailed outline of the tutorial

The necessity to model virtual populations appears in
many applications of computer animation and simula-
tion. Such applications encompass several different do-
mains – representative or autonomous agents in virtual
environments, human factors analysis, training, educa-
tion, simulation-based design, and entertainment. Re-
produce in simulation the dynamic life of virtual envi-
ronments in real-time is also a great challenge.

For many years, this was a challenge to produce real-
istic virtual crowds for special effects in movies. Now,
there is a new challenge: the production of real-time

autonomous Virtual Crowds. Real-time crowds are nec-
essary for games, VR systems for training and simula-
tion and crowds in Augmented Reality applications.
Autonomy is the only way to create believable crowds
reacting to events in real-time. This course will present
state-of-the-art techniques and methods.

The course will first explain in details the different
approaches to create virtual crowds: particle systems
with flocking techniques using attraction and repulsion
forces, copy and pasting techniques, agent-based meth-
ods.

The course will explore essential aspects to the gen-
eration of virtual crowds. In particular, it will present the
aspects concerning information (intentions, status and
knowledge), behavior (innate, group, complex and
guided) and control (programmed, autonomous and
guided). It will emphasize essential concepts like sen-
sory input (vision, audition, tactile), versatile motion
control, and artificial intelligence level,. The course will
survey methods for animating the individual members
that make up crowds. It will survey a variety of ap-
proaches, with a focus on how example-based synthesis
methods can be adapted for crowds. It will also discuss
agent architectures for scalable crowd simulation.

The course will cover the topics of real-time crowd
rendering, including image-based/impostor, polygonal
and point-based techniques. The topic of Level of Detail
(LOD) crowd animation will also be covered, not only
for rendering, but also for simulation, AI, attention and
conversational behaviour. Perceptual issues with respect

http://www.eg.org
http://diglib.eg.org

 Populating Virtual Environments with Crowds

EUROGRAPHICS 2006 .

to the appearance and movement of crowds of characters
will be addressed.

The course will also explore essential aspects to the
generation of virtual crowds. In particular, it will present
the aspects concerning information (intentions, status
and knowledge), behavior (innate, group, complex and
guided) and control (programmed, autonomous and
guided). It will emphasize essential concepts like sen-
sory input (vision, audition, tactile), versatile motion
control, artificial intelligence level, and rendering tech-
niques. The course will also presents the new challenge
in the production of real-time crowds for games, VR
systems for training and simulation. Techniques for
rendering a very large number of Virtual Humans will
be emphasized. The course will be illustrated with a lot
of examples from recent movies and real-time applica-
tions in Emergency situations and Cultural Heritage
(like adding virtual audience in Roma or Greek thea-
ters).

Resume of the presenters

Daniel Thalmann is Professor and Director of The Vir-
tual Reality Lab (VRlab) at EPFL, Switzerland. He is a
pioneer in research on Virtual Humans. His current re-
search interests include Real-time Virtual Humans in
Virtual Reality, Networked Virtual Environments, Arti-
ficial Life, and Multimedia. He is coeditor-in-chief of
the Journal of Computer Animation and Virtual Worlds
and member of the editorial board of the Visual Com-
puter and 4 other journals. Daniel Thalmann was mem-
ber of numerous Program Committees, Co-chair, and
Program Co-chair of several conferences including IEEE
VR 2000. He has also organized 5 courses at
SIGGRAPH on human animation and crowd simulation.
Daniel Thalmann has published numerous papers in
Graphics, Animation, and Virtual Reality. He is coedi-
tor of 30 books included the recent “Handbook of Vir-
tual Humans”, published by John Wiley and Sons and
coauthor of several books. He received his PhD in Com-
puter Science in 1977 from the University of Geneva

and an Honorary Doctorate (Honoris Causa) from Uni-
versity Paul-Sabatier in Toulouse, France, in 2003.

Carol O'Sullivan has been the leader of the Graphics
group in Trinity College Dublin, Ireland, since 1999,
where she has managed a range of projects with signifi-
cant budgets and successfully supervised many re-
searchers. Her research interests include perception,
virtual humans, crowds, and physically-based animation.
She has been a member of many IPCs, including the
SIGGRAPH papers committee, and has published over
70 peer-reviewed papers. Carol has presented at
SIGGRAPH several times, most recently a paper on
impostor techniques for crowd simulation in the 2005
SI3D session. She has organised and co-chaired several
conferences and workshops, including Eurographics
2005, the SIGGRAPH/EG Symposium on Computer
Animation 2006 and the SIGGRAPH/EG Campfire on
Perceptually Adaptive Graphics 2001.

Simon Dobbyn is a postdoctoral researcher at the In-
teraction, Simulation and Graphics Lab in Trinity Col-
lege Dublin where he recently finished his PhD entitled
"Hybrid Representations and Perceptual Metrics for
Scalable Human Simulation". His research interests
include the real-time rendering of virtual crowds, level
of detail, and perception.

Pablo de Heras’ goal in life is optimizing real-time
rendering and exploration of and interaction with large
collections of objects such as crowds of humans. He is a
PhD student under the supervision of professor Daniel
Thalmann at EPFL, VRlab in Switzerland where he
started in 2002. He did his Master thesis at Massive
Entertainment a game company in Sweden. He has been
working on real-time rendering of crowds, novel tools
for interaction with crowds, dynamics interaction with
characters and variety editing for human characters in
crowds.

Selected Publications

J. Pettre, P. de Heras Ciechomski, J. Maim, B.Yersin,
J.P. Laumond, D.Thalmann, Real-Time Navigating
Crowds: Scalable Simulation and Rendering, Proc.
CASA 2006, Journal of Computer Animation and Vir-
tual Worlds, July 2006

S. Raupp Musse, D.Thalmann, A Behavioral Model
for Real Time Simulation of Virtual Human Crowds,
IEEE Transactions on Visualization and Computer
Graphics, Vol.7, No2, 2001, pp.152-164.

B. Ulicny, P. de Heras Ciechomski, D. Thalmann,
Crowdbrush: Interactive Authoring of Real-time Crowd
Scenes, Proc. ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation ‘04, 2004, pp.243-252

EUROGRAPHICS 2006.

B. Ulicny, D. Thalmann, Towards Interactive Real-
Time Crowd Behavior Simulation, Computer Graphics
Forum, 21(4):767-775, December 2002

P. de Heras Ciechomski, B. Ulicny, R. Cetre, and D.
Thalmann, A case study of a virtual audience in a recon-
struction of an ancient Roman odeon in Aphrodisias,
The 5th International Symposium on Virtual Reality,
Archaeology and Cultural Heritage, VAST2004

P. de Heras Ciechomski, S. Schertenleib, J. Maïm, D.
Maupu and D. Thalmann, Real-time Shader Rendering
for Crowds in Virtual Heritage, VAST '05, 2005

N. Magnenat-Thalmann, D. Thalmann (eds), Hand-
book of Virtual Humans, John Wiley, 2004

C. O´Sullivan, J. Cassell, H. Vilhjalmsson, J.
Dingliana, S. Dobbyn, B. McNamee, C. Peters and T.
Giang, Levels of Detail for Crowds and Groups, Com-
puter Graphics Forum, 21(4), 2002.

S. Dobbyn, J. Hamill, K. O'Conor and C. O'Sullivan,
Geopostors: A Real-Time Geometry/Impostor Crowd
Rendering System. ACM SIGGRAPH 2005 Symposium
on Interactive 3D Graphics and Games 2005, pp. 95-
102.

J. Hamill, R. McDonnell, S. Dobbyn, and C.
O'Sullivan, Perceptual Evaluation of Impostor Represen-
tations for Virtual Humans and Buildings. Computer
Graphics Forum 24(3) (EUROGRAPHICS 2005 Pro-
ceedings) 2005.

R. McDonnell, S. Dobbyn, and C. O'Sullivan, LOD
Human Representations: A Comparative Study. Pro-
ceedings of the First International Workshop on Crowd
Simulation (V-CROWDS '05) 2005.

EUROGRAPHICS 2006

State-of-the-Art: Real-time Crowd Simulation

B. Ulicny, P. de Heras Ciechomski, S. R. Musse2 & D. Thalmann

VRLab, EPFL
CH-1015, Lausanne, Switzerland

branislav.ulicny, pablo.deheras, daniel.thalmann@epfl.ch
http://vrlab.epfl.ch

2 CROMOS Lab, Universidade do Vale do Rio dos Sinos
Ciências Exatas e Tecnológicas - PIPCA

Av. Unisinos 950
93022-000 - São Leopoldo - RS, Brazil

soraiarm@exatas.unisinos.br
http://www.inf.unisinos.br/ cromoslab

Abstract
Crowds are part of our everyday experience; nevertheless, in virtual worlds they are still relatively rare. In the
past, main reasons hindering a wider use of virtual crowds in the real-time domain were their high demands on
both general and graphics performance coupled with high costs of content production. The situation is, though,
changing fast; market forces are pushing performance of the consumer hardware up, reaching and surpassing per-
formance of professional graphics workstations from just few years ago. With current consumer-grade personal
computers it is possible to display 3D virtual scenes with thousands of animated individual entities at interactive
framerates. In this report, we present the related works on the subject of groups and crowd simulation discussing
several areas such as behavioral simulation, crowd motion control, crowd rendering and crowd scenario author-
ing.

Keywords: Autonomous agents, behavioral animation, computer graphics, crowd simulations, flocking, image-
based rendering, multi-agent systems, impostors, virtual reality.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation I.3.3 [Picture/Image Generation]: Display algorithms I.2.11 [Distributed Artificial Intelligence]: Mul-
tiagent systems

1. Introduction to crowd simulations

Although collective behavior has been studied since as early
as the end of the nineteenth century [LeB95], attempts to
simulate it by computer models are quite recent, with most
of the works done only in the mid and late nineties. In the
past years researchers from a broad range of fields such as
architecture [SOHTG99, PT01, TP02], computer graphics
[BG96, HB94, MT01, Rey87, TLC02b, UT02b, BMdOB03],
physics [HM95, HFV00, FHV02], robotics [MS01],
safety science [Sim04, Sti00, TM95a], training sys-
tems [Bot95, VSMA98, Wil95], and sociology
[JPvdS01, MPT92, TSM99] have been creating simu-

Figure 1: A virtual crowd in a city

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

lations involving collections of individuals. Nevertheless,
despite apparent breadth of the crowd simulation research
basis, it can be noted that interdisciplinary exchange of
ideas is rare; researchers in one field are usually not very
aware of works done in the other fields.

Most approaches were application-specific, focusing on
different aspects of the collective behavior, using differ-
ent modeling techniques. Employed techniques range from
those that do not distinguish individuals such as flow and
network models in some of the evacuation simulations
[TT92], to those that represent each individual as being con-
trolled by more or less complex rules based on physical laws
[HFV00, HIK96], chaos equations [SKN98] or behavioral
models in training systems [Wil95] or sociological simula-
tions [JPvdS01].

We can distinguish two broader areas of crowd simula-
tions. The first one is focusing on arealism of behavioral
aspectswith usually simple 2D visualizations like evacu-
ation simulators, sociological crowd models, or crowd dy-
namics models. In this area, a simulated behavior is usu-
ally from a very narrow, controlled range (for example, peo-
ple just flying to exit or people forming ring crowd struc-
tures) with efforts to quantitatively validate correspondence
of results to real world observations of particular situations
[TM95b]. Ideally, a simulation’s results would be then con-
sistent with data sets collected from field observations or
video footage of real crowds either by human observers
[SM99] or by some automated image processing method
[CYC99, MVCL98]. Visualization is used to help to under-
stand simulation results, but it is not crucial. In most cases, a
schematic representation, with crowd members represented
by colored dots, or sticky figures, is enough, sometimes even
preferable as it allows highlighting important information.

In the second area, a main goal ishigh quality visual-
ization (for example, in movie productions and computer
games), but usually the realism of the behavior model is not
the priority. What is important is a convincing visual result,
which is achieved partly by behavior models, partly by hu-
man intervention in the production process. A virtual crowd
should both look good and be animated in a believable man-
ner, the emphasis of the research being mostly on render-
ing and animation methods. Crowd members are visualized
as fully animated three dimensional figures that are textured
and lit to fit into the environment [DHOO05]. Here, behav-
ior models do not necessarily aim to match quantitatively the
real world, their purpose is more in alleviating of human an-
imators work, and to be able to respond to inputs in case of
interactive applications.

Nevertheless, a recent trend seems to be aconvergence
of both areas, where visualization oriented systems are try-
ing to incorporate better behaviors models to ease creation
of convincing animations [Ant98, Cha04] and behavior ori-
ented models are trying to achieve better visualization, espe-
cially in the domain of evacuation simulators [Exo04, STE].

We can expect that the most demanding applications would
be training systems, where both valid replication of the be-
haviors and high quality visualization is necessary for a
training to be effective.

1.1. Requirements and constrains for crowd modeling

Real-time crowds bring different challenges compared to the
systems either involving small number of interacting char-
acters (for example, the majority of contemporary computer
games), or non-real-time applications (as crowds in movies,
or visualizations of crowd evacuations after off-line model
computations). In comparison with single-agent simulations,
the main conceptual difference is theneed for efficient va-
riety managementat every level, whether it is visualization,
motion control, animation or sound rendering. As everyday
experiences hint, virtual humans composing a crowd should
look different, move different, react different, sound differ-
ent and so forth. Even if assuming perfect simulation of a
single virtual human would be possible, still creating a sim-
ulation involving multiple such humans would be a difficult
and tedious task. Methods easing control of many charac-
ters are needed; however such methods should still preserve
ability to control individual agents.

In comparison with non-real-time simulations, the main
technical challenge isincreased demand on computational
resourceswhether it is general processing power, graphics
performance or memory space. One of the foremost con-
straining factors for real-time crowd simulations is crowd
rendering. Fast and scalable methods both to compute be-
havior, able to take into account inputs not known in ad-
vance, and to render large and varied crowds, are needed.
While non-real-time simulations are able to take advantage
of knowing a full run of the simulated scenario (and there-
fore, for example, can run iteratively over several possible
options selecting the globally best solution), real-time simu-
lations have to react to the situation as it unfolds in the mo-
ment.

2. Crowd simulation areas

In order to create a full simulation of the crowd in the vir-
tual environment, many issues have to be solved. The areas
of relevance for crowd simulation and some associated ques-
tions include:

Crowd behavior generation: How should a virtual crowd
respond to changes in their surroundings? How should
agents respond to behaviors of other agents? What is an
appropriate way of modeling perception for many agents?
[Rey87, TT94, HB94, BCN97, BH97, Rey99, Mus00]
[UT02b, NG03]

Crowd motion control: How should virtual entities move
around and avoid collisions with both a static environment
and dynamic objects? How can a group move in a coordi-
nated manner? [ALA ⁄01, GKM⁄01, AMC03, LD04]

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

Integration of crowds in virtual environments:
Which aspects of the environment need to be mod-
eled? Which representation of environmental ob-
jects is best suited for fast behavior computation?
[FBT99, BLA02, KBT03, LMA03]

Virtual crowd rendering and animation: How to display
many animated characters fast? How to display a wide va-
riety of appearances? How to generate varied animations?
[ABT00, LCT01, TLC02a, WS02, dHSMT05]

Interaction with virtual crowds: How and which infor-
mation should be exchanged between real and virtual
humans? What is the most efficient metaphor to direct
crowds of virtual extras? [FRMS⁄99, UdHCT04]

Generation of virtual individuals: How to generate a het-
erogeneous crowd? How to create a population with de-
sired distribution of features? [GKMT01, SYCGMT02]

Authoring of scenarios: How to author complex crowd
scenes in an efficient way? How to distribute crowd mem-
bers in designated areas? How to distribute features over
a population? [Che04, UdHCT04, PLT05]

Many of these aspects are to a greater or lesser extent in-
tertwined. For example, efficiency of rendering constrains
the possible variety of behaviors and appearances; higher-
level behavior generation controls lower-level motion sys-
tems, but the behavior should also respond appropriately to
collisions encountered while moving; the behavior model
affects interaction possibilities; the environment representa-
tion affects possible behaviors; authoring tools allow han-
dling of more complex behavior and environment represen-
tations and so on.

3. Overview of crowd simulations

3.1. Crowd evacuation simulators

One of the largest areas where crowd behaviors have been
modeled is the domain of safety science and architecture
with the dominant application of crowd evacuation simu-
lators. Such systems model movements of a large number
of people in usually closed and well-defined spaces like
inner areas of buildings [TM95a], subways [Har00], ships
[KMKWS00] or airplanes [OGLF98]. Their goal is to help
designers to understand therelation between the organiza-
tion of space and human behavior[OM93].

The most common use of evacuation simulators is the
modeling of crowd behavior in case of forced evacuation
from a confined environment due to some threat like fire
or smoke. In such a situation, a number of people have to
evacuate the given area, usually through a relatively small
number of fixed exits. Simulations are trying to help with
answering questions like: Can the area be evacuated within
a prescribed time? Where do the hold-ups in the flow of peo-
ple occur? Where are the likely areas for a crowd surge to
produce unacceptable crushing pressure? [Rob99] The most
common modeling approach in this area is the use of cellular

automata serving both as a representation of individuals and
a representation of the environment.

Simulex[TM95a, Sim04] is a computer model simulating
the escape movement of persons through large, geometri-
cally complex building spaces defined by 2D floor plans and
connecting staircases. Each individual has attributes such as
position, body size, angle of orientation and walking speed.
Various algorithms as distance mapping, way finding, over-
taking, route deviation and adjustment of individual speeds
due to proximity of crowd members are used to compute
egress simulation, where individual building occupants walk
towards and through the exits.

K. Still developed a collection of programs namedLegion
for simulation and analysis of the crowd dynamics in evacu-
ation from constrained and complex environments like stadi-
ums [Sti00]. Dynamics of crowd motion is modeled by mo-
bile cellular automata. Every person in the crowd is treated
as an individual, calculating its position by scanning its local
environment and choosing an appropriate action.

3.2. Crowd management training systems

The modeling of crowds has also been essential in police and
military simulator systems used for training in how to deal
with mass gatherings of people.

CACTUS[Wil95] is a system developed to assist in plan-
ning and training for public order incidents such as large
demonstrations and marches. The software designs are based
on a world model in which crowd groups and police units
are placed on a digitized map and have probabilistic rules
for their interactive behavior. The simulation model repre-
sents small groups of people as discrete objects. The be-
havioral descriptions are in the form of a directed graph
where the nodes describe behavioral states (to which corre-
spond actions and exhibited emotions) and transitions rep-
resent plausible changes between these states. The transi-
tions depend on environmental conditions and probability
weightings. The simulation runs as a decision making ex-
ercise that can include pre-event logistic planning, incident
management and debriefing evaluation.

Small Unit Leader Non-Lethal Training System
[VSMA98] is a simulator for training US Marines Corps
in decision making with respect to the use of non-lethal
munitions in peacekeeping and crowd control operations.
Trainees learn rules of engagement, the procedures for
dealing with crowds and mobs and ability to make decisions
about the appropriate level of force needed to control,
contain, or disperse crowds and mobs. Crowds move within
a simulated urban environment along instructor-predefined
pathways and respond both to actions of a trainee and to
actions of other simulated crowds. Each crowd is character-
ized by a crowd profile - series of attributes like fanaticism,
arousal state, prior experience with non-lethal munitions,
or attitude toward Marines. During an exercise, the crowd

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

behavior computer model operates in real time and responds
to trainee actions (and inactions) with appropriate simulated
behaviors such as loitering, celebrating, demonstrating, riot-
ing and dispersing according to set of Boolean relationships
defined by experts.

3.3. Sociological models of crowds

Despite being a field primary interested in studying collec-
tive behavior, only a relatively small number of works on
crowd simulations have been done in sociology.

McPhail et al. [MPT92] studied individual and collective
actions in temporary gatherings. Their model of the crowd
is based on perception control theory [Pow73] where each
separate individual is trying to control his or her experience
in order to maintain a particular relationship to others: in this
case it is a spatial relationship with others in a group. The
simulation program calledGATHERINGgraphically shows
movement, milling, and structural emergence in crowds. The
same simulation system was later used by Schweingruber
[Sch95] to study the effects of reference signals common
to coordination of collective behavior and by Tucker et al.
[TSM99] to study formation of arcs and rings in temporary
gatherings.

Jager et al. [JPvdS01] modeled clustering and fighting in
two-party crowds. A crowd is modeled by a multi-agent sim-
ulation using cellular automata with rules defining approach-
avoidance conflict. The simulation consists of two groups of
agents of three different kinds: hardcore, hangers-on and by-
standers, the difference between them consisting in the fre-
quency with which they scan their surroundings. The goal of
the simulation was to study effects of group size, size sym-
metry and group composition on clustering, and ’fights’.

3.4. Group behavior in robotics and artificial life

Researchers working in the field of artifical life are interested
in exploring how group behavior emerges from local behav-
ioral rules [Gil95]. Software models and groups of robots
were designed and experimented with in order to understand
how complex behaviors can arise in systems guided by sim-
ple rules. The main source of inspiration is nature, where,
for example, social insects efficiently solve problems such
as finding food, building nests, or division of labor among
nestmates by simple interacting individuals without an over-
seeing global controller. One of the important mechanisms
contributing to a distributed control of the behavior isstig-
mergy, indirect interactions among individuals through mod-
ifications of the environment [BDT99].

Dorigo introducedant systemsinspired by behaviors of
real ant colonies [Dor92]. Ant algorithms have been success-
fuly used to solve a variety of discrete optimization prob-
lems including the travelling salesman problem, sequential
ordering, graph colouring or network routing [BDT00]. Be-
sides insects, also groups of more complex organisms such

as flocks of birds, herds of animals and schools of fish have
been studied in order to understand principles of their or-
ganization. Recently, Couzin et al. presented a model of
how animals that forage or travel in groups can make de-
cisions even with a small number of informed individuals
[CKFL05].

Principles from biological systems were also used to de-
sign behavior controllers for autonomous groups of robots.
Mataric studied behavior-based control for a group of ro-
bots, experimenting with a herd of 20 robots whose behav-
ioral repertoire included safe wandering, following, aggre-
gation, dispersion and homing [Mat97]. Molnar and Starke
have been working on assignment of robotic units to targets
in a manufacturing environments using a pattern formation
inspired by pedestrian behavior [MS01]. Martinoli applied
swarm intelligence principles to autonomous collective ro-
botics, performing experiments with robots that were gather-
ing scattered objects and cooperating to pull sticks out of the
ground [Mar99]. Holland and Melhuish experimented with
a group of robots doing sorting of objects based on ant be-
haviors where ants sort larvae and cocoons [HM99]. In an
interesting work a robot was used to control animal behav-
ior, Vaughan et al. developed a mobile robot that gathers a
flock of real ducks and manoeuvres them safely to a specied
goal position [VSH⁄00].

3.5. Crowds in virtual worlds

In order to have a persuasive application using crowds in vir-
tual environments, various aspects of the simulation have to
be addressed, including behavioral animation, environment
modeling and crowd rendering. If there is no satisfactory
rendering, even the best behavior model will not be very
convincing. If there is no good model of a behavior, even a
simulation using the best rendering method will look dumb
after only few seconds. If there is no appropriate model of
the environment, characters will not behave believably, as
they will perform actions at wrong places, or not perform at
all.

The goal of behavioral animation is toease the work
of designers by letting virtual characters perform au-
tonomously or semi-autonomously complicated motions
which otherwise would require large amounts of human an-
imators’ work; or, in case of interactive applications, the be-
havioral models allow characters torespond to user initi-
ated actions.

In order for a behavior to make sense, besides characters,
also their surrounding environment has to be modeled, not
just graphically but also semantically. Indeed, a repertoire of
possible behaviors is very dependent on what is and what is
not included in a model of the environment. It happens very
often that the environment is visually rich, but the interaction
of characters with it is minimal.

Finally, for interactive applications, it is necessary to dis-

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

play a varied ensemble of virtual characters in an efficient
manner. Rendered characters should visually ’fit’ into the en-
vironment, they should be affected by light and other effects
in the same manner as their surroundings.

Next, we will present representative works for each of
these topics grouped according to their main focus.

Behavioral animation of groups and crowds

Human beings are arguably the most complex known crea-
tures, therefore they are also the most complex creatures
to simulate. A behavioral animation of human (and hu-
manoid) crowds is based on foundations of group simula-
tions of much more simple entities, notably flocks of birds
[Rey87, GA90] and schools of fish [TT94]. The first pro-
cedural animation of flocks of virtual birds was shown in
the movie by Amkraut, Girard and Karl called Eurhythmy,
for which the first concept [AGK85] was presented at The
Electronic Theater at SIGGRAPH in 1985 (final version was
later presented at Ars Electronica in 1989). The flock motion
was achieved by a global vector force field guiding a flow of
flocks [GA90].

In his pioneering work, Reynolds [Rey87] described a dis-
tributed behavioral model for simulating aggregate motion
of a flock of birds. The technical paper was accompanied
by an animated short movie called “Stanley and Stella in:
Breaking the Ice” shown at the Electronic Theater at SIG-
GRAPH ’87. The revolutionary idea was that acomplex be-
havior of a group of actors can be obtained bysimple local
rules for members of the group instead of some enforced
global condition. The flock is simulated as a complex par-
ticle system, with the simulated birds (calledboids) being
the particles. Each boid is implemented as an independent
agent that navigates according to its local perception of the
environment, the laws of simulated physics, and the set of
behaviors. The boids try to avoid collisions with one another
and with other objects in their environment, match velocities
with nearby flock mates and move towards a center of the
flock. The aggregate motion of the simulated flock is the re-
sult of the interaction of these relatively simple behaviors of
the individual simulated birds. Reynolds later extended his
work by including various steering behaviors as goal seek-
ing, obstacle avoidance, path following or fleeing [Rey99],
and introduced a simple finite-state machines behavior con-
troller and spatial queries optimizations for real-time inter-
action with groups of characters [Rey00].

Tu and Terzopoulos proposed a framework for anima-
tion of artificial fishes [TT94]. Besides complex individual
behaviors based on perception of the environment, virtual
fishes have been exhibiting unscripted collective motions
as schooling and predator evading behaviors analogous to
flocking of boids.

An approach similar to boids was used by Bouvier et
al. [BG96, BCN97] to simulate human crowds. They used

a combination of particle systems and transition networks
to model crowds for the visualization of urban spaces. At
the lower level, attractive and repulsive forces, analogous to
physical electric ones, enable people to move around the en-
vironment. Goals generate attraction forces, obstacles gener-
ate repulsive force fields. Higher level behavior is modeled
by transition networks with transitions depending on time,
visiting of certain points, changes of local population densi-
ties and global events.

Brogan and Hodgins [BH97, HB94] simulated group be-
haviors for systems withsignificant dynamics. Compared
to boids, a more realistic motion is achieved by taking into
account physical properties of motion, such as momentum
or balance. Their algorithm for controlling the movements
of creatures proceeds in two steps: first, a perception model
determines the creatures and obstacles visible to each indi-
vidual, and then a placement algorithm determines the de-
sired position for each individual given the locations and ve-
locities of perceived creatures and obstacles. Simulated sys-
tems included groups of one-legged robots, bicycle riders
and point-mass systems.

Musse and Thalmann [Mus00, MT01] presented ahier-
archical model for real-time simulation of virtual human
crowds. Their model is based on groups, instead of individ-
uals: groups are more intelligent structures, where individu-
als follow the groups specification. Groups can be controlled
with different levels of autonomy: guided crowds follow or-
ders (as go to certain place or play a particular animation)
given by the user in run-time; programmed crowds follow
a scripted behavior; and autonomous crowds use events and
reactions to create more complex behaviors. The environ-
ment comprises a set of interest points, which signify goals
and waypoints; and a set of action points, which are goals
that have some actions associated. Agents move between
waypoints following Bezier curves.

Recently, another work was exploring group model-
ing based on hierarchies. Niederberger and Gross [NG03]
proposed an architecture of hierarchical and heteroge-
neous agents for real-time applications. Behaviors are de-
fined through specialization of existing behavior types and
weighted multiple inheritance for creation of new types.
Groups are defined through recursive and modulo based pat-
terns. The behavior engine allows for the specification of a
maximal amount of time per run in order to guarantee a min-
imal and constant framerates.

Ulicny and Thalmann [UT01, UT02b] presented a crowd
behavior simulation with a modular architecture for multi-
agent system allowing autonomous and scripted behavior of
agents supporting variety. In their system, the behavior is
computed in layers, where decisions are made by behavioral
rules and execution is handled by hierarchical finite-state
machines.

Perceived complexity of the crowd simulation can be in-
creased by usinglevel of details (LOD). O’Sullivan et al.

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

[OCV⁄02] described a simulation of crowds and groups
with level of details for geometry, motion and behavior.
At the geometrical level, subdivision techniques are used
to achieve smooth rendering LOD changes. At the motion
level, the movements are simulated using adaptive levels of
detail. Animation subsystems with different complexities,
as a keyframe player or a real-time reaching module, are
activated and deactivated based on heuristics. For the be-
havior, LOD is employed to reduce the computational costs
of updating the behavior of characters that are less impor-
tant. More complex characters behave according to their
motivations and roles, less complex ones just play random
keyframes.

Environment modeling for crowds

Environment modeling is closely related to behavioral ani-
mation. The purpose of the models of the environment is to
facilitate simulation of entities dwelling in their surround-
ing environments. Believability of virtual creatures can be
greatly enhanced if they behave in accordance with their sur-
roundings. On the contrary, the suspense of disbelief can be
immediately destroyed if they perform something not ex-
pected or not permitted in the real world, such as passing
through the wall or walking on water. The greatest efforts
have been therefore directed to representations and algo-
rithms preventing ’forbidden’ behaviors to occur: till quite
recently the two major artificial intelligence issues concern-
ing game development industry were collision avoidance
and path-planning [Woo99, DeL00].

The majority of the population in the developed world
lives in cities; it’s there where most of the human activi-
ties take place nowadays. Accordingly, most of the research
have been done formodelling of virtual cities. Farenc et al.
[FBT99] introduced aninformed environment dedicated to
the simulation of virtual humans in the urban context. The
informed environment is a database integrating semantic and
geometrical information about a virtual city. It is based on a
hierarchical decomposition of an urban scene into environ-
ment entities, like quarters, blocks, junctions, streets and so
on. Entities can contain a description of the behaviors that
are appropriate for agents located on them; for example, a
sidewalk tells that it should be walked on, or a bench tells
that it should be sat on. Furthermore, the environment data-
base can be used for a path-finding that is customized ac-
cording to the type of the client requesting the path, so that,
for example, a pedestrian will get paths using sidewalks, but
a car will get paths going through roads.

Another model of a virtual city for a behavioral anima-
tion was presented by Thomas and Donikian [TD00]. Their
model is designed with the main emphasis on traffic simula-
tion of vehicles and pedestrians. The environment database
is split into two parts - a hierarchical structure containing a
tree of polygonal regions, similar to the informed environ-
ment database; and a topological structure with a graph of

a road network. Regions contain information on directions
of circulation, including possible route changes at intersec-
tions. The agents then use the database to navigate through
the city.

In a recent work, Sung et al. [SGC04] presented a new
approach to control the behavior of a crowd by storing be-
havioral information into the environment using structures
calledsituations. Compared to previous approaches, envi-
ronmental structures (situations) can overlap; behaviors cor-
responding to such overlapping situations are then composed
using probability distributions. Behavior functions define
probabilities of state transitions (triggering motion clips) de-
pending on the state of the environment features or on the
past state of the agent.

On the side focused on more genericpath-planning
issues, several works have been done. Kallmann et al.
[KBT03] proposed a fast path-planning algorithm based on
a fully dynamic constrained Delaunay triangulation. Bayazit
et al. [BLA02] used global roadmaps to improve group be-
haviors in geometrically complex environments. Groups of
creatures exhibited behaviors such as homing, goal search-
ing, covering or shepherding, by using rules embedded
both in individual flock members and in roadmaps. Tang
et al. [TWP03] used a modified A* algorithm working on
grid overlayed over a hight-map generated terrain. Recently,
Lamarche and Donikian [LD04] presented a topological
structure of the geometric environment for a fast hierarchical
path-planning and a reactive navigation algorithm for vir-
tual crowds. Most recently, work presented by Pettre et al
[PLT05] show how to automatically and robustly compute a
multi-level navigation graph using three dimensional cylin-
ders. This work also shows how to re-use the resulting path
planning computation for a few hundred agents that can re-
act to congestion along the path.

Crowd rendering

Real-time rendering of a large number of 3D characters is a
considerable challenge; it is able to exhaust system resources
quickly even for state of the art systems with extensive mem-
ory resources, fast processors and powerful graphic cards.
’Brute-force’ approaches that are feasible for a few charac-
ters do not scale up for hundreds, thousands or more of them.
Several works have been trying to circumvent such limita-
tions by clever use of graphics accelerator capabilities, and
by employing methods profiting from the fact that our per-
ception of the scene as a whole is limited.

We can perceive in full detail only a relatively small part
of a large collection of characters. A simple calculation
shows that to treat every crowd member as equal is rather
wasteful. Modern screens can display around two millions
pixels at the same time, where a fairly complex character
can contain approximately ten thousand triangles. Even if
assuming that every triangle would be projected to a single
pixel, and that there would be no overlap of characters, the

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

screen fully covered by a crowd would contain only around
two hundred simultaneously visible characters. Of course, in
reality the number would be much smaller, a more reason-
able estimate is around a few dozen of fully visible char-
acters, with the rest of the crowd being either hidden behind
these prominent characters or taking significantly less screen
space. Therefore it makes sense to take full care only of the
foremost agents, and to replace the others with some less
complex approximations. Level of details techniques then
switch visualizations according to position and orientation of
the observer. In the recent work of Hamill et al. [HMDO05]
they pursue psychophysics, a discipline to decide perceptual
limitations to the human vision system for example. Doing
tests on how motion affects the perception of a human repre-
sented by an impostor or by a geometric structure, they were
able to define distances of least noticable switching between
models.

Billboarded impostors are one of the methods used to
speed up crowd rendering. Impostors are partially trans-
parent textured polygons that contain a snapshot of a full
3D character and are always facing the camera. Aubel et
al. [ABT00] introduced dynamically generated impostors to
render animated virtual humans. In their approach, an im-
postor creating process is running in parallel to full 3D sim-
ulations, taking snapshots of rendered 3D characters. These
cached snapshots are then used over several frames instead
of the full geometry until a sufficient movement of either
camera or a character will trigger another snapshot, refresh-
ing the impostor texture.

In another major work using impostors, Tecchia et al.
[TLC02a] proposed a method for real-time rendering of an
animated crowd in a virtual city. Compared to the previ-
ous method, impostors are not computed dynamically, but
are created in a preprocessing step. Snapshots are sampled
from viewpoints distributed in the sphere around the char-
acter. This process is repeated for every frame of the ani-
mation. In run-time, images taken from viewpoints closest
to the actual camera position are then used for texturing of
the billboard. Additionally, the silhouettes of the impostors
are used as shadows projected to a ground surface. Multi-
texturing is used to add variety by modulating colors of the
impostors. In a later work they added lighting using normal
maps [TLC02b]. Their method using precomputed impos-
tors is faster than dynamical impostors, however it is very
demanding on texture memory, which leads to lower image
quality as size of textures per character and per animation
frame have to be kept small.

A different possibility for a fast crowd display is to
usepoint-based rendering techniques. Wand and Strasser
[WS02] presented a multi-resolution rendering approach
which unifies image based and polygonal rendering. They
create a view dependant octree representations of every
keyframe of animation, where nodes store either a polygon
or a point. These representations are also able to interpolate

linearly from one tree to another so that in-between frames
can be calculated. When the viewer is at a long distance, the
human is rendered using point rendering; when zoomed in,
using polygonal techniques; and when in between, a mix of
the two.

An approach that has been getting new life is the one
of geometry baking. By taking snapshots of vertex posi-
tions and normals, complete mesh descriptions are stored
for each frame of animation as in the work of Ulicny et al.
[UdHCT04]. Since current desktop PCs have large memo-
ries many such frames can be stored and re-played. A hybrid
approach of both baked geometry and billboarding was pre-
sented at I3d, where only a few actors are fully geometrical
while the vast number of actors are made up of billboards
[DHOO05]. A similar approach can be found in [CLM05].
A more recent approach to crowd rendering using geometry
is throughdynamic meshesas presented in the work of de
Heras et al. [dHSMT05], where dynamic meshes use sys-
tems of caches to re-use skeletal updates which are typically
costly. A hybrid of dynamic and baked meshes is found in
[YMdHC⁄05] where the graphics programming unit (GPU)
is used to its fullest.

What is common to all approaches is instancing of tem-
plate humans, by changing the texture or color, size, orien-
tation, animation, animation style and position. This is care-
fully taken care of to smoothly transition from one represen-
tation to another so as not to create pops in representation
styles. In the billboarding scenario this is done by applying
different colors on entire zones such as torso, head, legs and
arms. This way the texture memory is used more efficiently
as the templates are more flexible. For the geometrical ap-
proaches these kind of differences are usually represented
using entirely different textures as the humans are too close
just to change basic colour for an entire zone [UdHCT04].

Crowds in non-real time productions

One of the domains with a fastest growth of crowd simu-
lations in recent years are special effects. While only ten
years ago, there were no digital crowds at all, nowadays al-
most every blockbuster has some, with music videos, tele-
vision series and advertisements starting to follow. In com-
parison with crowds of real extras, virtual crowds allow to
significantly reduce costs of production of massively popu-
lated scenes and allow for bigger creative freedom because
of their flexibility. Different techniques, as replications of
real crowd video footage, particle systems or behavioral an-
imation, have been employed to add crowds of virtual ex-
tras to shots in a broad range of movies, from historical
dramas [Tit97, Gla00, Tro04], through fantasy and science
fiction stories [Sta02, The03, Mat03], to animated cartoons
[The94, Ant98, A b98, Shr04].

The main factors determining the choice of techniques are
the required visual quality and the production costs allowed
for the project [Leh02]. It is common to use different tech-

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

niques even in a single shot in order to achieve the best vi-
suals - for example, characters in the front plane are usually
real actors, with 3D characters taking secondary roles in the
background.

Although a considerable amount of work was done on
crowds in movies, only relatively little information is avail-
able, especially concerning more technical details. Most
knowledge comes from disparate sources, for example, from
“making-of” documentary features, interviews with special
effect crew or industry journalist accounts. For big budget
productions, the most common approach isin-house devel-
opment of custom toolsor suites of tools which are used
for a particular movie. As the quality of the animation is
paramount, large libraries of motion clips are usually used,
produced mainly by motion capture of live performers. All
production is centered around shots, most of the times only
few seconds long. In contrast to real-time simulations, there
is little need for continuity of the simulation over longer pe-
riods of the time. It is common that different teams of peo-
ple work on parts of the shots which are then composited in
post-processing.

The most advanced crowd animation system for non real-
time productions isMassive; used to create battle scenes
for The Lord of the Ringsmovie trilogy [Mas04]. In Mas-
sive, every agent makes decisions about its actions depend-
ing on its sensory inputs using a brain composed of thou-
sands of logic nodes [Koe02]. According to the brain’s de-
cision, the motion is selected from an extensive library of
motion captured clips with precomputed transitions. For ex-
ample, in the second part of the trilogy over 12 millions of
motion captured frames (equivalent to 55 hours of anima-
tion) were used. Massive also uses rigid body dynamics, a
physics-based approach to facilitating realistic stunt motion
such as falling, or animation of accessories. For example, a
combination of physics-based simulation and custom motion
capture clips was used to create the scene of “The Flooding
of Isengard” where orcs are fleeing from a wall of water and
falling down the precipice [Sco03].

In comparison with real-time application, the quality of
motion and visuals in non real-time productions is far supe-
rior, however it comes at a great cost. For example forThe
Lord of the Rings: The Two Towers, rendering of all digi-
tal characters took ten months of computations on thousands
computer strong render farm [Doy03].

Crowds in games

In current computer games virtual crowds are still relatively
rare. The main reason is that crowds are inherently costly,
both in terms of real-time resources requirements and for
costs of a production. Nevertheless, the situations is starting
to change, with the real-time strategy genre leading the way
as increase of sizes of involved armies has direct effect on
gameplay [Rom04, The04a].

The main concern for games is thespeed of both ren-
dering and behavior computation. In comparison with non
real-time productions, the quality of both motion and render-
ing is often sacrificed in a trade-off for fluidity. Similarly to
movie production, computer games often inject realism into
virtual worlds from the real world by using large libraries
of animations, which are mostly motion captured. The ren-
dering uses level-of-details techniques, with some titles em-
ploying animated impostors [Med02].

To improve costs of behavior computations for games
that involve a large number of simulated entities, sim-
ulation level-of-detail techniques have been employed
[Bro02, Rep03]. In such techniques, behavior is computed
only for characters that are visible or soon to be visible.
Characters are created in a space around the player with pa-
rameters set according to some expected statistical distrib-
utions, the player lives in a “simulation bubble”. However,
handling simulation LOD is much more complex than han-
dling rendering LOD. It is perfectly correct not to compute
visualization for agents that are not visible, but not comput-
ing behaviors for hidden agents can lead to an incoherent
world. In some games it is common that the player causes
some significant situation (for example, traffic jam), looks
away, and then after looking back, the situation is changed
in an unexpected way (a traffic jam is “magically” resolved).

In case the scenario deals with hundreds or thousands of
entities, many times the selectable unit with distinct behav-
ior is a formation of troops, not individual soldiers. What
appears to be many entities on the screen is indeed only
one unit being rendered as several visually separated parts
[Sho00, Med02, Pra03].

A special case are sport titles such as various football,
basketball or hockey simulations, where there is a large
spectator crowd, however only of very low details. In the
most cases there is not even a single polygon for every
crowd member (compared to individual impostors in strat-
egy games). Majority of the crowd is just texture with trans-
parency applied to stadium rows, or to a collection of rows,
and only few crowd members, close to the camera can be
very low polygon count 3D models.

Crowd scenario authoring

No matter the quality of crowd rendering or the behavioral
model, a virtual crowd simulation is not very useful, if it is
too difficult to produce content for it. The authoring possi-
bilities are an important factor influencing the usability of
a crowd simulation system, especially when going beyond
a limited number of "proof-of-concept" scenarios. When
increasing the number of involved individuals, it becomes
more difficult to create unique and varied content of scenar-
ios with large number of entities. Solving one set of prob-
lems for crowd simulation (such as fast rendering and be-
havior computation for large crowds) creates a new problem

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

of how to create content for crowd scenarios in an efficient
manner.

Only recently, researchers started to explore ways of how
to author crowd scenes. Anderson et al. [AMC03] achieved
interesting results for a particular case of flocking anima-
tion following constraints. Their method can be used, for in-
stance, to create and animate flocks moving in shapes. Their
algorithm generates a constrained flocking motion by iter-
ating the simulation forwards and backwards. Nevertheless,
their algorithm can get very costly when increasing the num-
ber of entities and simulation time.

Ulicny et al. [UdHCT04] proposed a method to create
complex crowd scenes in an intuitive way using a Crowd-
Brush tool. By employing a brush metaphor, analogous to
the tools used in image manipulation programs, the user can
distribute, modify and control crowd members in real-time
with immediate visual feedback. This approach works well
for creation and modification of spatial features, however the
authoring of temporal aspects of the scenario is limited.

Sung et al. [SGC04] used a situation-based distributed
control mechanism that gives each agent in a crowd specific
details about how to react at any given moment based on
its local environment. A painting interface allows to spec-
ify situations easily by drawing their regions on the envi-
ronment directly like drawing a picture on the canvas. Com-
pared to previous work where the user adds, modifies and
deletes crowd members, here the interface operates on the
environment.

Chenney [Che04] presented a novel technique for repre-
senting and designing velocity fields using flow tiles. He ap-
plied his method on a city model with tiles defining the flow
of people through the city streets. Flow tiles drive the crowd
using the velocity to define the direction of travel for each
member. The use of divergence free flows to define crowd
motion ensures that, under reasonable conditions, the agents
do not require any form of collision detection.

4. Discussion

We presented an overview of the works on crowd simula-
tions done in different fields such as sociology, safety sci-
ence, training systems, computer graphics or entertainment
industry. Based on the analysis of published research works
and data available on industry applications, we made the fol-
lowing observations.

Domain specificity: While some of the know-how is
transferable across the fields, each of the domains dealing
with crowds poses unique challenges and requires different
solutions. It is indeed the targeted application that drives
most of the design choices while creating a simulation of
the crowd. There is no "silver bullet" solution, the ultimate
crowd simulation that would be fitting all purposes. Features
that are advantageous for one purpose are disadvantages in

the other and trade-offs have to be resolved in a different
manner. For example, most of the crowd evacuation simula-
tors use discrete 2D grid representations of the world as it is
easier to handle, to analyze and to validate. However, such
a representation is too coarse for crowd simulations with 3D
articulated bodies. The controller that drives a virtual hu-
manoid in a movie or a computer game has to be more com-
plex than the behavior model that drives 2D dots. It is not
enough to decide global position and orientation of the en-
tity; features like type of motion, its dynamics and transition,
or biomechanical constraints have to be taken into account.
A simple re-application of evacuation models to 3D visu-
alizations leads to awkward, unrealistic looking animations.
Humans can get easily enchanted by seeing artificial objects
performing behaviors that are not expected from them (such
as geometrical primitives fleeing in a 2D labyrinth), but are
very critical at evaluating of (what are expected to be) the
other people. Motions that look reasonable for 2D dots can
look very artificial when applied to virtual humans. Even a
relatively straightforward transition from segmented skele-
tons to fully skinned bodies in many cases reveals disturb-
ing imperfections in the motion. For applications where the
visual quality is most important (as in movies or games),
the behavior has to be constrained by availability of motions
and transitions among the motions (for example, when us-
ing physically based simulation [HB94] or motion graphs
[SGC04]).

Application focus: The consequence of the crowd mod-
els being domain specific is that in the majority of cases the
applications are focusing either on the realism of behavioral
aspects, or on the quality of the visualization. The most rep-
resentative examples of the former category are evacuation
simulations, which are usually validated on a large scale sta-
tistical parameters such as the number of the people passing
through a particular exit in a defined time interval. Behaviors
of individuals are not detailed and not defined beyond the
narrow scope of the simulation; for example, before or after
the incident people are either static or have random Brown-
ian motion. The examples of the latter category are crowds in
movies and games, where the goal of the behavior model is
to alleviate designers from the tedious tasks of orchestration
of animation for large number of entities or to respond to
the actions of the user. The repertoire of behaviors is larger;
for example, as the most common use of virtual crowds are
in battle scenes, virtual armies have to be able to navigate
around in the environment, to attack using different weapons
and to defend themselves against various enemies. The most
challenging area for crowd simulation are training simula-
tions as there is a need for both behavior realism and persua-
sive visualization. Present crowd management training sys-
tems have been focusing on training strategical skills there-
fore giving more emphasis on behavioral simulation with vi-
sualization being only schematic. Tactical on-site training of
crowd management with the trainee immersed in the virtual
world is not yet explored.

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

Crowd models: It is difficult to transfer current knowl-
edge about real crowds from social sciences into crowd sim-
ulations. Most of the sociology work on crowds is about
macroscopic behavior, not directly dealing with actions of a
particular person in particular situation in particular time in-
stance. Methodological observations about microscopic be-
haviors are sparse: sociological models based on collected
real data have a limited scope. The quality of the crowd
behavior model is prominent in safety science applications;
however, despites calls for including more knowledge about
psychology into evacuation models [Sim95], most of the cur-
rent applications still model behavior of the crowd based
more on physical than on psychological principles. Demands
on crowd models are different for entertainment industry ap-
plications. For production purposes it is preferable to be able
to control the crowd instead of just observing the results of
the model. Emergent behavior has sense as far as it alleviates
designers from tedious tasks. The crowd can be controlled
"top-down" where the group behavior is imposed by design,
or "bottom-up", where the collective behavior emerges from
the behavior of individuals. Group based approaches have
the advantage of easier handling when group membership
does not need to change, however they bring the disadvan-
tage of overhead when group membership changes often.

Trends: Virtual crowds are a relatively new topic, with
a majority of the research and commercial applications
done in the past few years, especially concerning real-time
crowds. The most visible trend is the increase of the number
of simulated entities; new techniques together with rapidly
evolving hardware allows to handle bigger crowds. An-
other recently appearing trend is about going beyond sim-
ple quantitative improvements towards an increase of com-
plexity of entities at all levels - whether it is visualization,
animation, or behaviors. Both quantitative and qualitative
improvements require novel methods, as in most cases it
is not straightforward to apply the method that works for
a small number of entities to a large crowd. Similarly to
other areas in computer graphics and virtual reality simu-
lations, the major driving force of the innovation starts to be
the entertainment industry resulting from large investments
due to increasing revenues from entertainment applications.
For example, many movies with virtual crowds were block-
busters with revenues in the order of hundreds of millions of
the dollars or more [Sta02, Mat03, The03, Shr04] allowing
to finance large internal research and development (R&D)
teams. Even the military, which used to be one of the largest
traditional sponsors of the simulation research, starts to use
in some cases commercial entertainment technologies for its
training instead of costly own R&D [Mac01, ZHM⁄03].

5. Future challenges and conclusions

We see several possible directions for future research in the
area of interactive crowd simulations:

Heterogeneity: In current crowd simulation systems, the

whole crowd is constituted by the same type of agents.
Even while creating individuality of agents by varying pa-
rameters, the principle of the behavior computation is the
same for every entity. It is possible to create a heteroge-
neous crowd simulation, where different agents can have
completely different behavior computation engines. Such
an architecture could, for example, lead to an increase of
the behavioral variety, while keeping individuals simpler
compared to a homogeneous simulation with the same va-
riety.

Scalability: In order to increase the number of simu-
lated entities, the crowd simulation should be scalable
[SGC04]. This can be achieved, for example, by using
behavior and animation level-of-details[ACF01, AW04],
where there are a different computational demands for
agents, depending on their relative position to the ob-
server. The behavior model should then allow to work
with different fidelity, for example, by using iterative al-
gorithms, or also heterogeneous crowds could be em-
ployed.

Variety: The variety of the virtual crowd can be enhanced
by adapting methods, capable of producing higher levels
of the variety, for the crowd simulations. The natural can-
didates are methods, which deal with variety sources in
the real people, such as parametric generation of bodies
[Seo03] or faces [BV99].

Parallelization: The computation of the crowd simulation
can be speeded up by using parallelization [QMHZ03].
However, the parallelization of the agents becomes practi-
cal only for the hardware that supports a parallel execution
of more threads than there are potentially parallelizable
application components. For example, recently US mili-
tary experimented with a combat simulation running on
128 node Linux cluster handling 100.000 entities (which
means that each sequential node took care of on average
780 entities) [The04b].

The rapid adoption of the crowd simulation in movies and
other non real-time productions in recent years shows that
there is a great demand for virtual crowds. It is not so diffi-
cult to imagine why - humans are social creatures and real
world reflects this fact, most of the people are surrounded
by other people. It is therefore expected to see crowds in the
works of both fact and fiction.

A similar reasoning also holds for interactive virtual en-
vironments such as computer games, training systems or ed-
ucational applications - we expect to see them populated.
However, while in movies it can still be possible, even if not
practical, to use a crowd of real extras, interactive applica-
tions have to rely fully on the virtual crowds. As already cur-
rent generation personal computers are capable of handling
thousands of real-time virtual characters, we believe that in
coming years there will be more and more interactive virtual
crowds.

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

We can expect to see a convergence between non real-
time and real-time domains, in a manner similar to other ar-
eas in computer graphics. The convergence will be fueled
both by increases in the power of both general purpose and
graphics processors and by the development of novel meth-
ods and algorithms. In non real-time applications, the real-
time methods can be used to improve the productivity for
creating crowd scenes because of shorter production cycles
and immediacy of the changes allowing new ways of author-
ing. On the other hand, in real-time applications, there will
be improvements in quality of both rendering and behaviors
moving towards the results possible before only by lengthy
computations in non-real time productions.

6. Biographies

Branislav Ulicny is a research assistant and a PhD student
at VRLab, Swiss Federal Institute of Technology (EPFL).
His research interests include emergent crowd simulations
for interactive virtual environments, behavioral animation,
multi-agent simulations and artificial life. He is working on
crowds and groups behavior simulation for several European
projects in the areas of virtual heritage and training systems.

Pablo de Heras Ciechomskiis a research assistant and
PhD student at VRLab, Swiss Federal Institute of Technol-
ogy (EPFL). His main research interest is in optimization
techniques for realtime rendering of crowds of dynamic vir-
tual humans. His Masters thesis was on human animation
and dynamics for Massive Entertainment a game company in
Sweden. He received his Master of Science degree in com-
puter engineering at Lund Institute of Technology in Lund,
Sweden.

Soraia Raupp Musse is an adjunct professor and re-
searcher at PIPCA, UNISINOS in Brazil, where she coor-
dinates CROMOS Lab (a Lab focused on virtual human and
crowd simulation). Several projects with companies such as
Petrobras, Legion, HP Brazil are been developed at CRO-
MOS Lab. She obtained her Ph.D. degree at EPFL - Labora-
toire d’Infographie, under supervision of Prof. Daniel Thal-
mann. Her research interests include crowd simulation, au-
tonomous and life-like agents and human body animation.

Daniel Thalmann is a full professor at EPFL. He is di-
rector of Virtual Reality Laboratory at EPFL. His current re-
search interests include Real-time Virtual Humans in Virtual
Reality, Networked Virtual Environments, Artificial Life,
and Multimedia. He has published more than 250 papers in
graphics, animation, and virtual reality. He is coeditor of 25
books and coauthor of several books.

Proposers have authored and co-authored several dozens
of publications on the topic of crowd simulations and re-
lated areas in various journals, conferences and workshops
[FRMS⁄99] [ABT00] [Mus00] [MT00] [MT01] [UT01]
[UT02b] [UT02a] [BMdOB03] [UdHCT04] [dHUDC04]

[BdSM04] [AB05] [NC05] [DCP05] [BBOM03]. Pro-
posers were contributing crowd and groups simulations
to several ongoing and completed European (CROSSES,
CAHRISMA, JUST, ERATO, eRENA, COVEN), Swiss Na-
tional Fundation projects [CRO02] [JUS03] [ERA04] and
other international projects with Petrobras, HP Brazil and
LEGION [CRO05].

References

[A b98] A bug’s life, 1998. movie homepage,
http://www.pixar.com/featurefilms/abl.7

[AB05] A. BRAUN B. J. BODMAN S. R. M.: Sim-
ulating virtual crowds in emergency situa-
tions. In Proceedings of ACM SYmposium
on Virtual Reality Software and Technology
- VRST 2005(Monterey, California, USA,
2005), ACM.11

[ABT00] AUBEL A., BOULIC R., THALMANN D.:
Real-time display of virtual humans: Levels
of detail and impostors.IEEE Transactions
on Circuits and Systems for Video Technol-
ogy 10, 2 (2000), 207–217.3, 7, 11

[ACF01] ARIKAN O., CHENNEY S., FORSYTH
D. A.: Efficient multi-agent path plan-
ning. In Computer Animation and Simu-
lation ’01 (2001), Magnenat-Thalmann N.,
Thalmann D., (Eds.), SpringerComputer-
Science, Springer-Verlag Wien New York,
pp. 151–162. Proc. of the Eurograph-
ics Workshop in Manchester, UK, Septem-
ber 2–3, 2001.10

[AGK85] AMKRAUT S., GIRARD M., KARL G.: Mo-
tion studies for a work in progress entitled
"Eurythmy". SIGGRAPH Video Review, 21
(1985). (second item, time code 3:58 to
7:35). 5

[ALA ⁄01] ASHIDA K., LEE S.-J., ALLBECK J. M.,
SUN H., BADLER N. I., METAXAS
D.: Pedestrians: Creating agent behaviors
through statistical analysis of observation
data. In Proc. Computer Animation ’01
(2001), IEEE Press.2

[AMC03] ANDERSON M., MCDANIEL E., CHEN-
NEY S.: Constrained animation of flocks. In
Proc. ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA’03)
(2003), pp. 286–297.2, 9

[Ant98] AntZ, 1998. movie homepage,
http://www.pdi.com/feature/antz.htm.
2, 7

[AW04] AHN J., WOHN K.: Motion level-of-detail:

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

A simplification method on crowd scene.
In Proc. Computer Animation and Social
Agents ’04(2004), pp. 129–137.10

[BBOM03] BRAUN A., BODMANN B. E. J., OLIVEIRA
L. P. L., MUSSES. R.: Modelling individ-
ual behavior in crowd simulation. InPro-
ceedings of Computer Animation and Social
Agents 2003(New Brunswick, USA, 2003),
IEEE Computer Society, pp. 143–148.11

[BCN97] BOUVIER E., COHEN E., NAJMAN L.:
From crowd simulation to airbag deploy-
ment: particle systems, a new paradigm of
simulation.Journal of Electrical Imaging 6,
1 (January 1997), 94–107.2, 5

[BdSM04] BARROS L. M., DA SILVA A. T., MUSSE
S. R.: Petrosim: An architecture to manage
virtual crowds in panic situations. InProc.
Computer Animation and Social Agents ’04
(2004), pp. 111–120.11

[BDT99] BONABEAU E., DORIGO M., THERAULAZ
G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press,
1999.4

[BDT00] BONABEAU E., DORIGO M., THERAULAZ
G.: Inspiration for optimization from social
insect behaviour.Nature 406(2000), 39–42.
4

[BG96] BOUVIER E., GUILLOTEAU P.: Crowd
simulation in immersive space management.
In Proc. Eurographics Workshop on Vir-
tual Environments and Scientific Visualiza-
tion ’96 (1996), Springer-Verlag, pp. 104–
110. 1, 5

[BH97] BROGAN D., HODGINS J.: Group behav-
iors for systems with significant dynamics.
Autonomous Robots 4(1997), 137–153.2, 5

[BLA02] BAYAZIT O. B., LIEN J.-M., AMATO
N. M.: Better group behaviors in complex
environments using global roadmaps. In
Proc. Artificial Life ’02 (2002).3, 6

[BMdOB03] BRAUN A., MUSSE S. R., DE OLIVEIRA
L. P. L., BODMANN B. E. J.: Model-
ing individual behaviors in crowd simula-
tion. In Proc. Computer Animation and So-
cial Agents ’03(2003).1, 11

[Bot95] BOTTACI L.: A direct manipulation inter-
face for a user enhanceable crowd simulator.
Journal Of Intelligent Systems 5, 2-4 (1995),
249–272.1

[Bro02] BROCKINGTON M.: Level-of-detail AI for

a large role-playing game. InAI Game Pro-
gramming Wisdom(2002), Rabin S., (Ed.),
Charles River Media.8

[BV99] BLANZ B., VETTER T.: A morphable
model for the synthesis of 3d faces. InProc.
Siggraph ’99(1999), pp. 187–194.10

[Cha04] Character Studio, 2004.
http://www.discreet.com/products/cs.
2

[Che04] CHENNEY S.: Flow tiles. In Proc.
ACM SIGGRAPH/Eurographics Symposium
on Computer Animation (SCA’04)(2004),
pp. 233–245.3, 9

[CKFL05] COUZIN I. D., KRAUSE J., FRANKS N. R.,
LEVIN S. A.: Effective leadership and
decision-making in animal groups on the
move.Nature 433(2005), 513–516.4

[CLM05] COIC J.-M., LOSCOS C., MEYER A.:
Three LOD for the realistic and real-time
rendering of crowds with dynamic lighting.
Research Report LIRIS, France(2005).7

[CRO02] CROSSES: CROwd Simulation System for
Emergency Situations, 2002. project web-
site, http://crosses.matrasi-tls.fr.11

[CRO05] Cromos - crowd modelling and simu-
lation laboratory, 2005. Lab website,
http://www.inf.unisinos/ cromoslab.11

[CYC99] CHOW T. W. S., YAM J. Y.-F., CHO S.-
Y.: Fast training algorithm for feedforward
neural networks: application to crowd esti-
mation at underground stations.Artificial
Intelligence in Engineering 13(1999), 301–
307. 2

[DCP05] D. C. PAIVA R. VIEIRA S. R. M.:
Ontology-based crowd simulation for nor-
mal life situations. InProceedings of Com-
puter Graphics International 2005(Stony
Brook, USA, 2005), IEEE Computer Soci-
ety. 11

[DeL00] DELOURA M. (Ed.): Game Programming
Gems. Charles River Media, 2000.6

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time
geometry/impostor crowd rendering system.
In Proc. ACM SIGGRAPH 2005 Sympo-
sium on Interactive 3D Graphics and Games
(2005).2, 7

[dHSMT05] DE HERAS P., SCHERTENLEIB S., MAIM
J., THALMANN D.: Real-time shader ren-
dering for crowds in virtual heritage. In

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

Proc. 6th International Symposium on Vir-
tual Reality, Archaeology and Cultural Her-
itage (VAST Š05)(2005).3, 7

[dHUDC04] DE HERAS P., ULICNY B., D. T., CETRE
R.: A case study of a virtual audience in a
reconstruction of an ancient roman odeon in
aphrodisias. InProc. 5th International Sym-
posium on Virtual Reality, Archaeology and
Cultural Heritage (VAST Š04)(2004).11

[Dor92] DORIGO M.: Optimization, Learning and
Natural Algorithms. PhD thesis, Politecnico
di Milano, Italy, 1992.4

[Doy03] DOYLE A.: The two towers. Computer
Graphics World(February 2003).8

[ERA04] ERATO, 2004. project website,
http://www.at.oersted.dtu.dk// erato.11

[Exo04] Exodus, 2004. the evacuation model
for the safety industry, homepage,
http://fseg.gre.ac.uk/exodus.2

[FBT99] FARENC N., BOULIC R., THALMANN D.:
An informed environment dedicated to the
simulation of virtual humans in urban con-
text. In Proc. Eurographics’99(1999),
Blackwell, pp. 309–318.3, 6

[FHV02] FARKAS I., HELBING D., VICSEK T.:
Mexican waves in an excitable medium.Na-
ture 419(2002), 131–132.1

[FRMS⁄99] FARENC N., RAUPP MUSSES., SCHWEISS
E., KALLMANN M., AUNE O., BOULIC
R., THALMANN D.: A paradigm for con-
trolling virtual humans in urban environ-
ment simulations.Applied Artificial Intelli-
gence Journal - Special Issue on Intelligent
Virtual Environments 14, 1 (1999), 69–91.3,
11

[GA90] GIRARD M., AMKRAUT S.: Eurhythmy:
Concept and process.The Journal of Vi-
sualization and Computer Animation 1, 1
(1990), 15–17. Presented at The Electronic
Theater at SIGGRAPH ’85.5

[Gil95] GILBERT N.: Simulation: an emergent per-
spective. InNew technologies in the social
sciences(Bournemouth, UK, 27-29th Octo-
ber 1995).4

[GKM⁄01] GOLDENSTEIN S., KARAVELAS M.,
METAXAS D., GUIBAS L., AARON E.,
GOSWAMI A.: Scalable nonlinear dynam-
ical systems for agent steering and crowd
simulation. Computers & graphics 25, 6
(2001), 983–998.2

[GKMT01] GOTO T., KSHIRSAGAR S., MAGNENAT-
THALMANN N.: Automatic face cloning
and animation. IEEE Signal Processing
Magazine 18, 3 (2001).3

[Gla00] Gladiator, 2000. movie homepage,
http://www.dreamworks.com.7

[Har00] HAREESH P.: Evacuation simulation: Visu-
alisation using virtual humans in a distrib-
uted multi-user immersive VR system. In
Proc. VSMM ’00(2000).3

[HB94] HODGINS J., BROGAN D.: Robot herds:
Group behaviors for systems with significant
dynamics. InProc. Artificial Life IV (1994),
pp. 319–324.1, 2, 5, 9

[HFV00] HELBING D., FARKAS I., V ICSEK T.: Sim-
ulating dynamical features of escape panic.
Nature 407(2000), 487–490.1, 2

[HIK96] HOSOI M., ISHIJIMA S., KOJIMA A.: Dy-
namical model of a pedestrian in a crowd. In
Proc. IEEE International Workshop on Ro-
bot and Human Communication ’96(1996).
2

[HM95] HELBING D., MOLNAR P.: Social force
model for pedestrian dynamics.Phys. Rev.
E 51(1995), 4282–4286.1

[HM99] HOLLAND O. E., MELHUISH C.: Stig-
mergy, self-organisation, and sorting in col-
lective robotics. Artificial Life 5 (1999),
173–202.4

[HMDO05] HAMILL J., MCDONNEL R., DOBBYN S.,
O’SULLIVAN C.: Perceptual evaluation of
impostor representations for virtual humans
and buildings.Eurographics’05: Computer
Graphics Forum 24, 3 (September 2005),
581–590.7

[JPvdS01] JAGER W., POPPING R., VAN DE SANDE
H.: Clustering and fighting in two-party
crowds: Simulating the approach-avoidance
conflict. Journal of Artificial Societies and
Social Simulation 4, 3 (2001).1, 2, 4

[JUS03] JUST-in-time health emergency interven-
tions - training of non-professionals by vir-
tual reality and advanced it tools, 2003.
project website, http://www.justweb.org.11

[KBT03] KALLMANN M., BIERI H., THALMANN
D.: Fully dynamic constrained delaunay tri-
angulations. InGeometric Modelling for
Scientific Visualization(2003), Brunnett G.,
Hamann B., Mueller H.„ Linsen L., (Eds.),
Springer-Verlag, pp. 241–257.3, 6

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

[KMKWS00] KLÜPFEL H., MEYER-KÖNIG M., WAHLE
J., SCHRECKENBERG M.: Microscopic
simulation of evacuation processes on pas-
senger ships. InTheoretical and Practical
Issues on Cellular Automata(2000), Ban-
dini S., Worsch T., (Eds.), Springer, London,
pp. 63–71.3

[Koe02] KOEPPELD.: Massive attack.Popular Sci-
ence(November 2002).8

[LCT01] LOSCOSC., CHRYSANTHOU Y., TECCHIA
F.: Real-time shadows for animated crowds
in virtual cities. In Proceedings of the
ACM Symposium on Virtual Reality Soft-
ware and Technology (VRST’01)(New York,
Nov. 15–17 2001), Shaw C., Wang W.,
(Eds.), ACM Press, pp. 85–92.3

[LD04] LAMARCHE F., DONIKIAN S.: Crowd of
virtual humans: a new approach for real time
navigation in complex and structured envi-
ronments.Computer Graphics Forum 23, 3
(2004). (Proc. Eurographics ’04).2, 6

[LeB95] LEBON G.: Psychologie des Foules. Alcan,
Paris, 1895.1

[Leh02] LEHANE S.: Digital extras.Film and Video
Magazine(July 2002).7

[LMA03] LOSCOSC., MARCHAL D., A.MEYER: In-
tuitive crowd behavior in dense urban envi-
ronments using local laws. InProc. The-
ory and Practice of Computer Graphics
(TPCG’03)(2003).3

[Mac01] MACEDONIA M.: Games, simulation, and
the military education dilemma. InThe
Internet and the University: 2001 Forum
(2001), Devlin M., Larson R.„ Meyerson J.,
(Eds.), Educause.10

[Mar99] MARTINOLI A.: Swarm Intelligence in Au-
tonomous Collective Robotics: From Tools
to the Analysis and Synthesis of Distributed
Collective Strategies. PhD thesis, EPFL,
Lausanne, 1999.4

[Mas04] MASSIVE, 2004. Crowd animation soft-
ware for visual effects,
http://www.massivesoftware.com.8

[Mat97] MATARIC M.: Behavior-based control: Ex-
amples from navigation, learning, and group
behavior.Journal of Experimental and The-
oretical Artificial Intelligence(1997), 323–
336. 4

[Mat03] Matrix, 2003. movie homepage,
http://whatisthematrix.warnerbros.com.
7, 10

[Med02] Medieval: Total War, 2002. game home-
page, http://www.totalwar.com.8

[MPT92] MCPHAIL C., POWERS W., TUCKER C.:
Simulating individual and collective actions
in temporary gatherings. Social Science
Computer Review 10, 1 (Spring 1992), 1–28.
1, 4

[MS01] MOLNAR P., STARKE J.: Control of dis-
tributed autonomous robotic systems using
principles of pattern formation in nature and
pedestrian behavior.IEEE Trans. Syst. Man
Cyb. B 31, 3 (June 2001), 433–436.1, 4

[MT00] MUSSE S. R., THALMANN D.: From one
virtual actor to virtual crowds: Requirements
and constraints. InProc. Agents’00(2000).
11

[MT01] MUSSE S. R., THALMANN D.: A hierar-
chical model for real time simulation of vir-
tual human crowds.IEEE Transactions on
Visualization and Computer Graphics 7, 2
(April-June 2001), 152–164.1, 5, 11

[Mus00] MUSSE S. R.: Human Crowd Modelling
with Various Levels of Behaviour Control.
PhD thesis, EPFL, Lausanne, 2000.2, 5, 11

[MVCL98] MARANA A. N., VELASTIN S. A., COSTA
L. F., LOTUFO R. A.: Automatic estima-
tion of crowd density using texture.Safety
Science 28, 3 (1998), 165–175.2

[NC05] N. COURTY S. R. M.: Simulation of
large crowds in emergency situations includ-
ing gaseous phenomena. InProceedings
of Computer Graphics International 2005
(Stony Brook, USA, 2005), IEEE Computer
Society.11

[NG03] NIEDERBERGER C., GROSS M.: Hierar-
chical and heterogenous reactive agents for
real-time applications. Computer Graph-
ics Forum 22, 3 (2003). (Proc. Eurograph-
ics’03). 2, 5

[OCV⁄02] O’SULLIVAN C., CASSELL J., VIL -
HJÁLMSSON H., DINGLIANA J., DOBBYN
S., MCNAMEE B., PETERS C., GIANG
T.: Levels of detail for crowds and groups.
Computer Graphics Forum 21, 4 (Nov.
2002), 733–741.6

[OGLF98] OWEN M., GALEA E. R., LAWRENCE
P. J., FILIPPIDIS L.: The numerical sim-
ulation of aircraft evacuation and its appli-
cation to aircraft design and certification.
The Aeronautical Journal 102, 1016 (1998),
301–312.3

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

[OM93] OKAZAKI S., MATSUSHITA S.: A study of
simulation model for pedestrian movement
with evacuation and queuing. InProc. In-
ternational Conference on Engineering for
Crowd Safety ’93(1993).3

[PLT05] PETTRE J., LAUMOND J P., THALMANN
D.: A navigation graph for real-time crowd
animation on multilayered and uneven ter-
rain. In First International Workshop on
Crowd Simulation (VCROWDS’05)(2005).
3, 6

[Pow73] POWERSW. T.: The Control of Perception.
Aldine, Chicago, 1973.4

[Pra03] Praetorians, 2003. game homepage,
http://praetorians.pyrostudios.com.8

[PT01] PENN A., TURNER A.: Space syntax based
agent simulation. InPedestrian and Evacu-
ation Dynamics, Schreckenberg M., Sharma
S., (Eds.). Springer-Verlag, Berlin, 2001.1

[QMHZ03] QUINN M. J., METOYER R. A., HUNTER-
ZAWORSKI K.: Parallel implementation of
the social forces model. InProc. Pedestrian
and Evacuation Dynamics’03(2003), Galea
E., (Ed.).10

[Rep03] Republic: the Revolution, 2003.
game homepage, http://www.elixir-
studios.co.uk/nonflash/republic/republic.htm.
8

[Rey87] REYNOLDS C. W.: Flocks, herds, and
schools: A distributed behavioral model. In
Proc. SIGGRAPH ’87(1987), pp. 25–34.1,
2, 5

[Rey99] REYNOLDS C. W.: Steering behaviors for
autonomous characters. InProc. Game De-
veloppers Conference ’99(1999), pp. 763–
782. 2, 5

[Rey00] REYNOLDS C. W.: Interaction with
groups of autonomous characters. InProc.
Game Developpers Conference ’00(2000),
pp. 449–460.5

[Rob99] ROBBINS C.: Computer simulation of
crowd behaviour and evacuation.ECMI
Newsletter, 25 (March 1999).3

[Rom04] Rome: Total War, 2004. game homepage,
http://www.totalwar.com.8

[Sch95] SCHWEINGRUBERD.: A computer simula-
tion of a sociological experiment.Social Sci-
ence Computer Review 13, 3 (1995), 351–
359. 4

[Sco03] SCOTT R.: Sparking life: Notes on the per-
formance capture sessions for ’The Lord of
the Rings: The Two Towers’.ACM SIG-
GRAPH Computer Graphics 37, 4 (2003),
17–21.8

[Seo03] SEO H.: Parameterized Human Body Mod-
eling. PhD thesis, University of Geneva,
2003.10

[SGC04] SUNG M., GLEICHER M., CHENNEY S.:
Scalable behaviors for crowd simulation.
Computer Graphics Forum 23, 3 (2004).
Proc. Eurographics ’04.6, 9, 10

[Sho00] Shogun: Total War, 2000. game homepage,
http://www.totalwar.com.8

[Shr04] Shrek 2, 2004. movie homepage,
http://www.shrek2.com.7, 10

[Sim95] SIME J.: Crowd psychology and engineer-
ing. Safety Science 21(1995), 1–14.10

[Sim04] Simulex, 2004. evacuation modeling soft-
ware, product information,
http://www.ies4d.com.1, 3

[SKN98] SAIWAKI N., KOMATSU T., NISHIDA S.:
Automatic generation of moving crowds in
the virtual environments. InProc. AMCP
’98 (1998).2

[SM99] SCHWEINGRUBER D., MCPHAIL C.: A
method for systematically observing and
recording collective action. Sociological
Methods & Research 27, 4 (May 1999),
451–498.2

[SOHTG99] SCHELHORN T., O’SULLIVAN D., HAK -
LAY M., THURSTAIN-GOODWIN M.:
Streets: an agent-based pedestrian model.
In Proc. Computers in Urban Planning and
Urban Management(1999).1

[Sta02] Star Wars, 2002. movie homepage,
http://www.starwars.com/.7, 10

[STE] STEPS, Simulation of Transient Evacuation
and Pedestrian movements.
http://www.fusion2.mottmac.com/html/06/
software.cfm.2

[Sti00] STILL G.: Crowd Dynamics. PhD thesis,
Warwick University, 2000.1, 3

[SYCGMT02] SEO H., YAHIA -CHERIF L., GOTO T.,
MAGNENAT-THALMANN N.: Genesis :
Generation of e-population based on statis-
tical information. InProc. Computer Ani-
mation ’02(2002), IEEE Press.3

[TD00] THOMAS G., DONIKIAN S.: Modelling

c° The Eurographics Association 2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

virtual cities dedicated to behavioural ani-
mation. InProc. Eurographics ’00(2000),
vol. 19, pp. 71–80.6

[The94] The Lion King, 1994. movie homepage,
http://disney.go.com/disneyvideos/
animatedfilms/lionking.7

[The03] The Lord of the Rings, 2003. movie home-
page, http://www.lordoftherings.net.7, 10

[The04a] The Lord of the Rings, The Battle for
Middle Earth, 2004. game homepage,
http://www.eagames.com/pccd/lotr_bfme.8

[The04b] The wars of the virtual worlds„ 2004.
University of Southern California,
http://www.isi.edu/stories/96.html.10

[Tit97] Titanic, 1997. movie homepage,
http://www.titanicmovie.com.7

[TLC02a] TECCHIA F., LOSCOSC., CHRYSANTHOU
Y.: Image-based crowd rendering.IEEE
Computer Graphics and Applications 22, 2
(March-April 2002), 36–43.3, 7

[TLC02b] TECCHIA F., LOSCOSC., CHRYSANTHOU
Y.: Visualizing crowds in real-time.Compu-
ter Graphics Forum 21, 4 (November 2002),
753–765.1, 7

[TM95a] THOMPSON P., MARCHANT E.: A
computer-model for the evacuation of large
building population.Fire Safety Journal 24,
2 (1995), 131–148.1, 3

[TM95b] THOMPSON P., MARCHANT E.: Test-
ing and application of the computer model
’simulex’. Fire Safety Journal 24, 2 (1995),
149–166.2

[TP02] TURNER A., PENN. A.: Encoding nat-
ural movement as an agent-based system:
An investigation into human pedestrian be-
haviour in the built environment.Environ-
ment and Planning B: Planning and Design
29 (2002), 473–490.1

[Tro04] Troy, 2004. movie homepage,
http://troymovie.warnerbros.com.7

[TSM99] TUCKER C., SCHWEINGRUBER D.,
MCPHAIL C.: Simulating arcs and rings in
temporary gatherings.International Journal
of Human-Computer Systems 50(1999),
581–588.1, 4

[TT92] TAKAHASHI T. S. H.: Behavior simulation
by network model.Memoirs of Kougakuin
University, 73 (1992), 213–220.2

[TT94] TU X., TERZOPOULOSD.: Artificial fishes:

Physics, locomotion, perception, behavior.
In Proc. SIGGRAPH ’94(1994), pp. 43–50.
2, 5

[TWP03] TANG W., WAN T. R., PATEL S.: Real-
time crowd movement on large scale ter-
rains. InProc. Theory and Practice of Com-
puter Graphics(2003), IEEE.6

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P.,
THALMANN D.: Crowdbrush: Interactive
authoring of real-time crowd scenes. In
Proc. ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (SCA’04)
(2004), pp. 243–252.3, 7, 9, 11

[UT01] ULICNY B., THALMANN D.: Crowd sim-
ulation for interactive virtual environments
and vr training systems. InProc. Eurograph-
ics Workshop on Animation and Simulation
(2001), Springer-Verlag, pp. 163–170.5, 11

[UT02a] ULICNY B., THALMANN D.: Crowd sim-
ulation for virtual heritage. InProc. First
International Workshop on 3D Virtual Her-
itage(Geneva, 2002), pp. 28–32.11

[UT02b] ULICNY B., THALMANN D.: Towards in-
teractive real-time crowd behavior simula-
tion. Computer Graphics Forum 21, 4 (Dec.
2002), 767–775.1, 2, 5, 11

[VSH⁄00] VAUGHAN R. T., SUMPTER N., HENDER-
SON J., FROST A., CAMERON S.: Experi-
ments in automatic flock control.Robotics
and Autonomous Systems 31(2000), 109–
177. 4

[VSMA98] VARNER D., SCOTT D., MICHELETTI J.,
A ICELLA G.: UMSC Small Unit Leader
Non-Lethal Trainer. InProc. ITEC’98
(1998).1, 3

[Wil95] WILLIAMS J.: A Simulation Environment to
Support Training for Large Scale Command
and Control Tasks. PhD thesis, University of
Leeds, 1995.1, 2, 3

[Woo99] WOODCOCK S.: Game AI: The state of the
industry. Game Developer Magazine(Au-
gust 1999).6

[WS02] WAND M., STRASSERW.: Multi-resolution
rendering of complex animated scenes.
Computer Graphics Forum 21, 3 (2002).
(Proc. Eurographics’02).3, 7

[YMdHC⁄05] YERSIN B., MAIM J.,
DE HERAS CIECHOMSKI P., SCHERTEN-
LEIB S., THALMANN D.: Steering a
virtual crowd based on a semantically

c° The Eurographics Association2006.

B. Ulicny, P. de Heras Ciechomski, S. R. Musse & D. Thalmann / State-of-the-Art: Real-time Crowd Simulations

augmented navigation graph. InFirst In-
ternational Workshop on Crowd Simulation
(VCROWDS’05)(2005).7

[ZHM⁄03] ZYDA M., HILES J., MAYBERRY A.,
WARDYNSKI C., CAPPS M., OSBORN B.,
SHILLING R., ROBASZEWSKI M., DAVIS
M.: Entertainment R&D for defense.IEEE
Computer Graphics and Applications(Janu-
ary / February 2003), 2–10.10

c° The Eurographics Association 2006.

EUROGRAPHICS 2006

__
Abstract
Interactive systems, games, VR and multimedia systems require more and more flexible Virtual Humans with
individualities. There are mainly two approaches:
1) Recording the motion using motion capture systems, then to try to alterate such a motion to create this
individuality. This process is tedious and there is no reliable method at this stage.
2) Creating computational models which are controlled by a few parameters. One of the major problem is to
find such models and to compose them to create complex motion. Such models can be created for walking,
grasping, but also for groups and crowds.

1. Introduction

Virtual humans simulations are becoming each time
more popular. Nowadays many systems are available to
animate virtual humans. Such systems encompass several
different domains, as: autonomous agents in virtual
environments, human factors analysis, training, education,
virtual prototyping, simulation-based design, and
entertainment. In the context of Virtual Humans, a Motion
Control Method (MCM) specifies how the Virtual Human
is animated and may be characterized according to the
type of information it privileged in animating this Virtual
Human. For example, in a keyframe system for an
articulated body, the privileged information to be The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an individual or a member of a crowd. A single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone. Figure 1 shows a group
of Virtual Humans in a room and Figure 2 Virtual Humans
in city.

The problem is basically to be able to generate variety
among a finite set of motion requests and then to apply it
to either an individual or a member of a crowd. A single
autonomous agent and a member of the crowd present the
same kind of 'individuality'. The only difference is at the
level of the modules that control the main set of actions.
With this formulation, one can also see that the personality
of an agent (i.e. the set of noisy actions) can be preserved
whenever it is in a crowd, alone.

Figure 1. A group of Virtual Humans

Figure 2. Virtual Humans in a city

To create this flexible Virtual Humans with

individualities, there are mainly two approaches:

• Recording the motion using motion capture
systems (magnetic or optical), then to try to

Computerized Models for Virtual Humans and Crowds

Daniel Thalmann,

EPFL VRlab, Switzerland

Daniel Thalmann - Computerized Models

alterate such a motion to create this
individuality. This process is tedious and there is
no reliable method at this stage.

• Creating computational models which are
controlled by a few parameters. One of the
major problem is to find such models and to
compose them to create complex motion. Such
models can be created for walking, running,
grasping, but also for interaction, groups, and
crowds.

2. Motion Capture and Retargeting

The first approach consists in recording the motion (Fig.
3) using motion capture systems (magnetic or optical),
then to try to alterate such a motion to create this
individuality. This process is tedious and there is no
reliable method at this stage. Even if it is fairly easy to
correct one posture by modifying its angular parameters
(with an Inverse Kinematics engine, for instance), it
becomes a difficult task to perform this over the whole
motion sequence while ensuring that some spatial
constraints are respected over a certain time range, and
that no discontinuities arise. When one tries to adapt a
captured motion to a different character, the constraints
are usually violated, leading to problems such as the feet
going into the ground or a hand unable to reach an object
that the character should grab. The problem of adaptation
and adjustment is usually referred to as the Motion
Retargeting Problem.

Figure 3. Motion capture

Witkin and Popovic [WP95] proposed a technique for

editing motions, by modifying the motion curves through
warping functions and produced some of the first
interesting results. In a more recent paper [PW99], they
have extended their method to handle physical elements,
such as mass and gravity, and also described how to use
characters with different numbers of degrees of freedom.
Their algorithm is based on the reduction of the character
to an abstract character which is much simpler and only
contains the degrees of freedom that are useful for a
particular animation. The edition and modification are
then computed on this simplified character and mapped
again onto the end user skeleton. Bruderlin and Williams
[BW95] have described some basic facilities to change the
animation, by modifying the motion parameter curves.
The user can define a particular posture at time t, and the
system is then responsible for smoothly blending the

motion around t . They also introduced the notion of
motion displacement map, which is an offset added to
each motion curve. The Motion Retargeting Problem term
was brought up by Michael Gleicher [G98]. He designed a
space-time constraints solver, into which every constraint
is added, leading to a big optimisation problem. He mainly
focused on optimising his solver, to avoid enormous
computation time, and achieved very good results.
Bindiganavale and Badler [BB98] also addressed the
motion retargeting problem, introducing new elements:
using the zero-crossing of the second derivative to detect
significant changes in the motion, visual attention tracking
(and the way to handle the gaze direction) and applying
Inverse Kinematics to enforce constraints, by defining six
sub-chains (the two arms and legs, the spine and the neck).
Finally, Lee and Shin [JS99] used in their system a coarse-
to-fine hierarchy of B-splines to interpolate the solutions
computed by their Inverse Kinematics solver. They also
reduced the complexity of the IK problem by analytically
handling the degrees of freedom for the four human limbs

Lim and Thalmann [LT00] have addressed an issue of
solving customers’ problems when applying evolutionary
computation. Rather than the seemingly more impressive
approach of wow-it-all-evolved- from-nothing, tinkering
with existing models can be a more pragmatic approach in
doing so. Using interactive evolution, they experimentally
validate this point on setting parameters of a human walk
model for computer animation while previous applications
are mostly about evolving motion controllers of far
simpler creatures from scratch.

Given a captured motion associated to its Performer

Skeleton, we decompose the problem of retargeting the
motion to the End User Skeleton into two steps

• First, computing the Intermediate Skeleton
matrices by orienting the Intermediate Skeleton
bones to reflect the Performer Skeleton posture
(Motion Converter).

• Second, setting the End User Skeleton matrices
to the local values of the corresponding
Intermediate Skeleton matrices.

The first task is to convert the motion from one hierarchy
to a completely different one. We introduce the
Intermediate Skeleton model to solve this, implying three
more subtasks: manually set at the beginning the
correspondences between the two hierarchies, create the
Intermediate Skeleton and convert the movement. We are
then able to correct the resulting motion and make it
enforce Cartesian constraints by using Inverse Kinematics.
When considering motion conversion between different
skeletons, one quickly notices that it is very difficult to
directly map the Performer Skeleton values onto the End
User Skeleton, due to their different proportions,
hierarchies and axis systems. This raised the idea of
having an Intermediate Skeleton: depending on the
Performer Skeleton posture, we reorient its bones to match
the same directions. We have then an easy mapping of the
Intermediate Skeleton values onto the End User Skeleton.
The first step is to compute the Intermediate Skeleton
(Anatomic Binding module). During the animation,
motion conversion takes two passes, through the Motion
Converter and the Motion Composer (which has a
graphical user interface).

Daniel Thalmann - Computerized Models

3. Creating Computational Models

The second approach consists in creating computational
models which are controlled by a few parameters. One of
the major problem is to find such models and to compose
them to create complex motion. Such models can be
created for example for walking.

Walking has global and specific characteristics. From
a global point of view, every human-walking has
comparable joint angle variations. However, at a close-up,
we notice that individual walk characteristics are overlaid
to the global walking gait.

We use the walking engine described in [BMT90]

which has been extended in the context of a european
project on virtual human modeling [BCH95]. Our
contribution consists in integrating the walking engine as a
specialized action in the animation framework. Walking is
defined as a motion where the center of gravity
alternatively balances from the right to the left side. It has
the following characteristics

• at any time, at least one foot is in contact with
the floor, the ‘single support’ duration (ds).

• there exists a short instant during the walk cycle,
where both feet are in contact with the floor, the
‘double support’ duration (dds).

• it is a periodic motion which has to be
normalized in order to adapt to different
anatomies.

The joint angle variations are synthesized by a set of
periodic motions which we briefly mention here:

• sinus functions with varying amplitudes and
frequencies for the humanoid’s global
translations (vertical, lateral and frontal) and the
humanoid’s pelvic motions (forward/backward,
left/right and torsion)

• periodic functions based on control points and
interpolating hermite splines.They are applied to
the hip flexion, knee flexion, ankle flexion, chest
torsion, shoulder flexion and elbow flexion.

The parameters of the joint angle functions can be

modified in a configuration file in order to generate
personalized walking gaits, ranging from tired to
energetic, sad to happy, smart to silly. The algorithm also
integrates an automatic speed tuning mechanism which
prevents sliding on the supporting surface. Many high
level parameters can be adjusted dynamically, such as
linear and angular velocity, foot step locations and the
global walk trajectory. The walk engine has been
augmented by a specialized action interface and its full
capacity is therefore available within the animation
framework. The specialized action directly exports most
common high level parameter adjustment functions. For
fine-tuning, it is still possible to explicitly access the
underlying motion generator. The walk animation engine
has been developed in the early nineties. However it
suffered from not being easily combined with other
motions, for example a walking human giving a phone call
with a wireless phone was hardly possible. Now, that the
walking engine is integrated as a specialized action, a
walking and phoning human is easily done, simply by
performing the walk together with a ‘phone’-keyframe for

example. In Figure 4, we show an example of
parameterized.

Figure 4. Individualized walking

More recently, Glardon et al. [GBT04] have proposed

a novel approach to generate new generic human walking
patterns using motion-captured data, leading to a real-time
engine intended for virtual humans animation. The method
applies the PCA (Principal Component Analysis)
technique on motion data acquired by an optical system to
yield a reduced dimension space where not only
interpolation, but also extrapolation are possible,
controlled by quantitative speed parameter values.
Moreover, with proper normalization and time warping
methods, the generic presented engine can produce
walking motions with continuously varying human height
and speed with real-time reactivity. Figure 5 shows
examples.

Figure 5. Examples of PCA-based walking humans

4. Crowds and Groups

Animating crowds [MT01] is challenging both in
character animation and a virtual city modeling. Though
different textures and colors may be used, the similarity of
the virtual people would be soon detected by even non-
experts, say, “everybody walks the same in this virtual
city!”. It is, hence, useful to have a fast and intuitive way
of generating motions with different personalities
depending on gender, age, emotions, etc., from an
example motion, say, a genuine walking motion. The
problem is basically to be able to generate variety among a
finite set of motion requests and then to apply it to either
an individual or a member of a crowd. It also needs very
good tools to tune the motion [EBM00].

Daniel Thalmann - Computerized Models

The proposed solution addresses two main issues: i)

crowd structure and ii) crowd behavior. Considering
crowd structure, our approach deals with a hierarchy
composed of crowd, groups and agents, where the groups
are the most complex structure containing the information
to be distributed among the individuals. Concerning crowd
behavior, our virtual agents are endowed with different
levels of autonomy. They can either act according to an
innate and scripted crowd behavior (programmed
behavior), react as a function of triggered events (reactive
or autonomous behavior) or be guided by an interactive
process during simulation (guided behavior). We
introduced the term <guided crowds> to define the groups
of virtual agents that can be externally controlled in real
time [MBC98]. Figure 6 shows a crowd guided by a
leader.

Figure 6. Crowd guided by a leader

In our case, the intelligence, memory, intention and

perception are focalized in the group structure. Also, each
group can obtain one leader. This leader can be chosen
randomly by the crowd system, defined by the user or can
emerge from the sociological rules. Concerning the crowd
control features, The crowd aims at providing
autonomous, guided and programmed crowds. Varying
degrees of autonomy can be applied depending on the
complexity of the problem. Externally controlled groups,
<guided groups>, no longer obey their scripted behavior,
but act according to the external specification. At a lower
level, the individuals have a repertoire of basic behaviors
that we call innate behaviors. An innate behavior is
defined as an “inborn” way to behave. Examples of
individual innate behaviors are goal seeking behavior, the
ability to follow scripted or guided events/reactions, the
way trajectories are processed and collision avoided.
While the innate behaviors are included in the model, the
specification of scripted behaviors is done by means of a
script language. The groups of virtual agents whom we
call <programmed groups> apply the scripted behaviors
and do not need user intervention during simulation. Using
the script language, the user can directly specify the crowd
or group behaviors. In the first case, the system
automatically distributes the crowd behaviors among the
existing groups. Events and reactions have been used to
represent behavioral rules. This reactive character of the
simulation can be programmed in the script language
(scripted control) or directly given by an external
controller. We call the groups of virtual agents who apply
the behavioral rules <autonomous groups>.

The train station simulation (Figure 7) includes many
different actions and places, where several people are
present and doing different things. Possible actions include
“buying a ticket”, “going to shop“, ”meeting someone”,
“waiting for someone”, “making a telephone call”,
“checking the timetable”, etc. This simulation uses
external control to guide some crowd behaviors in real
time.

Figure 7. Train station simulation.

More recently, we developed a new crowd engine

allowing to display up to 50'000 thousands virtual humans
in real-time. This makes Computational models even more
important. Figure 8 shows two examples.

Figure 8. Examples of large crowds.

Daniel Thalmann - Computerized Models

5. Perception

Let’s now consider the simulation of a referee during a

tennis match. He has to decide if the ball is out or in. One
solution is to calculate the intersection between the impact
point of the ball and the court lines. Such an analytical
calculation will lead to the decision that the ball is out for
0.01 millimeters. Ridiculous, nobody in reality could take
such an objective decision, this is not believable. The
decision should be based on the evaluation of the visual
aspect of the scene as perceived by the referee.

In a more general context, it is tempting to simulate

perception by directly retrieving the location of each
perceived object straight from the environment. This is of
course the fastest solution (and has been extensively used
in video-games until the mid-nineties) but no one can ever
pretend that it is realistic at all (although it can be useful,
as we will see later on). Consequently, various ways of
simulating visual perception have been proposed,
depending on whether geometric or semantic information
(or both) are considered. Renault et al. introduced first the
concept of synthetic vision [RMT90] then extended by
Noser et al..[NRT95]. Tu and Terzopoulos [TT94]
implemented a realistic simulation of artificial fishes.
Other authors [KL99] [BG95] [PO02] also provided
synthetic vision approaches. In the next section, we are
going to compare now rendering-based vision, geometric
vision and database access.

5.1 Synthetic Vision

Rendering-based vision from Noser and Renault et al.
[NRT95] is achieved by rendering of-screen the scene as
viewed by the agent. During the process, each individual
object in the scene is assigned a different colour, so that
once the 2D image has been computed, objects can still be
identified: it is then easy to know which object is in sight
by maintaining a table of correspondences between
colours and objects’ IDs. Furthermore, highly detailed
depth information is retrieved from the view z-buffer,
giving a precise location for each object. An other
application of synthetic vision is real-time collision
avoidance for multiple agents: in this case, each agent is
perceiving the others, and dynamically creates local goals
so that it avoids others while trying to reach its original
global goal.

Rendering-based vision is the most elegant method,
because it is the more realistic simulation of vision and
addresses correctly vision issues such as occlusion for
instance. However, rendering the whole scene for each
agent is very costly and for real-time applications, one
tend to favour geometric vision.

One problem is how to decide that an object is in the

field of view of the Virtual Human and that he/she can
identify it. We can imagine for example that the Virtual
Human’s wife is in front of the VH but hidden by a
wardrobe and on the computed 2D image contains only
one pixel for the wife, can he recognize his wife based on
such a detail ?

Bordeux et al. [BBT99] has proposed a perception

pipeline architecture into which filters can be combined to
extract the required information. The perception filter
represents the basic entity of the perception mechanism.

Such a filter receives a perceptible entity from the scene as
input, extracts specific information about it, and finally
decides to let it pass through or not.

The criteria used in the decision process depends on

the perception requirements. For virtual objects, they
usually involve considerations about the distance and the
relative direction of the object, but can also be based on
shape, size, colour, or generic semantic aspects, and more
generally on whatever the agent might need to distinguish
objects. Filters are built with an object oriented approach:
the very basic filter for virtual objects only considers the
distance to the object, and its descendants refine further
the selection.

Actually, the structure transmitted to a filter contains,

along with the object to perceive, a reference to the agent
itself and previously computed data about the object. The
filter can extend the structure with the results of its own
computation, for example the relative position and speed
of the object, a probable time to impact or the angular
extension of the object from the agent s point of view.
Since a perception filter does not store data concerning the
objects that passed through it, it is fully reentrant and can
be used by several agents at the same time. This allows the
creation of a common pool of filters at the application,
each agent then referencing the filters it needs, thus
avoiding useless duplication.

However, the major problem with Geometric vision is

to find the proper formulas when intersecting volumes (for
instance, intersecting the view frustum of the agent with a
volume in the scene). One can use bounding boxes to
reduce the computation time, but it will always be less
accurate than Synthetic vision. Nevertheless, it can be
sufficient for many applications and, as opposed to
rendering-based vision, the computation time can be
adjusted precisely by refining the bounding volumes of
objects.

Database access makes maximum use of the scene

data available in the application, which can be distributed
in several modules. For instance, the objects position,
dimensions and shape are maintained by the rendering
engine whereas semantic data about objects can be
maintained by a completely separate part of the
application. Due to scalability constraints as well as
plausibility considerations, the agents generally restrain
their perception to a local area around them instead of the
whole scene. This method is generally chosen when the
number of agents is high. In Musse’s [MT01] crowd
simulation, human agents directly know the position of
their neighbours and compute coherent collision avoidance
trajectory. As said before, the main problem with the
method is the lack of realism, which can only be alleviated
by using one of the other methods.

These various approaches to visual perception have

their advantages and disadvantages dependent essentially
of the complexity and the context of the scenes. But,
finally no approach can solve common problematics as the
following one: What makes a little girl to be lost in a
crowd ? The child will be lost if she just does not know
where is her family. Now imagine a virtual crowd where
each individual is indexed. It will be extremely easy fo
find where is the girl (index 345) and the parents (index
748). At this stage, we could just activate a function

Daniel Thalmann - Computerized Models

making the girl walking towards his parents. This is
completely unrealistic from a behavioural point of view.

5.2 Memory

Noser et al. [NRT95] made a few years ago a character
trying to find the exit from a maze. To simulate the
memory process, they used an octree structure to store the
information see by the character. The results were that the
second time, it was straightforward for the character to
find the exit. Again, this is not so convincing as never
somebody could remember all the paths inside a maze.
This kind of memory can then easily be linked to the
synthetic vision: the 2D rendering and the corresponding
z-buffer data are combined in order to determine whether
the corresponding voxel of the scene is occupied by an
object or not. By navigating through the environment, the
agent will progressively construct a voxel-based
representation of it. Of course, a rough implementation of
this method would suffer from dramatic memory cost,
because of the high volume required to store all voxels.
Noser proposed to use octrees instead which successfully
reduces the amount of data. Once enough information has
been gathered through exploration, the agent is then able
to locate things and find its way.

Peters and O’Sullivan [PO02] propose a system of
memory based on what is referred to a “stage theory” by
Atkinson and Shiffrin [AS68]. They propose a model
where information is processed and stored in 3 stages:
sensory memory, short-term memory, and long-term
memory.

Although these approaches are quite interesting, they

do not solve the following simple problematics. Imagine
now a Virtual Human inside a room containing 100
different objects. Which objects can we consider as
memorized by the Virtual Human ? Can we decide that
when an object is seen by the actor, it should be stored in
his memory. To answer this question, we have just to
consider the popular family game consisting in showing
20 objects during 2 minutes to people and asking them to
list the objects. Generally nobody is able to list the 20
objects. Now, how to model this inability to remember all
objects ?

5.3 Integration of Virtual Sensors

The modelling of an AVA gaining its independence with
regard to its virtual representation remains an important
theme in research and is very close to autonomous
robotics. It helps also to understand and model human
behaviour.

The AVA collects information only through the virtual
sensors described earlier (Figure 9). We assume that
vision is the main canal of information between the AVA
and its environment as indicated by the standard theory in
neuroscience for multi-sensorial integration [E98].

Figure 9: A schematic representation of our ALifeE.
Virtual Vision discovers the VE, constructs the
different types of Perception and updates the AVA’s
Cognitive Map to obtain a multi-perceptive mapping.
Then the Control Architecture uses both the
“cognitive maps“ and the “memory model“ to
interact with the learning, development, and control
processes of the AVA (Virtual Human Controller).

The sensorial modalities update the AVA’s cognitive

map to obtain a multi-sensorial mapping. For example,
visual memory in the AVA's internal memory is used for a
global move from point A to point B. Should obstacles be
present, it would have to be replaced for a local move by
direct vision of the environment.

In our approach, we tried to integrate all the multi-

sensorial information from the AVA's virtual sensors. In
fact, an AVA in a VE may have different degrees of
autonomy and different sensorial canals depending on the
environment. For instance, an AVA moving in a VE
represented by a well-lit room will use primarily the
sensorial information of vision. However if the light is
turned off, the AVA will appeal to the acoustic or tactile
sensorial information in the same way a human would
move around in a dark room [SKA02].

From this observation we derive the hypotheses

underlying our ALifeE framework approach. They are
backed up by the latest research in neuroscience [P02],
which describes a partial re-mapping at the behavioural
level of the human including:

� Assignment: the prediction of the acoustic position of

an object from its visual positions requires a
transformation from its eye-centred (vision sensor)
coordinates to its head-centred ones (auditory
sensor). The comparison of these two types of results
can be used to determine whether the acoustic and
visual signals are directly connected to the same
object.

� Recoding: the choice of the reference frame to
integrate the sensorial signals.

Daniel Thalmann - Computerized Models

6. Conclusion

In order to develop truly interactive multimedia systems
with Virtual Humans, games, and interactive movies, we
need a flexible way of animating these Virtual Humans.
Altering motion obtained from a motion capture system is
not the best solution. Only computational models can
offer this flexibility unless powerful motion retargeting
methods are developed, but in this case they will look
similar to computational models.

Acknowledgments

The author would like to thank all people who have
contributed to these projects especially Luc Emering,
Soraia Musse, Ik Soo Lim, Pascal Glardon, Mireille
Clavien, Toni Conde, and Pablo de Heras. Research has
been partly funded by the Swiss National Foundation for
Research and the Federal Office for Education and
Science in the framework of the CROSSES project.

References

 [AS68] ATKINSON R., SHIFFRIN R., Human

Memory : a Proposed System and its Control
Processes, in: K.Spence and J.Spence, the
Psychology of Learning and Motivation: Advances in
Research and Theory, Vol.2, NY, Academic Press,
1968.

[BB98] BINDIGANAVALE R., BADLER N.I.. Motion
abstraction and mapping with spatial constraints. In
N. Magnenat-Thalmann and D. Thalmann, editors,
Modeling and Motion Capture Techniques for
Virtual Environments, Lecture Notes in Artificial
Intelligence, pages 70–82. Springer, November 1998.
held in Geneva, Switzerland, November 1998.

[BBT99] BORDEUX C., BOULIC R., THALMANN D.,
An Efficient and Flexible Perception Pipeline for
Autonomous Agents, Proc. Eurographics '99,
Milano, Italy, pp.23-30.

[BCH95] BOULIC R., CAPIN T., HUANG Z.,
MOCCOZET L., MOLET T., KALRA P.,
LINTERMANN B., MAGNENAT-THALMANN N.,
PANDZIC I., SAAR K., SCHMITT A., SHEN J.,
THALMANN D., The HUMANOID Environment
for Interactive Animation of Multiple Deformable
Human Characters, Proc. Eurographics `95,
Maastricht, August 1995, pp.337-348.

[BG95] BLUMBERG B.M., GALYEAN T.A,, Multi-
Level Direction of Autonomous Creatures for Real-
Time Virtual Environments, Proc. SIGGRAPH 95,
1995, pp.47-54.

[BMT90] BOULIC R., MAGNENAT-THALMANN N.,
THALMANN D., A Global Human Walking Model
with Real-time Kinematics Personification,The
Visual Computer, Vol.6, No6, December 1990,
pp.344-358.

[BW95] BRUDERLIN A., WILLIAMS L. Motion sig-
nal processing. In Robert Cook, editor, SIGGRAPH
95 Conference Proceedings, Annual Conference Se-
ries, pages 97–104. ACM SIGGRAPH, Addison
Wes-ley, August 1995. held in Los Angeles,
California, 06- 11 August 1995.

[E98] Elfes G. Occupancy Grid: A Stochastic Spatial
Representation for Active Robot Perception. In 6th
Conference on Uncertainly in AI, 1990

[EBM00] L.EMERING, R.BOULIC, T.MOLET,
D.THALMANN, Versatile Tuning ofHumanoid
Agent Activity, Computer Graphics Forum, 2000

[G98] GLEICHER G. Retargeting motion to new
characters. In Michael Cohen, editor, SIGGRAPH 98
Con-ference Proceedings, Annual Conference Series,
pages 33–42. ACM SIGGRAPH, Addison Wesley,
July 1998. ISBN 0-89791-999-8.

[GBT04] GLARDON P., R. BOULIC R., THALMANN
D., PCA-based Walking Engine using Motion
Capture Data, Computer Graphics International,
June 2004, pp.292-298.

[JS99] JEHEE L., SHIN S.Y.. A hierarchical approach
Proceedings of SIGGRAPH 99, pages 39–48, Au-
gust 1999. ISBN 0-20148-560-5. Held in Los
Angeles, California.

[KL99] KUFFNER J., LATOMBE J.C., Fast Synthetic
Vision, Memory, and Learning Models for Virtual
Humans, Proc. Computer Animation 1999, IEEE CS
Press, pp.118-127.

[LT00] LIM I.S., THALMANN D., Solve Customers'
Problems: Interactive Evolution for Tinkering with
Computer Animation, Proc. 2000 ACM Symposium
on Applied Computing (SAC2000), pp. 404-407

[MBC98 MUSSE, S.R., BABSKI, C., CAPIN, T. AND
THALMANN, D. Crowd, Modelling in
Collaborative Virtual Environments. ACM VRST ‘98,
Taiwan

[MT01] MUSSE S.R., THALMANN D., A Behavioral
Model for Real-Time Simulation of Virtual Human
Crowds, IEEE Transactions on Visualization and
Computer Graphics, Vol.7, No2, 2001, pp.152-164.

[NRT95] NOSER H., O. RENAULT O., D.
THALMANN, N. MAGNENAT THALMANN,
Navigation for Digital Actors based on Synthetic
Vision, Memory and Learning, Computers and
Graphics, Pergamon Press, Vol.19, No1, 1995, pp.7-
19.

 [P02] POUGET A., A computational perspective on the
neural basis of multi-sensory spatial representations.
Nature Reviews/Neuroscience, 2002; 3:741-747.

[PO02] PETERS C., O’SULLIVAN C., A Memory Model
for Autonomous Virtual Humans, Proc. Third Irish
Eurographics Workshop on Computer Graphics,
Dublin, pp. 21-26.

[PW99] POPOVIC Z., WITKIN A.. Physically based
motion transformation. Proceedings of SIGGRAPH
99, pages 11–20, August 1999. ISBN 0-20148-560-5.
Held in Los Angeles, California.

[RMT90 RENAULT O., MAGNENAT-THALMANN N.,
THALMANN D., A Vision-based Approach to
Behavioural Animation, Journal of Visualization and
Computer Animation, Vol.1, No1, 1990, pp.18-21.

[SKA02] Strösslin Th, Krebser Ch, Arleo A, Gerstner W.
Combining Multimodal Sensory Input for Spatial
Learning. In Proceedings of ICANN, 2002; 87-92.
LNCS 2415.Springer-Verlag.

[TT94] TU X., TERZOPOULOS D., Artificial Fishes,
Physics, Locomotion, Perception, Behaviour, Proc.
SIGGRAPH ’94, pp.43-50.

[WP95] WITKIN A., POPOVIC Z.. Motion warping.
Proceedings of SIGGRAPH 95, pages 105–108,
August 1995. ISBN 0-201-84776-0. Held in Los
Angeles, California.

EUROGRAPHICS 2006

Populating Virtual Environments with Crowds: Rendering
Pipeline Optimizations

P. de Heras Ciechomski and D. Thalmann,

Swiss Federal Institute of Technology, VRLab, Lausanne, Switzerland

Abstract
Rendering a large crowd in real time requires optimizations at all levels of a graphics rendering engine. This tuto-
rial notes goes through high-level optimizations ranging from the pipeline architecture down to details concerning
data transmission and specific graphics hardware considerations.

1. Introduction

The structure of the notes is as follows:

Section 2 overviews the pipeline to get a high level prespec-
tive of the different rendering passes

Section 3 introduces gemetrical rendering methods
Section 4 goes into depth about deformed geometry render-

ing and animation caching schemes
Section 5 introduces GLSL hardware shaders and several

accelerations and memory transfer considerations
Section 6 describes static mesh rendering
Section 7 concludes with results

2. Pipeline

The goal of the real-time crowd visualizer is to render a large
crowd according to their current simulation state, providing
the position, orientation and animation for each individual.
System constraints are believability, real-time updates (25
frames per second) and a number of digital actors ranging in
the tens of thousands. Actors are made believable by varying
their appearance (textures and colors) and animation. Their
graphical representation is derived from atemplatewhich
contains all the possible variations. Using only a limited set
of templates, a varied crowd is achieved, leading to consid-
erable time savings for designers.

2.1. Templates

A type of human such as a woman, man or child is described
by atemplatewhich consists of

† a mesh with at least three static pre-computed levels-of-
detail (LOD)

Figure 1: Rendering fidelity levels exposed: dynamic meshes
in red, static meshes in green and billboards in blue.

Figure 2: The ERATO templates with combinations of tex-
tures and meshes.

2 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

† one or several base textures in gray scale (except or the
skin) identifying color modulation areas (pants, shirt, hair
etc.)

† a skeleton with optional complexity reduction using prun-
ing (Section4.1)

† a set of animations as skeletal orientations

Each human in the visualization system is called anin-
stanceand is derived from a template. Individualization
comes from assigning a specific base texture and a color
combination for each identifiable region and an animation
which can be a combination of several interpolated key
frames.

2.2. Rendering Passes

The rendering pipeline advances consecutively in four steps
starting with culling which determines visibility and render-
ing representation orfidelity for each simulated human, as
shown in Figure1. By re-using the information stored in ex-
isting navigation graphs of the simulation system, culling is
not done on each individual but at node level, thereby deter-
mining fidelities for a set of characters at once. Only nodes
that are between fidelity levels where each individual has to
be inspected are processed more precisely. During culling,
humans are separated into three vectors, storing their indices
for the coming rendering steps, which ensures that each vis-
ible human of a specific fidelity is visited only once. Figure
3 shows how the rendering fidelities are partitioned from the
viewer.

The second step in the pipeline is rendering of dynamic
meshes (Section4) which is the most detailedfidelity and
can play back interpolated animations based on skeletal pos-
tures. An animation is constructed based on the walking
style of the human and its speed as in [PdHCM⁄06], yielding
a smoothly interpolated walking animation adapted to the
simulation system’s positional updates. A hardwarevertex
shaderandfragment shaderare used to deform and render
the human on the graphics card.

Static meshes (akabakedor pre-deformed) constitute the
second renderingfidelity which keeps a pre-transformed set
of animations usually in the range of two or three anima-
tions, using the lowest resolution mesh of the deformed ones
in the previous step. By pre-computing the deformations
substantial gains in speed are achieved as presented in Sec-
tion 6.

The third and final rendering fidelity is the billboard
which uses a simplified scheme of sampling and lighting.
World-aligned billboards [MH02] are used, with the assump-
tion that the camera will never hover directly above the
crowd. Thus, only the sample images at waist level of the
character are needed. In this case, each template is sam-
pled at 20 different angles, for each of the 25 key-frames
composing a walk animation. When constructing the result-
ing texture, the bounding box of each sampled frame is de-

Figure 3: The fidelities seen from the top.

Figure 4: Geometry with Gouraud shading (left) and normal
mapping (right). The same amount of triangles is present in
both.

tected to pack them tightly together. When rendering bill-
boarded pedestrians, a specificity of the technique is to ap-
ply cylindrical lighting instead of using normal maps: each
vertex normal is set to point in the positivez-direction, plus
a small offset on thex-axis, so that it points slightly outside
the frame, see [PdHCM⁄06]. The lighting intensity is then
interpolated for each pixel in the fragment shader.

3. Geometrical Methods

Geometrical rendering of virtual humans uses a triangular
mesh, which is textured and lit, see Figure5. The thesis con-
centrates on meshes where the triangle count is in the range
of a few hundred to a thousand. The mesh is surrounding
a skeleton with no more than 80 or so bones that drive the
vertices in the mesh to move and bend. This technique is
known as skeletal subspace deformation or "skinning" (Lan-
der [Lan98]). Adding more triangles is often not interesting
as they will merely increase the computational size and not
add enough detail where it is due. It is then better to use a
technique such as normal mapping (Cohenet al. [COM98])

.

P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations 3

Figure 5: Hybrid of dynamic and static geometry and bill-
boards. The closest character consists of dynamic mesh con-
nected to 78 bones, which makes it possible to have an ex-
pressive face.

to add more detail in a mesh, thereby keeping a low trian-
gle count and still keeping a high detail level. As it is shown
in Figure4 a normal mapped mesh with 1000 triangles, has
the same representational fidelity as the one using one mil-
lion, by the usage of surface extraction details which are then
saved in the normal map texture. A more thorough descrip-
tion of the normal mapping can be found in [COM98], con-
cluding that a virtual human can be represented with good
detail using 1000 or so triangles.

The first distinction made is between a dynamically de-
formed and a static pre-computed mesh. In the latter case all
vertex positions and normals are pre-computed for a full an-
imation cycle such as walking, while for dynamic meshes,
any animation can be used such as inverse kinematics, ani-
mation blending and mixing or any dynamically updated an-
imation. These two problems can be attacked using a CPU
based approach as well as a graphics hardware approach uti-
lizing programmable shaders.

4. Deformed Meshes

A deformed mesh rendering approach of a virtual human is
based on having a skeleton that drives the deformation of the
human. A good survey of different deformation algorithms
can be found in the Master thesis of de Heras Ciechom-
ski [dHC01] and in the work of Kavanet al. [Kt05]. The
algorithm used in this work is called Skeleton Subspace
Deformation (SSD), where each vertex is deformed by the
weighted transformation of one or several attached bones or
joints. The equation that deforms each vertex is

v(t) =
n
∑
i=1

Xt
i X¡re f

i vre f (1)

where v(t) is the deformed vertex at time t,Xt
i is the global

Figure 6: Deformed mesh operations, from top to bottom.
First minimum two animation key frames are interpolated,
which results in a new quaternion key frame that is then con-
verted into matrices. The matrix key frame is made global
by concatenating it using the hierarchical information and
is multiplied by the inverse reference posture. In the case of
an animation caching scheme the previous operations are
not done but the resulting matrix array is fetched instead.
Finally the matrix array is sent to the graphics card for de-
forming the mesh in the hardwarevertex shader.

transform of bonei at time t, X¡re f
i is the inverse global

transform of the bone in the reference position andvre f is the
vertex in the reference position. It is possible to pre-compute
the transform in the reference position, which requires as
many pre-computations as there are affecting bones per ver-
tex. Instead what is usually done is that the transform pair
Xt

i X¡re f
i is concatenated.

A deformed mesh approach has three costly operations
(see Figure6). The first is to animate and update the skeleton
itself into a specific position and can require several matrix
and quaternion operations. The second operation is the de-
formation of geometry such as vertex positions, normals and
perturbed texture spaces in the case of normal maps. Finally
the third cost is in the rendering of the character triangle by
triangle on the graphics card and in the case of using color
variety this also poses consideration and will be discussed in
more detail in tutorial notes on variety.

In this section a skeleton simplification schema is de-
scribed, followed by a CPU based approach for geometrical
rendering, which is then enhanced by a GPU based acceler-
ation.

4.1. Skeletal Pruning

There are two main reasons to optimize the skeleton that
deforms characters, one is speed and the other is memory
space. In the database of animations a template holds all the
possible animations that it can perform in the form of quater-
nion tables. A table entry is an entire animation, while a row
in this entry is a key frame. A key frame consists of all the

4 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

Figure 7: Textured model (left), triangle outlines (middle),
underlying skeleton as oriented bounding boxes (right).

joint transforms relative their hierarchically preceding trans-
form or father, in quaternion form. This is a performing form
of storage to get an in-between frame of animation by spheri-
cally interpolating two neighboring key frames, if the anima-
tion was recorded using a low sampling frequency. Quater-
nions are also performant for transitioning between anima-
tions such as walking and running or any two such linked an-
imation states. Since most dynamic mesh characters will be
interpolating between animations and doing transitions, the
animations should be stored in form of quaternions. Only in
the special case of no interpolation or in-betweening is done,
it is of interest to keep all animations as matrices. In that case
all key frames would be pre-concatenated global transforms
readily available to the deformation pipeline such that the
transform pairXt

i X¡re f
i is stored. From here on it is assumed

that key frames are stored as quaternions.

Besides the concept of rendering fidelities previously in-
troduced, there are also sub-fidelities; Dynamic characters
can have moving fingers, expressive faces, even moving eye
sockets; This is possible to see when up close to the char-
acter but virtually impossible at a distance. A character with
an expressive face can have 78 bones of which 45 are used
exclusively for the bones in the hands and the face. It is of
interest to decrease the number of bones or to use skeletal
levels of details in the case these details are no longer visi-
ble. The most straightforward method is to cut off or toprune
bones or entire sub-trees of bones that are at the end of the
skeleton. The reason for pruning at the end of the skeleton
is that otherwise it would be necessary to compute the in-
between transforms that were removed in the reduction. For
example, reducing three bones in the middle of the spine of
a highly detailed skeleton, would affect the transformation
in a hierarchical manner where the bone transforms are ex-
pressed as

X0
i = X0

1 X1
2 : : :Xi¡1

i (2)

WhereX0
i is the transform that changes coordinate sys-

tem for a point described in reference systemi to reference

system0 (the root). If bones are removed in this matrix stack
one would have to compute their impact on the final matrix,
which is their concatenated transform. If bonej is removed it
would be necessary to decide on a heuristic for vertices that
were connected to it, so as to choose a new bone to connect
to or to simply discard its influence, depending on its weight.
Also the transformX j

j¡1 is lost and will have to be con-
catenated into the next bones, either in run-time or be pre-
computed for all key-frames, for all animations. This would
create extra storage for each removed bone, something that
raises the complexity of the animation engine and requires
low-level changes at storage structures. These extra calcula-
tions and extra storage requirements can be completely cir-
cumvented if only the removal of complete end-hierarchies
is considered, which means that for the hand, only the wrist
would be left and for the face only the bone deforming the
neck would be the one left. This is interesting since it means
all transforms would simply be dropped, as no bone is left
at the end of the hierarchy. It also simplifies the heuristic for
re-assigning bones to vertices that were connected to the ex-
cluded bone, as the bone on top of the removed hierarchy
is used exclusively for its transforms. This is how skeletal
pruning works and requires no extra transforms during run-
time or any storage for pre-calculation. The only require-
ment being a re-assignment of influencing bones for the ver-
tices affected by the ones that were pruned.

Pruning is now used in four separate stages in the engine:
when the mesh is loaded a pruned version of it is created
that accounts for the re-assignment of bones. When an ani-
mations key is fetched from the animation data base only the
active quaternions are retrieved, consequently only the active
joints are interpolated when transitioning between two ani-
mations or performing a blending. Finally, before deforming
the mesh the concatenated matrix stack is only calculated for
the active bones. The optimization benefits are presented in
the Results section.

4.2. Vertex and Animation Caching

Once the animation data is computed and stored in a con-
catenated matrix stack, the mesh is ready to be deformed
and displayed. Doing these operations on each and every in-
dividual character in the scene each frame, and even with the
use of skeletal pruning, is computationally expensive. One
approach of reducing the cost is by simply not doing any
deformations and re-using the previous calculation, which is
the basis of a caching scheme. When a character is close to
the camera his animations are updated frequently up to a rate
of 50 Hz and when far away from the camera the update rate
is at minimum 4 Hz. Equation1 can be written as

v(t) =
n
∑
i=1

XtDe f
i vre f (3)

P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations 5

Figure 8: Scene from the game Doom 3TM by id Software,
with extensive use of vertex and pixel shaders.

whereXtDe f
i = Xt

i X¡re f
i is the concatenated form, which

is stored in the animation cache. This is a considerable de-
crease in skeletal animation updates. If a software deforma-
tion pipeline of the character is used, caching the deformed
vertices and normals is of interest. Normal deformation uses
the same expression as Equation1 but instead of the full
4 £ 4 matrix resulting from the multiplication of the pair
Xt

i X¡re f
i only the rotational part is used, which is the upper

3£3 matrix. This is done either explicitly by using a smaller
matrix or by setting the fourth component of the normal to
zero, thereby achieving the same result. When working in a
software deformation mode, it is better to use the rotational
matrix explicitly. There might be a contra-indication to this
if SSE matrix multiplication are used, which is optimized for
4£4 floating point operations, see [Str02]. By deforming the
geometry only at the same intervals as the animation, com-
putations can be greatly decreased, see de Heras Ciechomski
et al. [dHCSMT05] and is shown in the Results section of
this chapter. The reason for separating animation and vertex
caching, is that the mesh can change levels of detail faster
than an animation update. The caching scheme can also be
re-used for hardware deformation shaders, but only for the
animation update, since that is the only part being computed
on the CPU. In a hardware shader the mesh is deformed by
a vertex program and the resulting transformed vertex can-
not be retrieved so it cannot be cached. However this is not
a problem as hardware shaders are more performant as is
shown in the next section.

5. Shaders

This section emphasizes new graphics hardware with pro-
grammable shaders. Since the engine is using OpenGL,
the focus is on the OpenGL Shading Language (GLSL)
aka GLSLang. Shaders replace the normal fixed function
pipeline of OpenGL, which does vertex transformations
and per-pixel rasterizations, calledvertex shadersandpixel

shadersalso known under the name offragment shaders.
These programs are executed on the graphics hardware prior
to being written in a C-like language and compiled at run-
time by the graphics card driver. This on demand compi-
lation means that benefits can be gained from the newest
possible optimizations, in compilation and execution from
the manufacturer. It also makes the programs portable to
any graphics hardware, which implements a similar shader
model, differing for example in the support forwhile-loops,
if -statements,for-loops and data transfer modes. A pro-
gram must contain one of each program type, where the
vertex shader is the first to be executed and can communi-
cate with the pixel shader in a one-way fashion. The reason
for this simplified communication model is that hardware is
equipped with parallel vertex and pixel shaders, so the pro-
grams are set up to be easily parallelized, as not to wait for
the previous stage to complete for example. Some graphics
hardware implement theif -statement as two forked execu-
tions and depending on the final boolean value the correct
fork is chosen for changing the data, all in the name of paral-
lelism. This might change as pixel shaders start to communi-
cate with the vertex shader using vertex textures as is already
possible on some graphics hardware. Discovering the power
of graphics shaders one sees the benefit of switching to using
them and the engine is completely relying on shaders. Doing
a clean break from a software deformation path is beneficial
in terms of less code paths to maintain. A demo from ATI
was released with crowds running on a steep terrain (Gos-
selinet al. [GSM04]), showing how new graphics cards can
handle deformation of geometry.

A vertex shader gets information from the per vertex
stream such as position, texture coordinates (which can be
several, usually up to eight), normal, color and vertex at-
tributes. Instead of using multi-texture coordinates directly
for data sending, vertex attributes wrap the necessary steps
to do so, hiding the details from the developer. This can
be misleading and that is why it is preferable to use stan-
dard OpenGL attributes such as color, multi-texture coor-
dinates and so forth for sending the necessary data to the
vertex shader. Other data that is re-used over several ver-
tices are calleduniforms that can be for example, the ma-
trices used for the weighted deformation of vertices or the
incoming light direction. When a vertex shader is finished
with processing, it sends the data to the pixel shader in form
of varying variables, which are interpolated over the trian-
gle. Some varyings that are usually sent, are the interpolated
surface normal to be used with the incoming light direction,
in case of Phong shading or the interpolated intensity scalar
in case of Gouraud shading (Gouraud [Gou71]).

Thepixel shadersor as it is sometimes called - thefrag-
ment shader- is responsible for rasterizing the final pixel,
taking the necessary information from the vertex shader in-
terpolated variables (varyings) and optional user data (uni-
forms). In this stage many different pixel operations are done
such as alpha checks, reading texture data from one or sev-

6 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

Figure 9: Minimal deforming vertex shader.

eral textures, coloring the pixel and other frame-buffer oper-
ations. Techniques such as normal mapping, multi-texturing
and lighting equations for materials are executed in the pixel
shader.

The next section continues with shaders used to deform
character meshes and color them according to their modi-
fiers.

5.1. Deformation Shaders

After having shown the basics for deforming a mesh using
a skeleton in Section4 and how to optimize the calcula-
tions for a software pipeline, the possibilities of the hardware
graphics processing unit (GPU) are explained. First it is de-
scribed how the character is deformed using a vertex shader
and then how lighting and texturing is applied in the pixel
shader. After this how to send data to the graphics card in
an optimal way is elaborated. A typical vertex shader used is
listed in Figure9.

The deformation shaders useShader Model 3(SM3)
which includesif -statements,for-loops and other logical
branching structures. These branches are good if it is known
for example, that the character is so far away, that he only
needs to use one influencing bone per vertex, which can be
seen in Figure9. In this listing a check is made if the mesh
uses more than one bone to influence each vertex, stored in
thenbrBones-variable. In that case, the costlyfor-loop is ig-
nored, as is the initial zeroing of variables and the scalar
multiplications that go with it. Anif -statement can be cir-
cumvented, by compiling two programs for each separate
case and switching them when necessary from the CPU-side.
Since anif -statement shouldn’t cost more than 2 clock cy-
cles, on nVidia hardware of the 6800 series and up, this was
not considered. One might wonder why theuseOneBone-
variable in Figure9 is stored in the alpha color component

(glColor.a) and this thirst for knowledge is quenched in the
following section.

5.2. Memory Transfer Optimizations

One of the most important optimization areas of a high per-
formant shader program is data transfer, such that the data
is easy to digest which means the operations that work on it
are fast and that the amount of data sent is minimized. The
data needed to be sent to the vertex deformation shader is as
follows:

† vertex position, normal and texture coordinates (attribute)
† an array of deformation matrices shared by all vertices

(uniform)
† indices and weights of deformation matrices (attribute)
† a variable indicating if more than one bone is used (uni-

form)

Before embarking on this data sending journey, one has to
be aware of the limitations of the graphics card, which has a
specific memory allocation and transfer model. The atomic
structure of the graphics card is based around four floating
point vector entries of a total of 256 such atomic entries,
giving a grand total of 1024 aligned single float scalars. This
holds for the graphics cards such as nVidias 6800 and 7800
series and will most probably expand in size with newer and
more powerful cards. The bone matrices for the deforma-
tion equation need to be sent (Section4), being4£ 4 float-
ing point (float) vectors or 16 single float scalars. In GLSL
there is a built-in variable called Matrix4 which suits the
need of characters of 60 bones or less. Even though 60 ma-
trixes make up only 240, 4 float vectors, since all variables
that are used in a shader, share this same data window, all
of the 256 atomic vectors cannot be used. Variables such as
the OpenGL model view matrix, projection matrix, lights,
active color, and others that are utilized by the shader are
loaded into these 256, 4 float vectors. That is why the use
of bones should be restrictive, by for example cutting the
mesh into sub-meshes, where each is only affected by a max-
imum of 60 number of bones, or to use skeletal pruning as
is described in Section4.1. The other way of getting around
this memory problem, is through compacting the memory
required for the transfer of the bone matrices. In any case it
is a problem that needs a solution as some applications use
humans with around 80 bones with detailed finger and facial
movements. The following section details data compaction
procedures.

5.2.1. Matrix Compression

The first approach to matrix compression, is to have a look
at the vector of homogenous transformsXtDe f

i , that are in-
teresting to send, namely

P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations 7

Figure 10: A shader function to decompress a 3 row matrix.

Figure 11: Quantization of a transformation matrix into 4
float values.

2
664

xx yx zx tx
xy yy zy ty
xz yz zz tz
0 0 0 1

3
775 (4)

which by the first look doesn’t need a full four by four ma-
trix and using a Matrix4 variable seems like a waste as only
12 float values are needed. This entire matrix can be com-
pressed down to a single 4 float vector (one atomic struc-
ture), by using various assumptions on the data. There are
however other intermediate solutions available.

The first solution is to send the three rows in three vec-
tors as in Gosselinet al. [GSM04]. This way a maximum
of 80 bones is reached, which is an improvement of 25%
over using straight Matrix4 variables. A good point of this
method is that compression on the CPU is easy and fast as
well as the GPU decompression, something that is appreci-
ated in terms of code simplicity and maintenance and has
also reached the necessary size of 80 bones for the character.
The shader function decompressing the matrix can be seen
in Figure10, wherebuff1, buff2 andbuff3 areuniform vec-
tors holding the 3 matrix rows. The discussion could stop
here but if there is a need to send for example more bones
or if the data is shared by other structures more elaborate
approaches are necessary.

The matrix in Equation4 is orthonormal, which means
that each column is orthogonal to the others and that each
column has a unit norm. This means that thez-column can

be determined by taking the cross product of thex and y-
columns or vectorse.g.z= x£ y. This brings the size down
to 9 floats, which is closer to the goal of decreasing the size
per bone matrix, but still takes three float vectors because of
the alignment to four floats. Practically this creates a space
improvement of 25%, which is the same as the previous ap-
proach, even though three floats less are used. Further inves-
tigation is necessary.

By re-writing the attributes in other representational
spaces, more valuable floats can be saved. A normalized
three sized vector can be compressed into one float value,
by using a discretization of 8 bits for each component, mul-
tiplying them into a 32 bit float value. This of course makes
the assumption that the graphics hardware is able to handle
32 bit floats internally, which is the case for nVidiaTM hard-
ware. With this representation two floats are used to describe
thex andy vectors but the translation still needs to be repre-
sented. A point in space can be described as a length and a
normalized direction vector, which is the same as factoring
out the length from the point. Thus encoding the length of
the translation in one float value and the direction vector in
a second is possible. This gives a grand total of four float
values, such that the entire transformation matrix is encoded
in one atomic structure, as shown in Figure11. It is an im-
provement of 75% in space used to describe the transform.
It does require more operations on both the CPU side and
on the GPU side, but these operations can be written down
as cross-products, with constant vectorized expressions. The
only drawback of this method is that the rotational space is
quantized quite roughly and thus a very smooth resulting an-
imation should not be expected.

Normally the first solution using a decomposition in three
rows using three atomic structures is the one to prefer, as it’s
the easiest to implement and works well for characters with
less than 80 bones.

5.2.2. Quaternion Compression

If the graphics engine is representing every transform using
quaternions and a separate translation, instead of matrices,
there is another way of sending the data to the graphics card.
Instead of using quantizations of columns going as far down
as one atomic structure for the entire transform, quaternions
can be used, written as four real values,

q̂ = (qx;qy;qz;qw) (5)

As the translation is using only three float values with-
out vector compression there are, two atomic structure vec-
tors, which gives a 50% space improvement. The precision is
also higher than using a matrix and encoding it into a rough
vector compression, as was described above. However there
is a slight drawback, because a matrix-to-quaternion trans-
formation is needed on the CPU side and a quaternion-to-
matrix transform in the vertex shader (unless direct rotation

8 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

Figure 12: Decompressing the quaternion in the vertex
shader.

with the quaternion is used). These conversions are a bit
more costly than using a matrix, as can be seen in Figure12
where the decompression is listed. The conversion to a ma-
trix costs 20 multiplications and 12 additions, while on the
CPU the conversion from matrix to quaternion costs on aver-
age one square root operation, 4 multiplications and 10 addi-
tions, compared to no such operations for the matrix sending
path. There are a number of possible accelerations to using
quaternions and all of them have not been explored. The least
costly way of sending them is if the engine keeps rotations
in quaternion form through all stages of computations, even
keeping the global deformation transforms as quaternion and
translation pairs, instead of matrices. The shader would also
need to transform the vertex using this decomposition.

5.2.3. Mesh Segmentation

If the mesh is segmented into sections, the step of com-
pressing and decompressing the matrices can be completely
skipped. Each section of the mesh uses a subset of the bones
and the necessary bones for each sub-mesh are sent. There is
no good metric for how many sub-meshes would be needed,
or how to choose which triangles are contained within a spe-
cific sub-mesh. Both problems are linked and the more sub-
meshes are made, the more drawing calls and bone transfor-
mation uploads to the graphics hardware have to be done.
Mesh segmentation was never implemented because of the
overhead it would presumably generate; for all sub-meshes,
modifieduniformvariables would have to be re-sent for ex-
ample.

5.3. Geometry transmission

Each character in the engine consists of exactly one mesh
and needs to send for each vertex its position, texture coor-
dinates, normal, indices to deformation matrices and weights
to these matrices. This data can be sent in attribute vectors,
but if more control is preferred it is more convenient to use
the values embedded in the standard components. The per
vertex data, is listed as follows:

† glPosition(px; py; pz;w1)
† glColor (i1; i2; i3;wnbr)

Figure 13: ERATO color variety applied to the crowd using
the pixel shader.

Figure 14: Pixel shader doing lighting and color variety
modification.

† glTextureCoordinate(u;v;w2;w3)
† glNormal(nx;ny;nz)

Each vertex needs matrix indices(i1; i2; i3), matrix
weights (w1;w2;w3), a normal (nx;ny;nz), a position
(px; py; pz) and a texture coordinates(u;v). By assigning
these values into the standard OpenGL components as listed
above, they can be stored in a display list, which will for
most cases put the geometrical data in the graphics card’s
memory. The first reason for having no more than three in-
fluencing bones is that more than this number is usually not
needed, so even if the character LOD might have some ver-
tices that are connected to more bones, the least influenc-
ing ones are discarded and the weight sum is re-normalized
to one. The second reason for having three bones is that it
neatly fits inside the standard data, just that their largest ver-
sions are used, which is the four dimensional texture coordi-
nate, color and position. When the position is sent re-setting
the fourth component to1:0 before transforming it has to be
taken into account, as seen in Figure9.

5.4. Pixel Shader Usage

All geometrical characters, no matter whether they are dy-
namic or static, send their interpolated normals to the pixel

P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations 9

Figure 15: Geometrical texture variety.

shader for a diffuse Phong lighting effect. In the pixel shader
per-texel accurate color modification is applied, using a tex-
ture as a look-up table (LUT), which is explained in depth
in [dHC06] and is similar to the way it is done in the thesis
of Dobbyn [Dob05]. Having a look at Figure14, the LUT-
texture is kept in the varietyTex variable, and that variety-
Row determines from which row to sample from in the LUT.
The pixel shader is quite light weight in comparison to the
vertex shader, which is a good trade-off as there are generally
more pixels than vertices per virtual human. The pixel shader
usage is more extensibly described in the tutorial notes on
variety.

6. Static Meshes

Until now the discussion has been almost exclusively deal-
ing with deformable meshes that can play back any anima-
tion. Now the focus will be on rendering geometry in the
case there is a very limited set of animations. This limited
amount of animations is usually between 10 and 15 and has
the constraint that the geometry isn’t too complex in terms of
number of triangles, so as not to take large amounts of mem-
ory or become prohibitive in terms of pre-processing time. A
static mesh is a pre-computed version of the deformed mesh,
where the vertices and normals have been stored for the se-
lected animations. These geometrical snapshots are called
key frames, which are usually using a cyclic animation and
need to be computed with a software pipeline. Even if this
thesis advocates a complete change in the pipeline to use
shaders exclusively, there are still uses for software deforma-
tion. Storing these pre-deformed meshes in OpenGL display
lists, the data transfer to the card is minimized as it includes
doing one drawing call for the entire object. The geometric
data will most probably already reside in the graphics hard-
ware memory.

Storing the data on the graphics card can be done in nu-
merous ways. The most simple of them mentioned above is
through the use of display lists, which in itself is usually a
good performing storage. If an even faster rendering is de-
sired, on some graphics cards it pays off to create optimal
storage for vertex data. A first good step is to use indexed
geometry, resulting in less storage space and profiting from
vertex caches existing on graphics cards for a few years al-
ready. If a further increase in speed of the storage and its
transmission is required, the vertex data and the triangles in-

Figure 16: CrowdBrushed Europe, containing 30 000 ani-
mated humans forming the landscape, from [UdHCC05].

Figure 17: Cartoon shading of the crowd.

dexed need to be close to each other so that they fit nicely
into the vertex caching scheme as in Hoppe [Hop96]. In-
dexed geometry can be put in interleaved arrays which was
tried, but are equivalent in speed, see de Heras Ciechomski
et al. [dHCUDC04].

Approximately the data size of unpacked models ready
for rendering is computed in the following manner. Each
triangle has three vertices, three normals and three texture
coordinates, all together with the size of approximately one
hundred bytes. For each frame, the size requirement in bytes
is one hundred times the number of triangles. An average hu-
man that consists of one thousand triangles requires around
one hundred kBytes per key frame. Since the animations
are sampled at 32 fps, this amounts to approximately 3.2
megaBytes per second.

The benefit of using display lists is that one can take ad-
vantage of the full OpenGL pipeline, without any changes
to lighting, see Figure17. The characters look well from
all camera directions and zooms, as opposed to billboards
which are usually low resolution and need pre-processing
for all different camera angles. The memory usage is lower
than with billboards; however more polygons need to be ren-
dered. The data storage requirements on disk are very low,

10 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

Figure 18: Spotlight on the crowd.

Figure 19: Performance impact of animation and geometry
caches on a software pipeline deformation.

since only a basic mesh and animations of the skeleton are
stored.

7. Results

This section sums up the results of the previously described
rendering optimization techniques with regard to crowd ren-
dering.

7.1. Caching

The testbed for experimentation of caching optimizations is
the following: an Intel Pentium IV running at 3 GHz with 1
GB of main memory and an nVidia Geforce 6600 with 256
MB of onboard DDR2 memory. The scene consists of an
Odeon filled with a crowd of Romans watching and react-
ing to a play. Each human has his own individual behavior
in terms of different animation clips being interpolated and
transitioned, thus creating animations on-the-fly. Dynami-
cally deformed meshes are used with a software pipeline so
that the resulting vertices and normals can be re-used in the
next frame in a dedicated cache per individual. This is also
described in de Heras Ciechomskiet al. [dHCSMT05].

Figure 20: Using 4 levels-of-detail meshes greatly improves
performance.

7.1.1. Geometrical Caching

The first test caches vertices and normals after each mesh
update depending on the distance to the viewer. It is added
on top of a LOD scheme and the resulting performance is
shown in Figure19, where it goes under the name of anima-
tion caching. Compared to a pure LOD scheme geometrical
caching improves the performance by 27% as can be seen
in the top bars when done on a crowd of 80 characters. As
the number of characters increase the impact of the caching
increases since the bottleneck becomes the mesh deforma-
tion more and more, until it become 36%. For a software
pipeline the improvement in performance becomes conserv-
atively 30% on average.

7.1.2. Animation Caching

Animation caching works by storing the concatenated form
of the matrix array (see Figure6) before it is sent to the ver-
tex deformation phase. Its impact on performance compared
to LOD meshes can be seen in Figure19and amounts to 7%
for a low amount of meshes and 18% for a high amount of
meshes, being a 10% on average.

7.2. Data Transmission

Using the matrix compression technique described in Sec-
tion 5.2.1the high bone count humans are possible to send
to the hardware shader, which was not possible without it.
Putting the entire human inside of a display list also speeds
up rendering; however no tests were done with the data out-
side of the display lists.

7.3. Skeletal Pruning

When bone pruning is done on the skeleton, by removing
bone operations from the animation interpolation and con-
catenation, its impact has global and local effects. Locally
the effects are directly quantifiable through a mathematical

P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations 11

Figure 21: Three rendering fidelities, dynamic meshes us-
ing 3 geometrical LODs, static meshes and simplified bill-
boards.

formulation as the number of bones removed is linearly re-
lated to the number of operations done in form of quater-
nions interpolations and matrix multiplications. Globally the
effect can be less or more depending on the graphics card as
it does the vertex interpolation step and the final rendering.
If the final rendering is slow, for example if the number of
vertices increases, the number of transforms will depend on
the ratio between the number of triangles in the hand and
face to the rest of the body. When the vertices in the hand use
less bones because of the pruning step (which collapses them
onto the single wrist bone) the amount of transforms done
in the for-loop in Figure9 also decreases by minimum 2
or three times. Globally the amount increases conservatively
minimum by 10% in fps on a graphics card of the nVidia
7800 series even though theoretically the number should be
higher. Since the amount of bones sent to the graphics card
is still the same as before the pruning (78) even though they
are not filled with any data, this could maybe also impact.
The reason for not changing the number of bones sent to the
card is that it would require a new data type in form of a
skeletal LOD in the system.

7.4. Static vs Dynamic Meshes

Static meshes can be used in scenarios when a very limited
set of animations is used for the entire animation repertoire.
They can also be used as an intermediate rendering fidelity
between dynamic meshes and billboards as is proposed in
this work. To know their performance compared to dynamic
meshes a scene of up to 100 000 humans is used. The static
meshes are built using 2 animation cycles, one walking and
one idle animation, while the dynamic meshes use an ani-
mation bank of 1000 animations played back on the mesh,
so they have the extra cost of updating the animation which
is necessary to include having real-world statistics. Dynamic
mesh LOD 0 in Figure21 (blue) has the same triangle com-
plexity as the static mesh (green) which is consistently three
times faster. Static meshes definitely have a place in a crowd

Figure 22: Dynamic mesh deformation using hardware
shader programs in comparison to a pure software defor-
mation pipeline.

engine because of their speed as long as they are used with a
limited set of animations.

7.5. Shader Programs vs. Fixed Function Pipeline

The next test is comparing the performance of shader pro-
grams versus a fixed function pipeline and is executed on
an AMD64 4000+ with 2GB of memory and an nVidia SLI
6800 Ultra graphics card. In the tests one template is used
consisting of 8 geometrical LODs, starting at 1026 triangles
down to 490 triangles. Two animations are mixed at quater-
nion level using skeletons of 33 bones each and consisting
of three (512 pixels wide and high) textures, for the texture
variety. All humans are in view and the average of mini-
mum and maximum frames per second is shown in Figure
22, where the maximum fps corresponds to a view far from
the crowd so that all humans are 490 triangles, while the
minimum fps is obtained by zooming in on the crowd until
the user is close enough to engage the most detailed geomet-
rical meshes. From the graph can be deduced that an average
speed-up of 700% is gained from using programmable hard-
ware shaders. This acceleration can also be due to how data
is sent to the graphics card since for vertex shaders all data
is sent in one OpenGL display list call for each human. This
gives an advantage in terms of less rendering primitive calls
comparing to the software approach which does up to 16 gl-
DrawElements calls for 8 coloring areas even with a mesh
subdivision approach as described in the tutorial notes on
variety.

References

[COM98] COHEN J., OLANO M., MANOCHA D.:
Appearance-preserving simplification. InProceedings of
the 25th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’98(New York, NY,
USA, 1998), ACM Press, pp. 115–122.

12 P. de Heras Ciechomski & D. Thalmann / Rendering Pipeline Optimizations

[dHC01] DE HERAS CIECHOMSKI P.: Parametric Dy-
namics - A Method for Addition of Dynamic Motion to
Computer Animated Human Characters. Master’s thesis,
Lund Institute of Technology, jul 2001.

[dHC06] DE HERAS CIECHOMSKI P.: Rendering massive
real-time crowds.PhD Thesis at Swiss Federal Institute of
Technology, VRLab, Lausanne, Swizerland(June 2006).

[dHCSMT05] DE HERAS CIECHOMSKI P., SCHERTEN-
LEIB S., MAÏM J., THALMANN D.: Reviving the ro-
man odeon of aphrodisias: Dynamic animation and vari-
ety control of crowds in virtual heritage.In proceedings
of the 11th International Conference on Virtual Systems
and Multimedia (VSMM’05)(2005), 601–610.

[dHCUDC04] DE HERAS CIECHOMSKI P., ULICNY B.,
D. T., CETRE R.: A case study of a virtual audience in a
reconstruction of an ancient roman odeon in aphrodisias.
In Proceedings of the 5th International Symposium on Vir-
tual Reality, Archeology and Cultural Heritage (VAST’04)
(2004).

[Dob05] DOBBYN S.: Hybrid representations and percep-
tual metrics for scalable human simulation, July 2005.

[Gou71] GOURAUD H.: Continuous shading of curved
surfaces. IEEE Transactions on Computers(1971),
623Ű628.

[GSM04] GOSSELIN D., SANDER P., MITCHELL J.:
Rendering a crowd. InShaderX3 : Advanced Rendering
with DirectX and OpenGL(2004), Charles River Media,
pp. 505–517.

[Hop96] HOPPE H.: Progressive meshes.SIGGRAPH
’96: Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques(1996), 99–
108.

[Kt05] KAVAN L., et al.: Spherical blend skinning: a real-
time deformation of articulated models. InSI3D ’05: Pro-
ceedings of the 2005 symposium on Interactive 3D graph-
ics and games(New York, NY, USA, 2005), ACM Press,
pp. 9–16.

[Lan98] LANDER J.: Skin them bones: Game program-
ming for the web generation.Game Developer Magazine
(May 1998), 11–16.

[MH02] MÖLLER T. A., HAINES E.: Real-Time Render-
ing. AK Peters, Ltd, 2002.

[PdHCM⁄06] PETTRE J., DE HERAS CIECHOMSKI P.,
MAÏM J., YERSIN B., LAUMOND J.-P., THALMANN
D.: Real-time navigating crowds: Scalable simulation
and rendering.Computer Animation and Virtual Worlds
(CAVW), special issue of CASA 2006(2006).

[Str02] STRATTON C.: Optimizing for sse: a case study.
Hugi, 25 (2002).

[UdHCC05] ULICNY B., DE HERAS CIECHOMSKI P.,
CLAVIEN M.: Crowdbrushed europe.Winner of the Com-
puter Graphics Forum Competition(2005).

EUROGRAPHICS 2006

Populating Virtual Environments with Crowds: Variety
Creation and Editing

P. de Heras Ciechomski and D. Thalmann,

Swiss Federal Institute of Technology, VRLab, Lausanne, Switzerland

Abstract
Variety is part of the believability aspect of a crowd, as the more differentiation there is between characters in form
of morphology, clothing, color combinations, behavior and animations the more life-like it will appear. Using a few
building blocks called templates artist resources are utilized optimally by instantiating humans from a common
mold. This template variety is edited in real-time with a user interface exposing the coloring parameters as an
HSB scale.

1. Introduction

The goal of this course notes is to show how to create a var-
ied crowd, using few basic building blocks, such that dif-
ferent combinations are possible by employing little artistic
resources. A human in the system is assumed to have a basic
mesh, a single exchangeable texture with specific color areas
and a set of animations to play, as described in the tutorial
course notes on pipeline optimizations.

The variety in rendering extends the way Tecchiaet al.
[TLC02] create color variety from a single texture for bill-
boards to dynamically animated 3D virtual humans. A wide
spectrum of colors and appearances is achieved by combin-
ing textures and color variety (see Section2). Each mesh
has a set of interchangeable textures and the alpha-channel
of each texture is segmented in several zones: one for each
body part or piece of clothing. This segmentation is done
using a desktop publishing software (in this case Adobe
PhotoShopTM). Two possible approaches for creating color
variety are presented using the alpha layer information. The
first approach is software-based and runs on graphics cards
with a fixed function pipeline. The second approach uses a
hardware based fragment shader, followed by a presentation
of variety editing and color constraints.

1.1. A Software Approach: Fixed Function Pipeline

An alpha zone is denoting a part of the texture of the charac-
ter that is to be modulated with a certain color. For example,
an alpha zone is a specific part of a dress or some jewelry

Figure 1: Texture and alpha zone map of a patrician woman

Figure 2: Billboard variety coloring steps from left to right:
acquiring the modification colors (1), selecting which area
to modulate using the alpha channel (2), adding the diffuse
color (4) and the result in (5), from Maupu [Mau05].

2 P. de Heras Ciechomski & D. Thalmann / Variety Creation and Editing

Figure 3: Rasterizing the triangle over the alpha layer, from
Maupu [Mau05].

that the user wants to be able to color to differentiate crowd
members from each other. Some triangles, denoted asdirty
triangles, can span several such alpha zones that have to be
colored differently. Examples of such triangles can be seen
in Figure1, where those close to the border between the face
skin color and the hair are overlapping. A solution consists
in re-triangulatingdirty triangles, such that each zone is cov-
ered with more triangles. Even if this could be achieved us-
ing a subdivision algorithm, the solution wouldn’t be appro-
priate since there would be no control on the amount of new
triangles generated and a nonsensical situation could appear:
a lower LOD mesh having more triangles than a higher LOD
mesh.

The presented approach consists of using alpha tests on a
split mesh to reduce the work of the graphics card. Meshes
are quickly split at startup in several sub-meshes: one per
group of uniform triangles, plus one for thedirty triangles.
This splitting is achieved by plotting every triangle over the
texture’s alpha layer, as in Figure3. During the plotting, if a
change in the alpha value appears, the triangle is considered
asdirty. Once the mesh is split, multi-pass rendering is done
only on thedirty triangle sub-mesh, consisting usually of a
small number of triangles. In the case of the patrician woman
only 40 triangles out of 1000 are considereddirty.

The main drawback of the software approach is that the
rendering complexity depends on the amount ofdirty tri-
angles. If some alphas overlap a large amount of triangles,
the rendering will slow down accordingly, which makes the
frame rate depend considerably on the chosen texture. More-
over, it also depends on the way alpha zones are designed.
Thus, when intending to utilize this splitting mesh technique,
this issue should be taken into account, in particular trying
to reduce as much as possible the amount ofdirty trian-
gles when creating textures and mapping characters. A way
to ensure this is to have zones with uniform alpha values
connected by a large pixel neighborhood. However, this ap-
proach is able to run on a large install-base of machines.

Figure 4: A typical texture atlas.

Figure 5: Pixel shader doing lighting and color variety mod-
ification.

1.2. A Hardware Approach: Shaders for Color Variety

Since the color modification information is encoded in a
color texture as the alpha component is has 8 bits of preci-
sion, giving 256 possible coloring areas in theory. In a soft-
ware approach the mesh is separated in triangles per col-
oring group and onedirty triangle group, which would in
the worst case require 255 additive coloring passes plus 256
alpha check passes to render a character. This is of course
completely unacceptable because more time would be spent
on sending OpenGL commands and transferring data than
on actual rendering. Since a designer has to manage these
coloring regions it is more convenient to keep the number
of regions down to 16 or less. Usually they are no more than
eight, unless specific small details are designed which can be
seen on the noble Roman virtual humans in form of jewelry
shown in the ERATO project [ERA05].

The fragment shader determines for each pixel which
color modification area it is part of and then colors it with
the appropriate modulating color. In the first implementa-
tion of the fragment shader, anif-else-statement determined

P. de Heras Ciechomski & D. Thalmann / Variety Creation and Editing 3

Figure 6: Bilinear filtering artifacts in the alpha layer can
be seen in the right zoomed-in version, near the borders of
the orange shirt, the green tie and the red vest, from Maupu
[Mau05].

the correct color to apply with a limitation of 8 alpha zones.
SinceShader Model 3.0allows nestedif -statements, three
if -evaluations per pixel are enough. Another way to program
the fragment shader is to send a one dimensional texture
and map the alpha value to the color to be modulated, for
a specific character. In order to batch drawing calls (Wloka
[Wlo03]), all individual one dimensional textures are put
into one 2D texture of 1024£ 256 size, called a texture at-
las whose generic example with 2D textures of individuals is
shown in Figure4. Each row in this texture atlas maps from
an alpha value to a color value and one extra variable has to
be sent to the mesh in the form of an identifier for which row
to sample from, see listing in Figure5.

1.3. Filtering

The color variety rests on a precise control of alpha key val-
ues. While uploading textures to the graphics card, such fil-
tering known asnearestfiltering is preferable to alinear
one. Indeed alinear filtering would create new alpha val-
ues at the border of two alpha zones and thus, pixels at these
borders would not be drawn, shown in Figure6. However,
nearest filtering is gross and to soften the texture Mipmaps
are required (Williamset al. [Wil83]). OpenGL’s Mipmap
creation tool cannot be used here since it does a bilinear fil-
tering on all layers of the texture. In fact, the alpha layer
itself has to be nearest neighbor filtered separately, while the
RGB layer must be bi-linearly filtered when the Mipmaps
are being built.

1.4. Color

The color variety presented here is based on texture color
modulation. Each fragment is colored by modulating the
pixel color by the texture color: thus, the value produced by
the texture function is given by:

Figure 7: Random color system (a) versus HSB control (b).

Cv = CtCf (1)

where f refers to the incoming fragment andt to the tex-
ture image. ColorsCv, Ct , andCf can take values in the in-
terval between0 and 1. In order to have a large panel of
reachable colors,Ct should be as light as possible,i.e., near
to 1. Indeed, ifCt is too dark, the modulation byCf will give
only dark colors. On the other hand, ifCt is a light color, the
modulation byCf will provide not only light colors but also
dark ones. This explains why part of the texture has to be re-
duced to a light luminancei.e. the shading information and
the roughness of the material. However passing the whole
texture as luminance is not necessary as there is no gain in
memory: OpenGL will emulate an RGB texture based on lu-
minance values, since graphics cards are optimized for RGB
textures. The drawback of passing the main parts of the tex-
ture to luminance is thatfunkycolors can be generatedi.e.
agents are dressed in colors that do not match. Some con-
straints have to be added when modulating colors randomly.
With the RGB color system, it is hard to constrain colors ef-
fectively. That is why the crowd rendering engine uses the
HSB system [Smi78], also called HSV, meaning Hue, Satu-
ration and Brightness or Value. This model is linked to the
human color perception and is more user-friendly than the
RGB system. In the next section a graphical user interface
created for helping designers to set constraints on colors is
presented.

2. Designing Variety

In the process of designing Romans in the ERATO project
and more generally human color variety, localized con-
straints are dealt with : some body parts need very specific
colors. For instance, roman skin colors are taken from a spe-
cific range of unsaturated shades with red and yellow domi-
nance, almost deprived of blue and green. Eyes are described
as a range from brown to green and blue with different levels
of brightness. These simple examples show that one cannot
use a random color generator as is. A tool is needed that al-
lows us to control the randomness of color parameters for
each body part of each roman (see Figure7).

4 P. de Heras Ciechomski & D. Thalmann / Variety Creation and Editing

Figure 8: HSB color space. Hue is represented by a circular
region. A separate square region may be used to represent
saturation and brightness, i.e., the vertical axis of the square
indicates brightness, while the horizontal axis corresponds
to saturation.

Figure 9: The HSB space is constrained to a three dimen-
sional color space with the following parameters (a): hue
from 20 to 250, saturation from 30 to 80 and brightness from
40 to 100. Colors are then randomly chosen inside this space
to add variety on the eyes texture of a character (b).

2.1. Color Models

The standard RGB color model representing additive color
primaries of red, green, and blue is mainly used for spec-
ifying color on computer screens. In order to quantify and
control the color parameters applied to the Roman crowd, a
user-friendly color is used. Smith [Smi78] proposes a model
that deals with everyday life color conceptsi.e. hue, satura-
tion and brightness. This system is the HSB (or HSV) color
model. The hue defines the specific shade of color, as a value
between 0 and 360 degrees. The saturation denotes the pu-
rity of the color,i.e., highly saturated colors are vivid while
low saturated colors are washed-out, like pastels. Saturation
can take values between 0 and 100. The brightness measures
how light or dark a color is, as a value in the interval between
0 and 100. The color space is thus represented by the HSB
model shown in Figure8.

2.2. HSB Color Model as a Tool for Designing Variety

The HSB color model enables control of color variety in an
intuitive and flexible manner. Indeed, as shown in Figure9,
by specifying a range for each of the 3 parameters, it is pos-
sible to define a three-dimensional color space, called the
HSB map.

A GUI was built so that designers can easily load, mod-

Figure 10: Decurion women with saturation from 40 to 80
and brightness from 50 to 70 (left); plebeian women with
saturation from 10 to 50 (right) .

ify and save HSB maps for different human templates (see
Figure11). This GUI provides all the necessary tools to effi-
ciently :

† change the number of virtual humans rendered
† select the desired virtual human template
† choose which texture of the selected template one wishes

to work with
† choose on which body part (alpha value) of the selected

texture color ranges should be defined
† select a saturation and a brightness range between0 and

100, and choose a range in the hue circle between0 and
360(cycles are allowed), for the currently selected alpha
value

The result of using these features is visualized in real time
i.e.every change directly affects each rendered human.

2.3. Variety Case Study : Roman Society

To further illustrate the use of the GUI, a case study in the
framework of the ERATO project is presented [ERA05]. In
order to simulate Roman society, social classes had to be dif-
ferentiated. These differences were shown through clothing,
where colors and color patterns defined the rank of individu-
als. For instance, decurion women (rich elite) wore fine fab-
ric with rich colors, while lower class citizens wore simple
garments made of usually dark raw material. HSB maps al-
lowed to specify these significant differences by setting satu-
ration and brightness values for rich garments and lower for
modest ones (see Figure10).

3. Results

3.1. Variety Pixel Shaders versus Software

For software rendering without shader capability it is im-
portant to use few passes for alpha testing as each alpha
channel requires an extra rendering pass. In this case a seg-
mented mesh and dirty triangle separation gives a 250% per-
formance improvement. However if shader programs can be
executed it wins with no contest with a 700% speed improve-
ment even over segmented meshes (see Results section of the
pipeline optimizations course notes or [dHC06]).

P. de Heras Ciechomski & D. Thalmann / Variety Creation and Editing 5

Figure 11: Real-time texture variety design of plebeian Ro-
man social classes. Dialog to select the template to edit and
to choose the number of characters (left); the results dis-
played on the crowd (middle); dialog to design the variety of
the selected template with the possibility to choose the body
part along with the texture of the template to edit (right).

Figure 12: Color variety editing per texture in an ASCII file.
Each row describes three intervals in the HSV space.

3.2. Variety Editing

Using the HSV color variety interface for the humans, per
variety texture color variations are stored in text files, shown
in Figure12. This file is editable directly inside of a text edi-
tor or can be exported from the interface shown in Figure11.

Figure 13: Texture units and how they change active tex-
tures. On the left is the color and alpha (RGBA) base texture
and on the right in the second texture unit is the color variety
texture.

Visually the clothes and accessories were subjectively easier
to constrain for the lab designers as well as gave a credi-
ble way of randomizing colors within selected intervals. At
startup of the application for each variety texture a color va-
riety texture is created which is then shared by all instances
of a template. One row in this texture corresponds to a sam-
ple of each of the HSV intervals, converted to RGB colors,
shown on the right in Figure13.

4. Discussion

A method for segmenting a mesh into regions to speed up
software rendering of the alpha test path was shown and was
efficient. Hardware shaders were shown to be more power-
ful, easier to program and more performant than a software
solution. An easy and intuitive HSB coloring interface was
used and did improve the design process of human garment
colorings using constrained randomized intervals. Hopefully
more visual GUIs for crowd editing will adopt this type of
coloring parametrization as it is relatively easy to imple-
ment.

References

[dHC06] DE HERAS CIECHOMSKI P.: Rendering massive
real-time crowds.PhD Thesis at Swiss Federal Institute of
Technology, VRLab, Lausanne, Swizerland(June 2006).

[ERA05] ERATO - identification, evaluation and revival of
the acoustical heritage of ancient theatres and odea, 2005.
project website, http://www.at.oersted.dtu.dk// erato.

[Mau05] MAUPU D.: Creating variety - a crowd creator
tool. Semester project at Swiss Federal Institute of Tech-
nology - EPFL, VRLab(2005).

[Smi78] SMITH A. R.: Color gamut transform pairs. In
In Proceedings of the 5th annual conference on Com-
puter graphics and interactive techniques (SIGGRAPH
’78) (New York, NY, USA, 1978), ACM Press, pp. 12–
19.

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Image-based crowd rendering.IEEE Computer Graphics
and Applications 22, 2 (March-April 2002), 36–43.

[Wil83] WILLIAMS L.: Pyramidal parametrics. InSIG-
GRAPH ’83: Proceedings of the 10th annual conference
on Computer graphics and interactive techniques(New
York, NY, USA, 1983), ACM Press, pp. 1–11.

[Wlo03] WLOKA M.: Batch, batch, batch: What does it
really mean.GDC (2003).

EUROGRAPHICS 2006

Populating Virtual Environments with Crowds: Interaction

P. de Heras Ciechomski and D. Thalmann,

Swiss Federal Institute of Technology, VRLab, Lausanne, Switzerland

Abstract

Interacting with a crowd is an easy task if the interface is spray-like as in a PhotoShop application as it is
something intuitive and easy to relate to. Extending the spray paradigm beyond assignment of emotional states
and simple animation states is what has been puzzling us as researchers the last months. With the advent of new
powerful path planning algorithms serving thousands of path queries simultaneously the spray interface finally
found virgin ground. We show how to not only assign indivudual atomic emotional states to virtual humans through
a spray interface but also how to interact with path quieries for a thousand agents at a time.

1. Introduction

When increasing the number of individuals constituting a
crowd it becomes more difficult to create unique and varied
scenario content. Modifying features of every single indi-
vidual one by one, soon becomes laborious. If, on the other
hand, a set of features (either uniform, or patterned) are ap-
plied to many individuals at once, unwanted artifacts on a
larger scale could emerge, resulting in an "army-like" ap-
pearance with too uniform, or periodic distributions of indi-
viduals or characteristics. Random distributions can alleviate
such problems; however, it can be very difficult to capture
the desired constraints into a set of mathematical equations,

Figure 1: CrowdBrushed Europe.

especially considering integration into common art produc-
tion pipelines.

The challenge is how to create complex scenes resem-
bling a variety-rich look of the real world. Here it is un-
derstood that complexity is analogous to a notion of com-
plexity of patterns generated by cellular automata as in Wol-
fram [Wol02]: not uniform, not periodical, nor just fully ran-
dom.

2. Related Work

Bottom-up approaches, such as local rule based flocking as
in Reynolds [Rey87] can create such complexity. However
they are difficult to control if particular end configurations
are to be achieved, namely how to set local rules to get a
global result. In the work of Andersonet al. [AMC03] in-
teresting results for a particular case of flocking animation
are obtained. Nevertheless, the algorithm can get very costly
when increasing the number of entities and simulation time.

Major 3D content creation packages used by the media
industry now offer tools to improve working with a large
number of virtual characters, such as Character StudioTM

or SoftimageTM. The production of massively populated
scenes is still in the majority of cases a lengthy and manual-
intervention intensive process, operating mostly in a non-
real-time mode. An interesting approach to add sets of ob-
jects (as clouds, trees, flowers, or buildings) to the scene is
used in Maya Paint EffectsTM, where a designer can paint
pseudo-3D objects in the scene using 2D brush strokes. SuchE

2 P. de Heras Ciechomski & D. Thalmann / Interaction

objects are not fully integrated into the 3D scene: they are
rendered in a special buffer with separate shading and are
further composed into the final image as a Z-buffer based
post process. Other work done on direct multi-agent interac-
tion is presented in Millanet al. [MR05].

The approach presented here gives full creative power
to designers using metaphors of artistic tools, operating
on a two-dimensional canvas, familiar from image manip-
ulation programs working in what-you-see-is-what-you-get-
mode (WYSIWYG), with a real-time view of the authored
scene, such as PhotoshopTM. The advantages of immedi-
ate feedback, an intuitive interface and familiarity allows
to better express the artist’s vision at the same time lead-
ing to an increase in productivity. It is also presented in the
thesis of Branislav Ulicny [Uli05] and de Heras Ciechom-
ski [dHC06].

The structure is as follows: first, the overall design of the
system discussing the requirements needed for interactive
authoring is presented, followed by a detailed account of the
concept of brushes. Furthermore present results are shown,
where a prototype of the crowd brush application is used, to
create a scene of a virtual audience in a reconstruction of an
ancient theatre.

Then the spray interface is extended to interact with path
planning the route of thousands of agents at the same time as
in the work of Pettreet al.[PdHCM⁄06]. In this work virtual
human paths are assigned to several thousands of agents at
the samte time by re-using the same path solution thereby
reducing the cost a thousandfold. The spray interface is used
to select key location where the agents have to pass through.

Figure 2: Overview of the system design.

3. System overview

The goal is to create a system that allows authoring of freely
navigable real-time 3D scenes, composed of a large num-
ber of varied animated individuals in a virtual environment.
The authoring should be simple, intuitive and usable by non-
programmers.

Inspiration comes from the domain of image and word

Figure 3: CrowdBrush used on the Roman crowd of the
Aprhrodisias Odeon.

processing, where most applications use WYSIWYG ap-
proaches, with immediate feedback of the resulting manipu-
lations. In computer graphics such an approach was used,
for example, for direct painting on models, Hanrahanet
al. [HH90] and Kalninset al. [KMM ⁄02], sketching of 3D
models out of 2D drawings, Zelzniket al.[ZHH96], or paint-
ing 2D images with a virtual brush, Xuet al. [XLTP03].

The idea is simple: the designer manipulates virtual tools,
working in a two-dimensional screen space, with a mouse
and a keyboard. These tools then affect the corresponding
objects in a three-dimensional world space, as shown in Fig-
ure 3. Different tools have different visualizations and per-
form different effects on the scene including creation and
deletion of crowd members, modifying their appearances,
triggering of various animations or setting high-level behav-
ioral parameters.

Briefly, experiments were made with a fully three-
dimensional interface, where tools existed in a 3D world
space. Nevertheless it appeared to be not very practical, at
least not when using standard input devices operating in two
dimensions as a mouse or a trackball. The usability of a 3D
interface could be improved using some truly 3D input de-
vices such as a spaceball, a 3D mouse, or magnetic sensors.
However, it would limit the number of potential users as such
devices are not common.

In order to create an authoring tool as outlined above, the
system, on which it will operate, should fulfill the following
requirements:

Individuality: The system must allow for each individual
instance to have a set of attributes, and not share them
among many individuals, as they can potentially have
unique values, and can be individually selectable.

Responsiveness:It must be fast enough for real-time edit-
ing to allow for an immediate feedback loop. Therefore,
it must not involve lengthy preprocessing stages (at least
for features targeted for authoring) and also the system’s
responses to changes must be fast.

P. de Heras Ciechomski & D. Thalmann / Interaction 3

Figure 4: Laughter CrowdBrush used on the Roman crowd
of the Aphrodisias Odeon.

The requirements are close to those of any interactive ap-
plication. Indeed, boundaries between authoring and inter-
action are getting more and more fuzzy. A recent trend in
game development is to use the same application for part of
the authoring and actual game play (or to integrate play-test
ability in authoring tools), such as in RenderWare StudioTM

and GamebryoTM. The player interaction is, then, the subset
of possible interactions for a designer. Such designs came
from the necessity of constantly switching between "play"
and "create" modes while developing the game, in order to
increase productivity.

Figure 2 shows an overview of the system design. The
user controls the application using a mouse and a keyboard.
The mouse moves the visual representation of the brush tool
(an icon of a spray can is used) on the screen, with the mouse
buttons triggering different actions. The keyboard selects
different tools and switches between "navigate" and "paint"
modes. In the "navigate" mode, the mouse controls position
and orientation of the camera. In the "paint" mode, the cam-
era control is suspended and different areas on screen are se-
lected depending on triggered actions. These areas are then
further processed by the brush according to their particular
configurations, explained in the next section.

4. Brushes

Brushes are tools with a visual representation that affect
crowd members in different manners. For example, a brush
can create new individuals in the scene, or it can change their
appearances or behaviors. Selected visualizations of brushes
intuitively hint on their specific function. For example, the
creation brush has an icon of a human, the orientation brush
has an icon of a compass, the deletion brush has an icon of a
crossed over human, and so on, as in Figure4.

A brush is processed in three stages. First, a selection of
the affected area in 2D screen space is performed according
to a triggered action, with subsequent picking of entities in
the 3D world space. Then, the operator modifies the manner

of execution of the brush in the selected area. Finally, the
brush changes the values of the modifiers for the affected
individuals, or in case of the creation brush, new population
members are created.

Figure 5: Creation brush with random operator.

Figure 6: Color brush with uniform operator.

Figure 7: Orientation brush with gradient operator (Hugo
model by Laurence Boissieuxc°INRIA 2003).

Selectionsare defined in screen-space. A selection can be a
single point at the location of a cursor, or an area around
a cursor. If the selection is a single point, picking in the
3D world is performed by computing the intersection of

4 P. de Heras Ciechomski & D. Thalmann / Interaction

a line segment with the scene. If the selection is an area,
picking is performed on a random sample of points from
that area, following a "spray" metaphor. The size of the
selected area in world space, changes with the level of
zoom into the 3D scene. This provides an intuitive control
of focus: if one wants to work on a large part of the crowd,
zooms out of the 3D view are performed; if focus is on a
smaller group or individual, a zoom-in is performed.

Operators define how selections are affected. For example,
a stroke of the creation brush with the random operator
creates a random mix of entities (see Figure5); a stroke
of the uniform color brush sets colors of affected individ-
uals to the same value, as shown in Figure6; and a stroke
of the orientation brush with the gradient operator lets the
individuals turn in the direction of the gradient as in Fig-
ure7.

Modifiers are non-sharable properties, giving uniqueness
to every individual member of the crowd. Modifiers en-
capsulate low-level features influencing both appearance
and animations of virtual humans. Spatial configuration is
qualified by modificators of position and orientation. Ap-
pearance is influenced by modifiers of color, texture, ma-
terial and scale. Execution of actions is determined by an-
imation selection, shift, and speed modifiers. High-level
features can use a combination of several low-level fea-
tures accessed through their modifiers. For example, a par-
ticular emotional state sets animations from a predefined
set with some specific speed, or clothing style selects a set
of appropriate textures and colors for different body parts.

5. Path Construction

Scalable path planning was introduced in our system with
the work of Pettreet al [PdHCM⁄06] where cylindrical vol-
umes (Figure8) define walkable paths in the environment.
A fully automatic scene partitioning is presented and allows
multi-level paths to exist at the same time, such as paths on
top and below a stairway for example, see Figure9. When
a scene has been partitioned which takes a few minutes of
computing, paths between cylinders have been defined such
that if two cylinders intersect, the plane created by their in-
tersection is used as a door or bridge for humans to go from
one to the other as in Figure11.

5.1. Path Sharing

When a cylindrical map of the environment with all walkable
intersections has been computed a sharable path is computed
as in Figure10. Computation is done using a straightforward
Dijkstra algorithm, however since the cylinders bounding the
path are big and define intersectional planes several humans
can use the same path without it looking similar. In Figure
11 one can see that humans can choose any path between
two gates from one in-cylinder to an out-cylinder. Using this
path contruction and sharing, humans adapt their distribution
according to the available path width, since cylinders bound

Figure 8: Bounding cylinder graph.

Figure 9: PLanet Eight. Crowd members can walk on mul-
tiple levels above and below each other.

as much available space as possible. Each chosen path gives
rise to a certain number of possible routes, so using only two
clicks of the mouse a few thousand different routes are made
available.

6. Path Editing

Path editing is intuitive and easy to perform, using the mouse
pointing at the part of the city where the humans should go.
When the intersection of the mouse picking point and the
affected bouding cylinder is established the end-point has
to be chosen by the user. An example city with cylinders is

Figure 10: A shareable path is computed.

P. de Heras Ciechomski & D. Thalmann / Interaction 5

Figure 11: The intersection between two cylinders is called
a gate.

Figure 12: A city with bounding cylinders drawn.

depicted in Figure12. Using the start and end-point a share-
able path is computed as illustrated in the previous section.
No collision avoidance is done at the moment in-between
humans for large distances from the camera, only when very
close to the viewer, the active nodes do collision-avoidance
for their crowd members.

7. Results and Discussion

7.1. CrowdBrush

Usability and responsiveness of authoring applications is
tested by producing the scenario of a virtual audience as
shown in Figure4. Given existing models of a theatre and
template humans, the task is to fill the building with an audi-
ence and distribute the animations according to the require-
ments of the designer. Four different template humans, each
represented with around one thousand triangles are used.
The theater model has around fourteen thousand triangles.

In order to facilitate positioning of the humans, a grid of
valid positions in the theatre following the distribution of the
seats is created. The creation brush is restricted to operate
only on this grid, instead of free picking. Using the grid the
humans are positioned without caring about collisions, for
example, if two humans happen to materialize very close to
each other. The correct position and orientation of the audi-

ence is automatic, in this way, the same scene has a certain
expected behavior when a user interacts with it, in a simi-
lar way as in a paint program such as PhotoShopTM, where
pixel positions are placed in a grid.

Interactive frame rates are kept at all times, like in cases,
when adding and removing humans from the scene, or when
modifying attributes, such as animation, color or orientation.
When increasing the number of humans in the audience, per-
formance was dropping, yet even with full capacity of the
theatre, which is around 700 places, an acceptable rate of
27 frames per second with lighting enabled is maintained.
Due to the responsiveness of the crowd engine and by con-
sequence the interface, scene manipulation is immediate and
intuitive, as changes appear on-the-fly.

Besides scene creation, interacting with the audience is
enabled by the use of brushes. As soon as humans start to
appear in the scene, their behaviors are changed by using the
"emotion" spray that makes humans play different kinds of
animations from predefined sets, like happy animations or
sad animations.

The proposed authoring approach can work in conjunc-
tion with different crowd rendering systems if they fulfill the
requirements defined in Section3. The brush metaphor is
also compatible with work done on crowd behavior simula-
tion, where the spray could be used, for example, to send
events to activate behavioral rules [MT01], [UT02] as is
done in the ERATO project [ERA05].

7.2. Path Sharing

Using the bounding cylinder approach and editing the paths
from a high-level interface such as CrowdBrush the city is
quickly and interactively populated. Using the density distri-
butions described in [PdHCM⁄06] paths are uniformly filled
with humans directly and over time. The only drwaback of
the method is that humans can sometimes be congested in
cylindrical paths athat are too narrow. The adaptive density
functions try to alleviate this problem but they still remain in
some places. A solution is to simply remove cylinders from
possible paths that are narrower than a certain width.

Sharing of the same path for 10 000 humans is possible
and looks good, see Figure13and14.

References

[AMC03] ANDERSONM., MCDANIEL E., CHENNEY S.:
Constrained animation of flocks. InProc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion (SCA’03)(2003), pp. 286–297.

[dHC06] DE HERAS CIECHOMSKI P.: Rendering massive
real-time crowds.PhD Thesis at Swiss Federal Institute of
Technology, VRLab, Lausanne, Swizerland(June 2006).

[ERA05] ERATO - identification, evaluation and revival of

6 P. de Heras Ciechomski & D. Thalmann / Interaction

Figure 13: A city with 35 000 humans following only 6
paths.

Figure 14: A city with 35 000 humans following only 6
paths.

the acoustical heritage of ancient theatres and odea, 2005.
project website, http://www.at.oersted.dtu.dk// erato.

[HH90] HANRAHAN P., HAEBERLI P. E.: Direct WYSI-
WYG painting and texturing on 3D shapes.In Proceed-
ings of the 23rd annual conference on Computer graphics
and interactive techniques (SIGGRAPH’90)(1990), 215–
223.

[KMM ⁄02] KALNINS R. D., MARKOSIAN L., MEIER
B. J., KOWALSKI M. A., L EE J. C., DAVIDSON P. L.,
WEBB M., HUGHES J. F., FINKELSTEIN A.: WYSI-
WYG NPR: Drawing strokes directly on 3D models. In
Proc.SIGGRAPH’02(2002), pp. 755–762.

[MR05] M ILLAN E., RUDOMIN I.: Agent paint: Intuitive
specification and control of multiagent animations.In
Proceedings of Computer Animation and Social Agents
(CASA’05)(2005).

[MT01] MUSSE S. R., THALMANN D.: Hierarchi-
cal model for real time simulation of virtual human
crowds. IEEE Transactions on Visualization and Com-
puter Graphics 7, 2 (2001), 152–164.

[PdHCM⁄06] PETTRE J., DE HERAS CIECHOMSKI P.,

MAÏM J., YERSIN B., LAUMOND J.-P., THALMANN
D.: Real-time navigating crowds: Scalable simulation
and rendering.Computer Animation and Virtual Worlds
(CAVW), special issue of CASA 2006(2006).

[Rey87] REYNOLDS C.: Flocks, herds, and schools: A
distributed behavior model. InProc. SIGGRAPH’87
(1987), pp. 25–34.

[Uli05] ULICNY B.: Crowds for interactive virtual envi-
ronments.Ph.D. Dissertation at Swiss Federal Institute of
Technology, Lausanne (EPFL), Switzerland(2005).

[UT02] ULICNY B., THALMANN D.: Towards interactive
real-time crowd behavior simulation, Dec. 2002.

[Wol02] WOLFRAM S.: A New Kind of Science. Wolfram
Media, Inc., 2002.

[XLTP03] XU S., LAU F. C. M., TANG F., PAN Y.: Ad-
vanced design for a realistic virtual brush.Computer
Graphics Forum 22, 3 (2003), 533–542. (Proc. Euro-
graphics’03).

[ZHH96] ZELEZNIK R. C., HERNDON K. P., HUGHES
J. F.: SKETCH: An interface for sketching 3D scenes. In
Proc. SIGGRAPH ’96(1996), ACM SIGGRAPH, Addi-
son Wesley, pp. 163–170.

EUROGRAPHICS 2006 Tutorial

Populating Virtual Environments with Crowds: Level of
Detail for Real-Time Crowds

S. Dobbyn and C. O’Sullivan

Interaction, Simulation and Graphics (ISG) Lab, Trinity College Dublin, Ireland

Abstract
Computer generated crowds have become increasingly popular in films.However, their presence in the real-time
domain, such as computer games, is still quite rare. Even though there has been extensive research conducted on
human modelling and rendering, the majority of it is concerned with realistic approximations using complex and
expensive geometric representations. When dealing with the visualisation oflarge-scale crowds, these approaches
are too computationally expensive, and different approaches are needed in order to achieve an interactive frame
rate.

1. Introduction

This part of the tutorial describes the main research related
to the real-time visualisation, animation, and behaviour of
virtual crowds in the following manner:

• We first introduce generalcharacter visualisation tech-
niques using the fixed function graphics pipeline, and
show how recent improvements in graphics hardware has
greatly improving the realism of characters in computer
games. Furthermore, we describeacceleration tech-
niques for the rendering of large crowds which can be
subdivided into three categories:visibility culling meth-
ods,geometricallevel of detail (LOD) and sample-based
rendering techniques such as usingimage-basedand
point-basedrepresentations.

• Next, we describecharacter animation techniques,
including how a character’s model is animated using
the layered approach, and the various techniques for
generating character animations such askinematics,
physically-based animationandprocedural animation.
We also describe howanimation and simulation level of
detail provides a computationally efficient solution for the
simulation of crowds.

• Finally, we detailbehavioural techniquesused to en-
dow virtual characters with artificial intelligence (AI), in-
cludingagent-object interaction techniquesto simulate
characters interacting with objects. We also provide an
overview of the research onintelligent virtual agents and

present how the technique oflevel of detail AI has been
employed in computer games.

2. Character Visualisation

2.1. Character Model

The most common model used for representing characters
in 3-D computer graphics is the mesh model. A mesh is de-
fined as a collection of polygons, where each polygon’s sur-
face is made up of three or more connected vertices, and
is typically used to represent an object’s surface such as a
character’s skin. Since 3-D graphics hardware is optimised
to handle triangles, meshes are typically made up of this type
of polygon in 3-D applications. A simple model, consisting
of a low number of triangles (i.e., several hundred), can be
used to model a character’s general shape. However, as the
need for realism increases, more detailed models are nec-
essary and require a high number of triangles (i.e., several
thousand) to model the character’s hands, eyes and other
body-parts. This extra detail comes at a greater rendering
cost and a balance between realism and interactivity is nec-
essary, especially when rendering large crowds of charac-
ters. While current graphics cards can render over several
hundred million unlit triangles per second (e.g. ATI’s and
NVIDIA’s current cards), a static scene such as an urban en-
vironment populated with multiple characters could require
rendering several hundred thousand triangles. Therefore, de-
pending on the scene complexity, the number of triangles in

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

the character’s mesh or any other scene object is limited in
order to maintain a real-time frame rate.

Real-time lighting of these meshes is necessary to pro-
vide depth cues and thus enhance the scene’s realism. Oth-
erwise, the triangles are rendered with a single colour creat-
ing a flat unrealistic look. Typically, the lighting of the char-
acter’s mesh in games is implemented with basic Gouraud
shading [Gou71]. Gouraud shading is a method for linearly
interpolating a colour across a polygon’s surface and is used
to achieve smooth lighting, giving a mesh a more realis-
tic appearance. As a result of its smooth visual quality and
its modest computational demands, since lighting calcula-
tions are performed per-vertex and not per-pixel, it is by far
the predominant shading method used in 3-D graphics hard-
ware. Additionally, texture-mapping [Cat74], which allows
the attaching of a two-dimensional image onto the poly-
gon’s surface, can greatly improve the realism of a humans’s
mesh. These textures are usually artist-drawn or scanned
photographs and are typically used to capture the detail of
areas such as human’s hair, clothes and skin (as shown in
Figure 1). The image is loaded into memory as a rectangular
array of data where each piece of data is called atexeland
each of the polygon’s vertices are assigned texture coordi-
nates to specify which texels are mapped to the surface.

Figure 1: Simple Texturing-Mapping: (a) Mesh without
texture-mapping, (b) Texture Map (c) Texture-mapped mesh.

2.2. Character Rendering

Until a few years ago, the only option for hardware-
accelerated graphics was to use the fixed function pipeline.
This is where texture addressing, texture blending and final
fragment colouring are fixed to perform in set ways. The
introduction of themulitextureextension [Ope04], allowed
lighting effects involving several different types of texture
maps to be performed in a single rendering pass. This exten-
sion provides the capability to specify multiple sets of tex-
ture coordinates that address multiple textures, which means
that the previous and slower method of multi-pass rendering
can be avoided. More recently, hardware vendors have ex-
posed general programmable pipeline functionality, allow-
ing for more versatile ways of performing these operations
through programmable customisation of vertex and fragment
operations [Ope04]. With the introduction of multi-texturing
and programmable graphics hardware, coupled with the im-
provements in hardware capability such as the increase in

triangle fill-rates, texture memory size and memory band-
width, we are seeing an exciting era of realistic character
rendering and animation techniques which were previously
unfeasible to employ at interactive rates.

Figure 2: Per-pixel lighting effects such as environment
mapping in (a) Ruby Demo ((c© ATI Technologies) and (b)
Halo 2 (c© 2004 Microsoft Corporation), and (c) Normal
mapping in Unreal Engine 2003 (c© 2005 Epic Games Inc).

There has been extensive research on enhancing the
realism of a character’s mesh by applying various per-
pixel lighting effects (see Figure 2). Environment map-
ping [BN76] can be used to simulate an object reflecting its
environment. For characters such as soldiers wearing shiny
armour, environment mapping can greatly improve their re-
alism. Per-pixel bump mapping [Kil00] can be used to per-
turb the surface’s normal vector in the lighting equation to
simulate wrinkles or bumps. This is used to increase the vi-
sual detail of the character’s clothing and appearance with-
out increasing geometry. More recently, this approach has
been extended by using a normal map image, generated from
a highly detailed character’s mesh, in conjunction with a low
detailed mesh to improve its visual detail [COM98, Map].
Displacement mapping is another method which adds sur-
face detail to a model by using a height map to translate ver-
tices along their normals [Don05]. In order to speed up the
lighting calculations for a static object, the lighting can be
pre-computed and stored for each polygon in a texture called
a light map [SKvW∗92] and this method was made famous
by iD Software’s “Quake” games. In addition to the speed
increase, this method allows complex and more realistic il-
lumination models to be used in generating the map. With
dynamic objects, the light map needs to be calculated on a
per-frame basis, as otherwise shading artefacts will mani-
fest. Sander et al. [SGM04] recalculate the light map using
graphics hardware for each frame in order to correctly shade
the character’s skin as it moves within its environment. How-
ever, generating real-time light maps for a large number of
characters is unfeasible at interactive frame-rates.

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

Figure 3: Real-time hair rendering based on the light scat-
tering of human hair fibres [MJC∗03] and a fur rendering
model [KK89] using a (a) polygonal model [Sch04] (b) a
particle system [Wlo04]. (c) Real-time skin rendering based
on subsurface scattering [SGM04]. (d) Hair and skin ren-
dered with simple texturing.

More recently, more realistic character effects borrowed
from the film industry have been implemented in real-time.
Based on the technique used to light the face of digi-
tal characters in the filmThe Matrix Reloaded, Sander et
al. [SGM04] produced realistic looking skin in real-time.
Scheuermann et al. [Sch04] improved the rendering of real-
time hair using a polygonal model, where the hair shading
is based on the work on light scattering of human hair fibers
by Marschner et al. [MJC∗03] and on Kayiya et al.’s fur ren-
dering model [KK89]. While this technique has greatly im-
proved the realism of real-time hair, in addition to using low
geometric complexity, it assumes little or no hair animation
and is not suitable for all hair styles. Wloka [Wlo04] uses a
similiar rendering approach for underwater hair which is ani-
mated by treating it as a particle system. Unfortunately, these
techniques can only be used for a limited number of charac-
ters, since they are computationally intensive, and therefore
simple texture-mapped triangles are typically used for an in-
dividual’s skin and hair detail within large crowds (Figure 3).

2.3. Acceleration Techniques for Rendering Large-Scale
Crowds

The requirement in interactive systems for real-time frame
rates means that only a limited number of polygons can be
displayed by the graphics engine in each frame of a simu-
lation. Visibility culling techniques provide the first step to
avoid rendering off-screen characters, and therefore reduc-
ing the number of triangles displayed per frame. However,
other rendering techniques are needed since a large portion
of the crowd could potentially be on-screen.

2.3.1. Visibility Culling

Culling provides a mechanism to reduce the number of tri-
angles rendered per frame by not drawing what the viewer
cannot see. The basic idea behind culling is to discard as
many triangles as possible that are not visible in the final
rendered image. The two main types are visibility and oc-
clusion culling.

Visibility culling discards any triangles that are not within
the camera’s view-frustum. In the case of a large scenes
containing several thousand characters, it would be com-
putationally expensive to view-frustum cull each charac-
ter’s triangles. However, it can be used to avoid rendering
potentially off-screen characters by testing theirbounding-
volumeswith respect to the view-frustum. For further details
on various optimized view-frustum culling techniques utiliz-
ing bounding-volumes see [AM00].

The aim of occlusion culling is to quickly discard any
objects that are hidden by other parts of the scene. Vari-
ous research has been conducted on effective ways of estab-
lishing occluding objects utilizing software methods or 3-D
graphics hardware. For a detailed survey of these techniques
see [COCSD03]. For crowds populating a virtual city envi-
ronment, occlusion culling is a method that can greatly im-
prove the frame rate, since a large portion of the crowd will
be occluded by buildings, especially when the viewpoint is
at ground level.

2.3.2. Geometric-Based Rendering and Level of Detail

Level of detail (LOD) is an area of research that has grown
out of the long-standing trade-off between complexity and
performance. LOD stems from the work done by James
Clark where the basic principles are defined [Cla76]. The
fundamental idea behind LOD, is that when a scene is be-
ing simulated, it uses an approximate simulation model for
small, distant, or important objects in the scene. The main
area of LOD research has focussed on geometric LOD,
which attempts to reduce the number of rendered polygons
by using several representations of decreasing complexity
of an object. For each frame, the appropriate model or res-
olution is selected, usually based on the object’s distance
to the camera. In addition to distance, other LOD selec-
tion factors that can be used are screen space size, prior-
ity, hysteresis, and perceptual factors. Since the work done
by Clark [Cla76], the literature on geometric LOD has be-
come quite extensive. Geometric LOD has been used since
the early days of flight simulators, and has more recently
been incorporated in walkthrough systems for complex en-
vironments by Funkhouser et al. [FST92,FS93], and Maciel
et al. [Mac93].

One approach for managing the geometric LOD of virtual
humans is using a discrete LOD framework. A discrete LOD
framework involves creating multiple versions of an object’s
mesh, each at a different LOD, during an offline process (see

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

Figure 4: Five discreet mesh models containing (a) 2,170
(b) 1,258 (c) 937 (d) 612 and (e) 298 triangles.

Figure 4). Typically, a highly detailed (also known as a high
resolution) mesh, is simplified by hand or using automatic
tools to create multiple low resolution meshes varying in de-
tail. At run-time, depending on the LOD selection criteria,
the appropriate resolution mesh is chosen in order to main-
tain an interactive frame rate.

Another good solution for altering the geometric detail
of a character in games is through the use of subdivision
surfaces [Lee02]. In the beginning, one of the main prob-
lems with geometric LOD was the generation of the dif-
ferent levels of detail for each object, which was a time-
consuming process as it was all done by hand. Since then,
several LOD algorithms have been published in order to au-
tomatically generate the different levels of detail for an ob-
ject [EDD∗95, Hop96]. Subdivision surfaces is one method,
based on a continuous LOD framework, where a desired
level of detail is extracted at run-time by performing a se-
ries of edge collapsing/vertex splitting on the model. Start-
ing with a low-resolution mesh, a subdivision scheme can
be used to produce a more detailed version of the surface
by using masks to define a set of vertices and correspond-
ing weights, which are in turn used to create new vertices or
modify existing ones. By applying these masks to the mesh’s
vertices, a new mesh can be generated. An advantage of us-
ing masks is that different type of masks can be used in or-
der to deal with boundary vertices and crease generation.
In [OCV∗02], O’Sullivan et al. describe a framework that
uses subdivision surfaces as a means to increase or decrease
the appearance of a human’s mesh within groups and crowds
depending on their importance to the viewer.

In order to solve the problem of rendering large numbers
of humans, De Heras Ciechomski et al. [dHCUCT04] avoid
computing the deformation of a character’s mesh by storing
pre-computed deformed meshes for each key-frame of ani-
mation, and then carefully sorting these meshes to take cache
coherency into account. Ulicny et al. [UdHCT04] improve
on their performance by using 4 LOD meshes consisting of
1038, 662, 151 and 76 triangles and disabling lighting for
the lowest LOD, thereby achieving a frame rate several times
higher. To introduce crowd variety, they use several template
meshes for the humans, and clone and modify these meshes

at run-time by applying different textures, colors, and scaling
factors to create the illusion of variety. They succeed in sim-
ulating several hundred humans populating an ancient Ro-
man theatre and a virtual city at interactive frame-rates.

Figure 5: Rendering crowds using a discrete LOD ap-
proach [dHCUCT04].

Gosselin et al. [GSM05] present an efficient technique for
rendering large crowds while taking variety into account.
Their approach involves reducing the number of API calls
need to draw a character’s geometry by rendering multiple
characters per draw call, each with their own unique anima-
tion. This is achieved by packing a number of instances of
character vertex data into a single vertex buffer and imple-
menting the skinning of these instances in a vertex shader.
As vertex shading is generally the bottleneck of such scenes
containing a large number of deformable meshes, they mini-
mize the number of vertex shader operations that need to be
performed.

In their simulation, they use one directional light to sim-
ulate the sun, and three local diffuse lights. The shading of
each character’s mesh is performed by per-pixel shading and
a normal map generated from a high resolution model is
used. Specular lighting is calculated for the sun and is at-
tenuated using a gloss map to allow for parts of the character
to have differing shininess. Realism is further increased by
using an ambient occlusion map generated from the high res-
olution model. This map approximates the amount of light
that could reach the model from the external lighting en-
vironment and provides a realistic soft look to the charac-
ter’s illumination. Finally, using a ground occlusion texture
which represents the amount of light a character should re-
ceive from the sun based on their position in the world, the il-
lusion that the terrain is shading the characters as they move
within the environment is created. So that the characters are
not a carbon copy of each other, they use a colour lookup tex-
ture, which specifies 16 pairs of colours that can be used to
modulate the character, with a mask texture to specify which
portions should be modulated. In addition to this, decal tex-
tures to add other various details to the character’s model,
such as badges, are applied (see Figure 6).

2.3.3. Image-Based Crowd Rendering

Image-based rendering (IBR), stems from the research by
Maciel et al. [MS95] on using texture mapped quadrilaterals,
referred to as planar impostors, to represent objects in order

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

Figure 6: Geometric-based representations rendered with
various per-pixel shading effects [GSM05] (c© 2005 ATI
Technologies).

to maintain an interactive frame rate for the visual naviga-
tion of large environments. Consequently, due to this planar
impostor providing a good visual approximation to complex
objects at a fraction of the rendering cost, a large amount of
research has introduced different types of impostors such as
layered impostors [DSSD99], billboard clouds [DDSD03],
and texture depth images [JW02] for rendering acceleration
of various applications. A survey of these different types,
including their application and their advantages and disad-
vantages, can be found in [JWP05]. To represent a virtual
human, Tecchia et al. [TC00] and Aubel et al. [ABT00] both
use planar impostors. However, they differ in how the im-
postor image is generated. The two main approaches to the
generation of the impostor images are: dynamic generation
and static generation (also referred to as pre-generated im-
postors).

Figure 7: Image-based crowds: (a) Dynamically gener-
ated image-based crowds [ABT00] (b) Pre-generated image-
based crowds [TC00].

Aubel et al. use a dynamically generated impostor ap-
proach to render a crowd of 200 humans performing a ‘Mex-
ican wave’ [ABT00]. With dynamically generated impos-
tors, the impostor image is updated at run-time by rendering
the object’s mesh model to an off-screen buffer and storing
this data in the image. This image is displayed on a quadrilat-
eral, which is dynamically orientated towards the viewpoint.
This uses less memory, since no storage space is devoted to
any impostor image that is not actively in use. Unlike dy-
namically generated impostors for static objects, where the
generation of a new object impostor image depends solely
on the camera motion, animated objects such as a virtual
human’s mesh also have to take self-deformation into ac-
count. Aubel et al.’s solution to this problem is based on the

sub-sampling of motion. By simply testing distance varia-
tions between some pre-selected joints in the virtual human’s
skeleton, the virtual human is re-rendered if the posture has
significantly changed.

The planar nature of the impostor can cause visibility
problems as a result of it interpenetrating other objects in
the environment. To solve this problem, Aubel et al. propose
using a multi-plane impostor which involves splitting the
virtual human’s mesh into separate body parts, where each
body part has its own impostor representation. However, this
approach can cause problems similar to those mentioned in
Section 3, resulting in gaps appearing. Unfortunately, dy-
namically generated impostors rely heavily on reusing the
current impostor image over several frames in order to be
efficient, as animating and rendering the human’s mesh off-
screen is too costly to perform regularly. Therefore, this ap-
proach does not lend itself well to scenes containing large
dynamic crowds, as this would require a coarse discretiza-
tion of time, resulting in jerky motion.

Tecchia et al. [TC00] use pre-generated impostors for ren-
dering several thousand virtual humans walking around a
virtual city at an interactive frame rate. Pre-generated im-
postors involve the pre-rendering of an impostor image of an
object for a collection of viewpoints (called reference view-
points) around the object. Unfortunately, since virtual hu-
mans are animated objects, they present a trickier problem
in comparison to static objects. As well as rendering the vir-
tual human from multiple viewpoints, multiple key-frames
of animation for each viewpoint need to be rendered, which
greatly increases the amount of texture memory used. In or-
der to reduce the amount of texture memory consumed, Tec-
chia et al. reduce the number of reference viewpoints needed
for each frame by using a symmetrical mesh representation
animated with a symmetrical walk animation, so that already
generated reference viewpoints can be mirrored to gener-
ate new viewpoints. At run-time, depending on the view-
point with respect to the human, the most appropriate refer-
ence viewpoint is selected and displayed on a quadrilateral,
which is dynamically orientated towards the viewer. To al-
low for the dynamic lighting of the impostor representation,
Techia et al. [TLC02] pre-generate normal map images for
each viewpoint by encoding the surface normals of the hu-
man’s mesh as a RGB colour value. By using a per-pixel dot
product between the light vector and a normal map image,
they compute the final value of a pixel through multi-pass
rendering and require a minimum of five rendering passes.

The main advantage of this approach is that it is possi-
ble to deal with the geometric complexity of an object in a
pre-processing step. However, with pre-generated impostors,
since the object’s representation is fixed, ‘popping’ artefacts
are introduced as a result of being forced to approximate the
representation for the current viewpoint with the reference
viewpoint. To avoid these artefacts, the number of view-
points around the object for the pre-generation of the impos-

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

tor images can be increased. However this can later cause
problems with the consumption of texture memory. Image
warping is another technique of reducing the popping effect,
but this method can also introduce its own artefacts. Since a
pre-generated approach requires a large number of reference
viewpoints for several frames of animation, this makes it un-
suitable for scenes containing a variety of human models that
each needs to perform a range of different motions.

Dobbyn et al. [DHOO05] developed the Geopostor sys-
tem, which provides for a hybrid combination of pre-
generated impostor and detailed geometric rendering tech-
niques for virtual humans. By switching between the two
representations, based on a “pixel to texel” ratio, their sys-
tem allows visual quality and performance to be balanced.
They improved on existing impostor rendering techniques
and developed a programmable hardware based method for
adjusting the lighting and colouring of the virtual humans’
skin and clothes (see Figure 8).

Figure 8: Geopostor system.

2.3.4. Point Sample Rendering

Another sampled-based approach for the visualisation of vir-
tual humans is point sample rendering, which involves re-
placing a mesh with a cloud of points, approximately pixel-
sized [LW85]. Wand et al. [WS02] use a pre-computed hier-
archy of triangles and sample points to represent a scene.
This involves converting key-frame animations of meshes
into a hierarchy of point samples and triangles at different
resolutions. They partition the scene’s triangles using an oc-
tree structure and choose sample points which are distributed
uniformly on the surface area of the triangles in each node.
Using this multi-resolution data structure, they are able to
render large crowds of animated characters.

For smaller crowds, consisting of several thousands of ob-
jects, each object is represented by a separate point sample
and its behaviour is individually simulated. Larger crowds
are handled differently, with a hierarchical instantiation
scheme, which involves constructing multi-resolution hier-
archies (e.g., a crowd of objects) out of a set of multi-
resolution sub-hierarchies (e.g., different animated models
of single objects). While this allows them to render arbitrar-
ily complex scenes, such as 90,000 humans walking on the
spot and a football stadium inhabited by 16,000 fans (see
Figure 9), less flexibility is provided for the motion of the

Figure 9: Point-based crowds: (a) Stadium populated with
animated 16,000 fans and (b) Crowd of 90,000 humans
walking on the spot.

objects, since the hierarchies are pre-computed and therefore
cannot be used in simulating a large crowd moving within its
environment.

3. Character Animation

The problem with using a mesh to represent a dynamic ob-
ject, such as human character, is that a way of animating the
mesh is needed to reflect the motion of the character. In older
generation games, the character consisted of a hierarchy of
meshes, where each mesh represented a particular body part
and was animated in some way (e.g., Lara Croft in Tomb
Raider). However, the main problem with this approach is
that holes can appear where two or more meshes meet. These
gaps can be hidden either by clever modelling using cloth-
ing or armour, at the cost of requiring extra polygonal detail,
or by constraining the movement of the bones. However, de-
pending on the type of character being modelled, this is not
always possible. Nowadays, a character’s mesh is typically
animated by using a layered animation approach.

3.1. Layered Animation

The layered animation approach works by layering a char-
acter’s mesh on top of a skeleton structure and deforming
the mesh based on the animation of the underlying skeletal
layer. The skeleton consists of a hierarchy of joints inter-
connected by bones, where each joint defines where a bone
begins and is used as its pivot point. Except for the bone at
the root of the hierarchy (know as theroot bone), each bone
is linked to a parent bone and has either one, multiple, or no
child bones. To easily transform a bone from one coordinate
space to another, each bone’s position and rotation is stored
in a transformation matrix. The global transformation matrix
of each bone is dependent on the matrices of all of its par-
ents, and can be calculated as a function of both its local and
parent’s global transformation matrices.

In order to deform the mesh, the mesh and the skele-
ton first need to be setup in a reference pose, typically
using DaVinci’s Vitruvian man pose, to facilitate their re-
spective alignment. Each vertex in the mesh is assigned
either one or more influencing bones with a correspond-
ing weight to specify the amount of influence each bone

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

has on it. Linear blend skinning (LBS) is used for deform-
ing the mesh [Lan98, Lan99], where the deformation of
each vertex’s position (V’) and normal (N’) is calculated
as a function of the vertex’s original position relative to
each deforming bone (Vi), its normal (N), each deforming
bone’s global transformation matrix (TMi) and its influenc-
ing weight (wi) (Equation 1). When calculating the deforma-
tion of the normals, only the rotational component is used
by getting the inverse transpose of the global transformation
matrix ((TMi

−1)T).

V′ = ∑wi ×TMi ×Vi

N′ = ∑wi × (TM−1
i)T

×N (1)

Linear blend skinning can be implemented through pro-
grammable graphics hardware by using a vertex program
and this greatly improves its performance [Dom, GSM05].
This technique is fast to compute and therefore has become
widespread in recent games. While problems can arise for
large bone rotations, causing the mesh to collapse to a single
point, this can be solved by adding extra bones [Web00], or
using spherical blend skinning [KZ05].

3.2. Animation of a Character’s Skeleton

Traditionally, an articulated structure, such as a skeleton,
is animated using computer animation data stored as key-
frames. A key-frame allows the transformation of a bone
(i.e., its position and rotation) to be specified as a function
of time. This allows complicated animations to be simply
stored as a set of key-frames for each bone. While the most
simple method of generating key-frame animations for artic-
ulated structures is through kinematics, extensive research
on providing other ways of generating animation data has
been carried out, focusing on physical simulation and proce-
dural animation.

3.2.1. Kinematics

A common method for animating an articulated structure in
real-time is with kinematics, which is based on properties of
motion such as position and velocity over time. A charac-
ter’s key-frame animation is typically generated from data
that has been created manually through kinematics by an an-
imation artist using a key-frame editor.

Forward kinematics specifies joint rotations as a function
of time and is useful in pre-generating character animations
in modeling/animation packages, such as 3D Studio Max.
Once the animation has been created, it can be subsequently
exported as key-frame data to be used within an application.
Motion capture systems allow the movements of a real actor
to be captured or stored as animation data by using differ-
ent types of capture hardware and this was the predominant
method for animating characters inThe Lord of the Rings

Trilogy [Sco03]. While the quality and realism of manually
created animations depends on the skill of the artist, motion
captured animations are extremely realistic as a result of us-
ing a real human actor. With regards to animating crowds,
the main limitation of forward kinematics is that a large
database of pre-generated or pre-captured motions is nec-
essary in order to achieve some type of variation amongst
the crowd. Otherwise, a crowd consisting of individuals per-
forming the same animation can significantly reduce real-
ism.

Inverse kinematics can resolve the skeleton’s joint angles
and the corresponding key-frame data so that an end-effector
(e.g., the hand bone) is animated towards a target position.
The main advantage of this is that it can be used for the
real-time generation of various character animations (e.g.,
pointing in a particular direction, looking at an object and
opening a door). Several algorithms exist to resolve the joint
angles with varying computational accuracy of the results,
the majority of which can be used with groups of characters
in real-time. The main limitation of this technique is that,
even though it generates a correct solution, it might not be a
high-fidelity human motion.

3.2.2. Physically-Based Animation

Physically-based animation provides a good approach to
generating unique and context-sensitive motion and in the-
ory can produce an unlimited number of motion types. How-
ever, the problem with using the approach is that it is can
involve computationally intensive algorithms and the gen-
erated animation is somewhat dependent on various charac-
ter properties. Therefore, this type of animation is not eas-
ily reusable and thus not well-suited for the real-time an-
imation of a large number of characters of various shapes
and sizes. Dynamic simulations use Newtonian force-based
methods to generate animations utilizing forces that occur in
articulated structures (e.g., velocities, mass, collision), in ad-
dition to kinematic properties. Physically-based animations
have been used for animating virtual athletes in realistic
sport simulations [HWBO95], generating physically correct
swimming motion for fish [TT94], and characters walking
on an uneven terrain [SM01].

3.2.3. Procedural Animation

Procedural algorithms reuse animation data from a library
of motions to generate new animations. The two main ap-
proaches are combining, and altering animation data. Com-
bining animations involves reusing animations with vari-
ous techniques such as fading functions, overlapping and
blending techniques. Various research has been conducted
on providing smooth transitions between motions, such as
the simple use of fade-in and fade-out functions [PG96,
RCB98] and the more complex weighting and summing
techniques [SBMTT99]. Perlin et al. [PG96] reuse and over-
lap animations by considering human motions as a “com-
bination of temporarily overlapping gestures and stances”.

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

In general, combining animation data provides a good and
fast approach for animating characters in real-time applica-
tions. However, to allow for some variation, it is important
that there is a large library of pre-generated motions that can
produce plausible combinations. Motion graphs can be com-
piled, which are directed graphs that describe how motion
may be recombined, to automatically generate transitions to
connect motions. The motion graph is generated from the
library by identifying similar frames between each pair of
motions and using these to form the nodes of the graph.
These nodes provide plausible transitions between motions
and allow the character to perform more complicated perfor-
mances [KGP02].

The second approach to procedural animation involves
altering the style of animation data based on various tech-
niques such as noise functions [PG96], and emotional trans-
forms based on character-based properties [ABC96]. Even
though more realistic and less repetitious animations are pro-
duced by altering the data, these techniques can be compu-
tationally intensive and should only be considered for the
real-time animation of a limited number of characters.

3.3. Animation Level of Detail

LOD research has recently extended from the area of geom-
etry into areas such as motion and simulation, thus provid-
ing a computationally efficient solution for the simulation of
crowds. In [GMPO00], Giang et al. propose a LOD frame-
work for animating and rendering virtual humans in real-
time. In order to achieve a scalable system, they use a LOD
resolver that controls the switching between levels of detail
and specifies parameters for controlling the geometric and
motion controller. Through these parameters, the LOD re-
solver has the ability to request different animation levels of
detail. The different levels of detail used relate to how the
motion is simulated (e.g., pre-defined forward kinematics,
inverse kinematics, or dynamics), and its update frequency.
This results in smooth realistic animations being applied to
virtual humans rated with high importance, while lower level
animation techniques are applied to virtual humans in the
background, taking minimal perceptual degradation into ac-
count.

In [dHCUCT04], the deformation of a character’s mesh
was pre-computed and stored to avoid these computations
at run-time. However, these characters were limited to the
number of animations they could perform due to the size
limit of memory. To improve on their previous system,
in [dHCSMT05] they propose rendering crowds animated
using the layered animation approach (see Section 2.3.2) to
reduce the consumption of memory and accelerate the an-
imation of the skeleton and the subsequent mesh deforma-
tion using a level of detail caching scheme for animations
and geometry. They update a character’s animation at a spe-
cific frequency dependent on its level of detail instead of on
a per-frame basis. For example, characters are updated at a

minimum of 4Hz at the lowest LOD and at a maximum of
50Hz at the highest LOD, where the LOD selection criteria
is based on the character’s distance from the camera. The
animation of the skeleton and the subsequent mesh defor-
mation are done in software so that they can be reused in a
caching scheme.

3.4. Simulation Level of Detail

In [CH97], Carlson and Hodgins use less accurate anima-
tion models for selected one-legged creatures in order to re-
duce the computational cost of simulating groups of these
creatures. Three simulation LODs are used for the motion
of these creatures: rigid-body dynamics, point mass simula-
tion with kinematic joints and point mass simulation with no
kinematic motion of the leg. Their selection of an individ-
ual’s simulation LOD is based on a individual’s importance
to the viewer or action in the virtual world.

Ulicny et al. [UT02] discuss the challenges of real-time
crowd simulations, focussing on the need to efficiently man-
age variety, and propose the idea oflevels of variety. They
define a system’s variety based on the following levels: level
of variety zero (LV0) if a task uses a single solution, level of
variety one (LV1) if it has a choice from a finite number of
solutions, and level of variety two (LV2) if it is able to use an
infinite number of possible solutions. For example, a crowd
composed of a single human model would beLV0, several
pre-defined model types would beLV1, and finally an infi-
nite number of automatically generated model types would
be LV2. Using this concept, they define a modular behav-
ioural architecture based on rules and finite state machines,
to provide simple yet sufficiently variable behaviours for in-
dividuals in a crowd.

4. Behavioural Techniques for Characters

Endowing characters with behaviours to reflect their motiva-
tions and internal states, provides a way of controlling their
low-level motion, resulting in them being autonomous. This
section will describe techniques implemented to simulate ba-
sic character behaviour, such as object interaction, and will
present the research on existing intelligent agent systems for
the control of virtual characters.

4.1. Agent-Object Interaction

Throughout a simulation, many of the animations that an
agent conducts will be based on interactions with the out-
side world. In allowing the agent to conduct interactions
with objects in the world, a number of general approaches
may be taken. One option is to provide the agent with low
level rules and a learning model, and allow him to learn
how to use objects. Unfortunately, this approach is not suit-
able where ready-made worlds with competent actors are
required. Also, endowing individual agents with different

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

mental models for every object in a large world would not
be efficient in terms of storage. The other option is a system
where there is a shared concept of how objects work. All
agents in the system can have access to the same knowledge
about how an object can be manipulated. Although this ap-
proach is not as realistic as the first approach, it decreases
the complexity of the task enormously.

Smart objects extend the idea of object specific reason-
ing, whereby objects contain more information than just in-
trinsic object properties [Lev96]. A smart object is an ob-
ject that is modelled with its interaction features, which are
all parts, movements and descriptions of an object that have
some important role when interacting with an agent. Smart
objects provide the necessary parameters for motion gener-
ation. Features are identified in such a way as to provide
important information to the motion generator. Smart ob-
ject applications provide a number of advantages over more
commonplace approaches: they decentralise animation con-
trol, separate high level planning from low level object rea-
soning and allow the same object to be used in multiple
applications. They also allow behaviours to be easily con-
nected with high-level planners, and provide for Object Ori-
ented Design since each object encapsulates data. Exten-
sive research has been conducted by Kallman and Thal-
mann [KT98, KT99a, KT99b] on agent-object interactions
using smart objects.

4.2. Intelligent Virtual Agents

In spite of simulated virtual worlds appearing increasingly
realistic, unless these worlds are populated with wholly be-
lievable virtual humans it is not possible for users to achieve
the suspension of disbelief required for truly immersive sim-
ulations. One of the problems with current techniques for
the control of virtual humans is that characters appear to
have no existence outside of their interactions with human
users [MC01]. By giving characters the appearance of being
involved in their own lives, even when they are not involved
with a human player, this would add an extra degree of be-
lievability that is lacking in current real-time applications.

Aylett et al. [AL00] present theSpectrum of Agentsin
an attempt to capture the differences between the numer-
ous approaches to simulating virtual humans. Within this
spectrum, physical agents inhabit one end while cognitive
agents inhabit the other. Physical agents are mainly con-
cerned with realistic physical behaviours and a significant
example is the Virtual Stuntman project [FvdPT01], which
gives virtual actors the capability of life-like motion. At the
other end, cognitive agents are mainly concerned with rea-
soning, decision-making, planning and learning. A definitive
example is Funge’s cognitive modelling approach [Fun99].
However, the most effective systems sit between the two ex-
tremes of the spectrum. Amongst these are c4 [BID∗01],
used to simulate a virtual sheep dog with the ability to learn
new behaviours, and the planning baseIntelligent Virtual

Agentsystem [CT00]. For video games, commercial solu-
tions are also available including AI-Implant [AI.] which en-
ables rule-based control of game characters and Renderware
A.I. [Ren] which focuses on tactical behaviours.

The need for further realism is motivated by the notion
of virtual fidelity, as described by Badler et al. [BBB∗99].
This refers to the fact that the application should determine
which capabilities a virtual human should display. Mac-
Namee et al. [MDCO03] focus on controlling Non-Player
Characters (NPC) in character-centric simulations i.e., simu-
lations which focus on interactions between characters rather
than action. This positions an agent of this system towards
the cognitive end of the spectrum and leads to a specific set
of fidelity requirements. These agents are required to behave
believably in a wide range of situations, possess sophisti-
cated social ability, behave in real-time, use few resources
and ease authoring for game designers. It can be argued that
none of the aforementioned systems satisfy this particular
flavour of virtual fidelity.

The ViCrowd system [MT01] was created to generate and
model crowds with various degrees of autonomy. The crowd
is modelled as a hierarchy of groups and individuals. De-
pending on the complexity of the simulation, a range of be-
haviours, from simple to complex rule-driven, are used to
control the crowd motion with different degrees of auton-
omy (see Figure 10. The crowd behaviour is controlled in
three different ways:

1. Using innate and scripted behaviours.
2. Defining behavioural rules, using events and reactions.
3. Providing an external control to guide crowd behaviours

in real time.

In order to achieve the groups’ and individuals’ low-level
behaviour, three categories of information are used: knowl-
edge which is used to represent the virtual environment’s in-
formation; beliefs which are used to describe the internal sta-
tus of groups and individuals; and intentions which represent
the goal of a crowd or group. The ViCrowd system has been
used in various research projects, such as the simulation of
virtual humans in networked virtual environments [PBC∗01]
and the simulation of crowd behaviours in panic and emer-
gency situations [BMdOB03].

Figure 10: ViCrowd system.

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

4.3. Level of Detail Artificial Intelligence

Modelling a scene populated with large crowds is a chal-
lenging process. However, the simulation does not need to
process every agent in order to present a believable expe-
rience. For example, agents that are not in the view-frustum
should not worry about detecting future collisions with other
agents. Hence, a virtual world needs to present a believ-
able world, but this does not mean that it has to be an ac-
curate model of a real world. Level of detail AI (LODAI)
reduces high CPU demands by approximating the behaviour
of agents who are rated with a low-level of importance (e.g.,
if the agent is not in the view-frustum or is at a great distance
from the viewpoint) with minimal perceptual degradation.

In BioWare’sNeverwinter Nights, each character’s level
of AI depends on whether the character is a player char-
acter (PC), a non-player character (NPC) fighting or inter-
acting with a PC, a NPC within fifty metres of a PC, a
NPC in the same large-scale area of a PC, and finally a
NPC in areas without a PC. Thus the classification of an
agent’s LODAI determines whether or not to exploit features
such as processing frequency, the level of pathfinding detail,
pathfinding cheating, and collision avoidance.

4.3.1. Role-Passing System

In character-centric video games i.e., games which focus on
character interaction, rather than action, there is a trend for
computer controlled NPCs to be very simplistic in their be-
haviour. Usually, no modelling of NPCs is performed until
the player reaches the location in which an NPC is based.
When the player arrives at this location, NPCs typically wait
to be involved in some interaction, or play through a pre-
defined script. This leads to very predictable, and often jar-
ring behaviour. For example, a player might enter a room and
meet an NPC who would perform a set of actions based on
some script. However, if the player were to leave that room
and re-enter, the NPC would play through the same script
again.

MacNamee et al. [MC01] developed the Proactive Per-
sistent Agent (PPA) architecture and its technique of role-
passing which allows intelligent agents to take on different
roles depending on the situation in which they are found.
Agents based on this architecture are proactive in the sense
that they can take the initiative and follow their own goals,
irrespective of the actions of the player. Persistence refers to
the fact that, at all times, all NPCs in a virtual world are mod-
elled at least to some extent, regardless of their location rel-
ative to that of the player. This complements the use of level
of detail AI (LODAI), whereby the characters can be con-
trolled at higher or lower levels of sophistication based on
their position, with respect to the player, in a virtual world.

The technique of role-passing allows agents to assume
different roles over the course of a simulation, whereby a
role controls an agent’s behaviour. The goal of this unit is

to allow the NPCs to display believable behaviour, and be-
have believably in a wide range of situations within the same
simulation. Role-passing works by layering different roles,
which are dictated by a schedule, upon a basic agent. These
roles endow the agent with basic behaviours that are driven
by a small number of basic motivations and lead to a particu-
lar action. These basic motivations can change both between
simulations and between agents in the same simulation.

The main advantage of role passing is that it offers a sim-
ple and efficient technique for the control of agents which
move competently, and believably, between situations (Fig-
ure 11). Not only does this allow believable agent behaviour,
it promotes the idea of situational intelligence, whereby is-
sues unrelated to an agent’s current situation are not taken
into account, thus reducing its processing load. Role-passing
also makes populating a virtual world with agents a straight-
forward process. Placing agents within novel situations in-
volves simply defining new roles, easing some of the com-
plications involved in attempting to design very general
agents. Furthermore designing a role involves simply draw-
ing a fuzzy cognitive map (FCM), and it is possible that this
is more amenable to game designers than writing script or
plans.

References

[ABC96] AMAYA K., BRUDERLIN A., CALVERT T.:
Emotion from motion.GI ’96: Proceedings of the Con-
ference on Graphics Interface(1996), 222–229.

[ABT00] AUBEL A., BOULIC R., THALMANN D.: Real-
time display of virtual humans: Levels of details and im-
postors. IEEE Transactions on Circuits and Systems for
Video Technology 10, 2 (2000), 207–217.

[AI.] AI. IMPLANT : Biographic technologies. www.ai-
implant.com.

[AL00] AYLETT R., LUCK M.: Applying artificial intel-
ligence to virtual reality: Intelligent virtual environments.
Applied Artificial Intelligence 14, 1 (2000), 3–32.

[AM00] A SSARSSONU., MÖLLER T.: Optimized view
frustum culling algorithms for bounding boxes.Journal
of Graphics Tools: JGT 5, 1 (2000), 9–22.

[BBB∗99] BADLER N. I., BINDIGANAVALE R.,
BOURNE J., ALLBECK J., SHI J., PALMER M. S.:
Real-time virtual humans.International Conference on
Digital Media Futures(1999).

[BID∗01] BURKE R., ISLA D., DOWNIE M., IVANOV Y.,
BLUMBERG B.: Creature smarts: The art and architecture
of a virtual brain. Proceedings of the Game Developers
Conference(2001), 147–166.

[BMdOB03] BRAUN A., MUSSE S. R., DE OLIVEIRA
L. P. L., BODMANN B. E. J.: Modeling individual be-
haviours in crowd simulation.16th International Confer-
ence on Computer Animation and Social Agents (CASA)
(2003), 143–148.

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

Figure 11: University campus simulation using the PPA architecture: (a) Students goingto lectures. (b) Academic presenting
the lecture. (c) Academic and students going to the pub. (d) People socialising in the pub.

[BN76] BLINN J. F., NEWELL M. E.: Texture and reflec-
tion in computer generated images.Communications of
the ACM 19, 10 (1976), 542–546.

[Cat74] CATMULL E. E.: A subdivision algorithm for
computer display of curved surfaces. PhD thesis, Dept. of
Computer Science, University of Utah, December 1974.

[CH97] CARLSON D. A., HODGINS J. K.: Simulation
levels of detail for real-time animation.GI ’97: Proceed-
ings of the Conference on Graphics Interface(1997), 1–8.

[Cla76] CLARK J. H.: Hierarchical geometric models for
visible surface algorithms.Communications of the ACM
19, 10 (1976), 547–554.

[COCSD03] COHEN-OR D., CHRYSANTHOU Y., SILVA
C. T., DURAND F.: A survey of visibility for walk-
through applications.IEEE Transactions on Visualization
and Computer Graphics 9, 3 (2003), 412–431.

[COM98] COHEN J., OLANO M., MANOCHA D.:
Appearance-preserving simplification.SIGGRAPH ’98:

Proceedings of the 25th Annual Conference on Computer
Graphics and Interactive techniques(1998), 115–122.

[CT00] CAICEDO A., THALMANN D.: Virtual hu-
manoids: Let them be autonomous without losing con-
trol. The Fourth International Conference on Computer
Graphics and Artificial Intelligence 3IAŠ2000(2000).

[DDSD03] DÉCORET X., DURAND F., SILLION F.,
DORSEY J.: Billboard clouds for extreme model sim-
plification. ACM Transactions on Graphics (TOG) 22, 3
(2003), 689–696.

[dHCSMT05] DE HERAS CIECHOMSKI P., SCHERTEN-
LEIB S., MAÏM J., THALMANN D.: Reviving the ro-
man odeon of aphrodisias: Dynamic animation and va-
riety control of crowds in virtual heritage.VSMM ’05:
Proceeding of the 11th International Conference on Vir-
tual Systems and Multimedia(2005), 601–610.

[dHCUCT04] DE HERAS CIECHOMSKI P., ULICNY B.,
CETRE R., THALMANN D.: A case study of a virtual au-
dience in a reconstruction of an ancient roman odeon in
aphrodisias.VAST ’04: The 5th International Symposium

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

on Virtual Reality, Archaeology and Cultural Heirtage
(2004), 9–17.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time geometry /
impostor crowd rendering system.SI3D ’05: Proceed-
ings of the 2005 symposium on Interactive 3D graphics
and games(April 2005), 95–102.

[Dom] DOMINÉ S.: Mesh skinning. http://developer.
nvidia.com/object/skinning.html.

[Don05] DONNELLY W.: GPU Gems 2 - Per-Pixel Dis-
placement Mapping with Distance Functions. Addison-
Wesley, 2005, pp. 123–136.

[DSSD99] DÉCORET X., SCHAUFLER G., SILLION F.,
DORSEYJ.: Multi-layered impostors for accelerated ren-
dering.Computer Graphics Forum (Proceedings of Euro-
graphics ’99) 18, 3 (1999), 61–73.

[EDD∗95] ECK M., DEROSE T., DUCHAMP T., HOPPE
H., LOUNSBERG M., STUETZLE W.: Multiresolution
analysis for arbitrary meshes.SIGGRAPH ’95: Proceed-
ings of the 22nd Annual Conference on Computer Graph-
ics and Interactive Techniques(1995), 173–182.

[FS93] FUNKHOUSER T. A., SÉQUIN C. H.: Adaptive
display algorithm for interactive frame rate during visual-
isation of complex virtual environments.SIGGRAPH ’93:
Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques(1993), 247–254.

[FST92] FUNKHOUSER T. A., SÉQUIN C. H., TELLER
S.: Management of large amounts of data in interac-
tive building walkthroughs.SI3D ’92: Proceedings of the
1992 symposium on Interactive 3D graphics(1992), 11–
20.

[Fun99] FUNGE J.: AI for Games and Animation: A Cog-
nitive Modeling Approach. A.K. Peters, 1999.

[FvdPT01] FALOUTSOS P., VAN DE PANNE M., TER-
ZOPOULOSD.: The virtual stuntman: Dynamic characters
with a repertoire of autonomous motor skills.Computers
and Graphics 25, 6 (December 2001), 933–Ű953.

[GMPO00] GIANG T., MOONEY R., PETERS C.,
O’SULLIVAN C.: Aloha: Adaptive level of detail for hu-
man animation towards a new framework.Eurographics
2000 Short Paper Programme(2000), 71–77.

[Gou71] GOURAUD H.: Continuous shading of curved
surfaces.IEEE Transactions on Computers 20, 6 (1971),
623–628.

[GSM05] GOSSELIN D., SANDER P., MITCHELL J.:
ShaderX3 - Drawing a Crowd. Charles River Media,
2005, pp. 505–517.

[Hop96] HOPPE H.: Progressive meshes.SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques(1996), 99–
108.

[HWBO95] HODGINS J. K., WOOTEN W. L., BROGAN
D. C., O’BRIEN J. F.: Animating human athletes.SIG-
GRAPH ’95: Proceedings of the 22nd Annual Confer-
ence on Computer Graphics and Interactive Techniques
(1995), 71–78.

[JW02] JESCHKE S., WIMMER M.: Textured depth
meshes for real time rendering of arbitrary scenes.EGRW
’02: Proceedings of the 13th Eurographics Workshop on
Rendering(2002), 181–190.

[JWP05] JESCHKES., WIMMER M., PURGATHOFERW.:
Image-based representations for accelerated rendering of
complex scenes.In Eurographics 2005 STAR Reports
(2005), 1–20.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Mo-
tion graphs. ACM Transactions on Graphics (TOG) 21,
3 (2002), 473–482.

[Kil00] K ILGARD M. J.: A Practical and Robust Bump-
mapping Technique for Today’s GPUs. Tech. rep.,
NVIDIA Corporation, 2000.

[KK89] K AJIYA J. T., KAY T. L.: Rendering fur with
three dimensional textures.SIGGRAPH ’89: Proceedings
of the 16th Annual Conference on Computer Graphics and
Interactive Techniques(1989), 271–280.

[KT98] K ALLMANN M., THALMANN D.: Modeling
objects for interaction tasks. Proceedings of the 9th
Eurographics Workshop on Animation and Simulation
(EGCAS)(1998), 73–86.

[KT99a] KALLMANN M., THALMANN D.: A behav-
ioral interface to simulate agent-object interactions in
real time. CA ’99: Proceedings of Computer Animation
(1999), 138–146.

[KT99b] KALLMANN M., THALMANN D.: Direct 3d
interaction with smart objects.VRST ’99: Proceedings
of ACM Virtual Reality Software and Technology(1999),
124–130.

[KZ05] K AVAN L., ZARA J.: Spherical blend skinning: A
real-time deformation of articulated models.SI3D ’05:
Proceedings of the 2005 Symposium on Interactive 3D
Graphics and Games(2005), 9–16.

[Lan98] LANDER J.: Skin them bones.Game Developer
Magazine(May 1998), 11̋U–16.

[Lan99] LANDER J.: Over my dead, polygonal body.
Game Developer Magazine(October 1999), 17̋U–22.

[Lee02] LEESON W.: Games Programming Gems III -
Subdivision Surfaces for Character Animation. Charles
River Media, 2002, pp. 372̋U–383.

[Lev96] LEVISON L.: Connecting Planning and Acting
via Object-Specific Reasonings. PhD thesis, Dept. of
Computer and Information Science, University of Penn-
sylvania, 1996.

[LW85] L EVOY M., WHITTED T.: The Use of Points as

c© The Eurographics Association 2006.

C. O’Sullivan & S. Dobbyn / Level of Detail for Real-Time Crowds

a Display Primitive. Tech. rep., University of North Car-
olina at Chapel Hill, 1985.

[Mac93] MACIEL P.: Visual Navigation of largely unoc-
cluded environments using textured clusters. PhD thesis,
Indian University, Bloomington, January 1993.

[Map] MAPPERA. N.:. http://www.ati.com.

[MC01] MACNAMEE B., CUNNINGHAM P.: Proposal for
an agent architecture for proactive persistent non player
characters.Proceedings of the 12th Irish Conference on
AI and Cognitive Science(2001), 221–̋U232.

[MDCO03] MACNAMEE B., DOBBYN S., CUNNING-
HAM P., O’SULLIVAN C.: Simulating virtual humans
across diverse situations.Intelligent Virtual Agent Con-
ference(2003), 159–163.

[MJC∗03] MARSCHNER S. R., JENSEN H. W., CAM -
MARANO M., WORLEY S., HANRAHAN P.: Light scat-
tering from human hair fibers.ACM Transactions on
Graphics (TOG) 22, 3 (2003), 780–791.

[MS95] MACIEL P., SHIRLEY P.: Visual navigation of
large environments using textured cluster.SI3D ’95:
Proceedings of the 1995 Symposium on Interactive 3D
Graphics(1995), 95–102.

[MT01] M USSE S. R., THALMANN D.: A hierarchi-
cal model for real time simulation of virtual human
crowds. IEEE Transactions on Visualization and Com-
puter Graphics 7, 2 (2001), 152–164.

[OCV∗02] O’SULLIVAN C., CASSELL J., VILHJÁLMS-
SON H., DINGLIANA J., DOBBYN S., MCNAMEE B.,
PETERS C., GIANG T.: Levels of detail for crowds and
groups. Computer Graphics Forum 21, 4 (2002), 733–
742.

[Ope04] OPENGL S. G. I.: The OpenGL Graph-
ics System: A Specification. http://www.opengl.org
/documentation/specs/version2.0/glspec20.pdf(October
2004).

[PBC∗01] PANDZIC I., BABSKI C., CAPIN T., LEE
W., MAGNENAT-THALMANN N., MUSSE S. R., MOC-
COZET L., SEO H., THALMANN D.: Simulating virtual
humans in networked virtual environments.Presence:
Teleoperators and Virtual Environments 10, 6 (2001),
632–646.

[PG96] PERLIN K., GOLDBERG A.: Improv: a system for
scripting interactive actors in virtual worlds.SIGGRAPH
’96: Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques(1996), 205–
216.

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.:
Verbs and adverbs: Multidimensional motion interpola-
tion. IEEE Computer Graphics Applications 18, 5 (1998),
32–40.

[Ren] Renderware A.I.http://www.renderware.com.

[SBMTT99] SANNIER G., BALCISOY S., MAGNENAT-
THALMANN N., THALMANN D.: Vhd:a system for di-
recting real-time virtual actors.The Visual Computer 15,
7/8 (1999), 320–329.

[Sch04] SCHEUERMANN T.: Practical real-time hair ren-
dering and shading.SIGGRAPH 2004 Sketch(2004).

[Sco03] SCOTT R.: Sparking life: notes on the perfor-
mance capture sessions for theLord of the Rings: the Two
Towers. SIGGRAPH Computer Graphics 37, 4 (2003),
17–21.

[SGM04] SANDER P., GOSSELIND., MITCHEL J.: Real-
time skin rendering on graphics hardware.SIGGRAPH
2004 Sketch(2004).

[SKvW∗92] SEGAL M., KOROBKIN C., VAN WIDEN-
FELT R., FORAN J., HAEBERLI P.: Fast shadows and
lighting effects using texture mapping.SIGGRAPH ’92:
Proceedings of the 19th Annual Conference on Computer
Graphics and Interactive Techniques 26, 2 (1992), 249–
252.

[SM01] SUN H. C., METAXAS D. N.: Automating gait
generation.SIGGRAPH ’01: Proceedings of the 28th An-
nual Conference on Computer Graphics and Interactive
Techniques(2001), 261–270.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments.Pro-
ceedings of the Eurographics Workshop on Rendering
Techniques(2000), 83–88.

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Visualizing crowds in real-time.Computer Graphics Fo-
rum 21, 4 (2002), 753–765.

[TT94] TU X., TERZOPOULOS D.: Artificial fishes:
Physics, locomotion, perception, behavior.SIGGRAPH
’94: Proceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques(1994), 43–50.

[UdHCT04] ULICNY B., DE HERAS CIECHOMSKI P.,
THALMANN D.: Crowdbrush: Interactive authoring of
real-time crowd scenes.SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/EUROGRAPHICS Symposium on
Computer Animation(2004), 243–252.

[UT02] ULICNY B., THALMANN D.: Towards interactive
real-time crowd behaviour simulation.Computer Graph-
ics Forum 21, 4 (2002), 767–775.

[Web00] WEBER J.: Run-time skin deformation.In Pro-
ceedings of Game Developers Conference(2000).

[Wlo04] WLOKA M.: Advanced rendering techniques.
EUROGRAPHICS 2004 Tutorial(2004). http://developer.
nvidia.com/object/eg_2004_presentations.html.

[WS02] WAND M., STRASSERW.: Multi-resolution ren-
dering of complex animated scenes.Computer Graphics
Forum 21, 3 (2002), 483–491.

c© The Eurographics Association 2006.

EUROGRAPHICS 2006 Tutorial

Populating Virtual Environments with Crowds: Real-Time
Crowd Rendering with Pre-Generated Impostors

S. Dobbyn and C. O’Sullivan

Interaction, Simulation and Graphics (ISG) Lab, Trinity College Dublin, Ireland

Abstract
Although many new games are released each year, it is very unusual tofind large-scale crowds populating the
environments depicted. Such applications need to deal with having limited resources available at each frame. With
many hundreds or thousands of potential virtual humans in a crowd, traditional techniques rapidly become over-
whelmed and are not able to sustain an interactive frame-rate. Therefore,simpler approaches to the rendering of
the crowds are needed. Additionally, these new approaches must provide for variety, as environments inhabited by
carbon-copy clones can be disconcerting and unrealistic. This part ofthe tutorial describes the impostor repre-
sentation used in our crowd rendering system, detailing our programmable hardware based method for lighting
and adding variation.

1. Introduction

This part of the tutorial describes the impostor represen-
tation used in our Geopostor system, a real-time geome-
try/impostor crowd rendering system (Figure 1). The Geo-
postor system has been developed to solve the challenging
problem of large-scale crowds by simulating virtual humans
as scene extras, equivalent to those found in films. Since
these agents are in the background, they are not the focus
of the user’s attention and therefore simpler animation, ren-
dering and behavioural techniques can be applied to them in
order to reduce the computational load of crowded scenes.

Our main contribution is that our system provides for a
hybrid combination of image-based (i.e., impostor) and de-
tailed geometric rendering techniques for virtual humans. By
switching between the two representations, based on a pixel
to texel ratio [DHOO05], our system allows visual quality
and performance to be balanced. We improve on existing
impostor rendering techniques and present a programmable
hardware based method for the lighting of impostors. Fur-
thermore, we improve the realism of the crowd by adding
variation to an individual’s motion and appearance.

2. Real-Time Crowd Rendering with Pre-Generated
Impostors

While a deformable mesh was the obvious choice for the
virtual human’s highest LOD in our crowd system, there are

a number of reasons why we chose an impostor approach
for the lowest LOD over a continuous and a discrete LOD
framework. Firstly, impostors involve replacing a 3D object
with an image of the object mapped onto a quadrilateral.
This is advantageous mainly because it avoids the cost asso-
ciated with rendering the object’s full geometry. Secondly,
automatic tools used to pre-generate low-resolution meshes
required for a discrete LOD framework sometimes do not
give the required results, thus necessitating a lot of time-
consuming editing by hand. Finally, switching between two
meshes of different resolutions can be quite noticeable as a
result of the silhouettes not matching. A continuous LOD
framework utilizing subdivision surfaces offers a good solu-
tion to this problem, since the detail of a character can be in-
creased and reduced at run-time, as demonstrated recently by
Leeson [Lee02]. While subdivision surfaces provide a means
of improving the appearance of virtual humans [OCV∗02],
they are not suitable for a crowd’s lowest geometric LOD
representation, since the surface’s original polygonal model,
used as its starting point, consists of several hundred poly-
gons.

With regards to our impostor model, we decided on a pre-
generated approach, since dynamically generating impostors
would involve reusing the current dynamically generated im-
age over several frames in order to be efficient. For dynami-
cally generated impostors, the generation of a new impostor
image for a virtual human depends on both camera motion

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 1: Screenshots of the Geopostor system.

and the amount the virtual human’s posture has changed.
This methods works well with small groups of humans but as
the number of virtual humans dramatically increases, numer-
ous new impostor images need to be generated and this pro-
duces a bottleneck. Therefore, this method is not well suited
for rendering large crowds of dynamic humans.

3. Generation of the Impostor Images

For our virtual human’s lowest LOD representation, we use
pre-generated impostors based on the work of Tecchia et
al. [TC00]. A set of template mesh models were used in the
pre-generation of the necessary impostor images in 3D Stu-
dio MAX. To facilitate the introduction of colour and anima-
tion variation and to ensure that the pre-generated impostor
matches its mesh counterpart, these models required addi-
tional setup steps to be implemented in 3D Studio MAX.
The mesh’s triangles were organised into groups where each
group represented a particular body part (as shown in Fig-
ure 2(b) and (c)) and was assigned a specific pre-defined ma-
terial. It should be noted that the diffuse colour of each mate-
rial is set to white (as shown in Figure 2(a)) to allow colour
modulation of the pre-generated impostors, which will be
discussed later. The meshes in our system use a single im-
age for the detail of the character and this was grey-scaled in
3D Studio MAX to allow colour modulation without losing
detail.

Once these additional steps were carried out, the mesh
was skinned and a walk animation was created for the under-
lying skeleton. This key-framed animation was created using
Character Studio’s footstep creation tool and consisted of a
one second, cyclical animation with a key-frame occurring
every 100 milliseconds (10Hz). While animations are typical
sampled at a minimum of 30Hz, 10Hz was used in the sys-
tem to reduce the virtual human’s memory footprint. With
regards to the default walk animation, it is important that
both the mesh model and the motion are symmetrical in or-
der to minimize the amount of texture memory the impostor
images consume. This halves the number of viewpoints from
which the model needs to be rendered, since a viewpoint im-
age for a particular key-frame can be mirrored to obtain the

Figure 2: (a) High LOD mesh representation in 3D Studio
MAX. (b) The grouping of triangles based on material used
(shown by the different colours). (c) The grouping of trian-
gles based on the body part it represents (shown by the dif-
ferent colours).

opposite viewpoint for the corresponding symmetrical key-
frame. Figure 3 illustrates a walk animation, where there is a
difference of five key-frames between each pair of symmet-
rical key-frames. In the case of asymmetric animation, such
as a side-step left or right motion, impostor images need to
be generated around both sides of the model, doubling the
amount of memory consumed. However, the impostor im-
ages only need to be generated for a side-step left motion
since it can be mirrored to obtain a side-step right motion.
Additionally, a side-step motion is typically short in duration
(e.g., 0.5 seconds) and therefore less key-frames are needed.

Figure 3: Precalculating and storing the deformation of a
mesh performing a walk animation for 10 key-frames.

A MaxScript plug-in was written to render the images
needed by the impostor representation in 3D Studio Max.
The process used is illustrated in Figure 4. The plug-in posi-
tions the virtual human mesh model at the center of a sphere
consisting of 32 segments and a radius equal to the distance

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

from which we wish to render the impostor images. For 10
frames of animation, a detail map image and a normal map
image are rendered from 17 viewpoints around one side of
the model and from 8 elevations:

• Impostor detail map
This image is used to store the detail of the mesh’s decal
texture for each viewpoint. It is generated by rendering the
mesh, with shading and anti-aliasing disabled, into an im-
age of 256×256 pixels. To allow for variation, each pixel
in the image’s alpha channel needs to be encoded with a
specific alpha value associated with the material at that
particular pixel. In order to do this, the plug-in utilizes 3D
Studio Max’s Graphics buffer orG-buffer which allows
data such as object ID, material ID, and UV coordinates
to be stored in a number of separate channels. The plug-
in stores the material ID at each pixel in the G-buffer and
these values are used to lookup and store the associated
alpha value in the alpha-channel. Background pixels are
assigned an alpha value of 255 to distinguish which pix-
els need to be transparent when displaying the impostor at
run-time.

• Impostor normal map
This image is used to store the mesh’s surface normals
in eye-space for each pixel in the detail map. We assign
barycentric texture coordinates to each triangle’s vertices
to provide an easy way to interpolate the normal at a spe-
cific point on a triangle. For each pixel, the triangle’s ID
(Tid) and its interpolated texture coordinate (ui ,vi) at that
pixel are stored in theG-buffer. Using the triangle’s ver-
tex normals (−−→NV1, −−→NV2 and−−→NV3 which are accessed us-
ing Tid), the interpolated normal−→N at that pixel is calcu-
lated using Equation 1 and converted into a RGB colour
(PixelRGB), using Equation 2.

−→N = (1−ui −vi)
−−→NV1 +ui

−−→NV2 +vi
−−→NV2 (1)

PixelR = ((0.5∗Nx)+0.5)∗255
PixelG = ((0.5∗Ny)+0.5)∗255
PixelB = ((0.5∗Nz)+0.5)∗255

(2)

Once these images have been generated, the plug-in re-
moves any unused space and combines them into a single
detail and normal map image of 1024*1024 pixels for a par-
ticular frame of animation. For each frame of animation im-
postor image, the data needed to render each viewpoint at
run-time is stored in a text-based Impostor Data File (IDF).
This file includes each viewpoint’s row and column ID, po-
sition, width, height, and position of the parent bone of the
model’s skeleton within the image.

4. Rendering of the Impostor Model

The main problem with using a pre-generated impostor ap-
proach is the consumption of texture memory. In order to
render a dynamically lit impostor, an impostor detail im-
age and a normal map image are required for each frame
of animation. The RGBA impostor detail image contains
four channels (1024*1024*4 bytes) and the RGB normal
map image contains three channels (1024*1024*3 bytes),
resulting in 7MB of texture memory being required for a
single frame of animation. By using DXT3 texture com-
pression, the memory requirements are reduced by a fac-
tor of four for RGBA images and by a factor of six for
RGB images, resulting in only 1.5MB (1024*1024*4*1/4 +
1024*1024*3*1/6 bytes) of texture memory for each frame.
Unfortunately, DXT3 texture compression is not particularly
effective at compressing normal maps, as it results in notice-
able block artefacts. These artefacts can be avoided by us-
ing 3Dc, which is ATI’s new compression technology, and
provides 4:1 compression of normal maps with image qual-
ity that is virtually indistinguishable from the uncompressed
version [3Dc].

Our impostor representation is capable of usingmipmap-
ping techniques [Wil83]. Mipmapping avoids visual arte-
facts that occur when textures are mapped onto smaller dy-
namic objects, causing them to shimmer. OpenGL allows
the generation of a series of pre-filtered texture maps of
decreasing resolutions, calledmipmaps, which are selected
based on the size (in pixels) of the object being mapped.
Although mipmapping requires some extra computation and
texture storage (which is increased by a third), this is nec-
essary to maintain the impostor’s realism when displayed at
a distance. However, care has to be taken not to generate
mipmaps at too low a resolution, as this causes other arte-
facts due to the averaging of several viewpoint images within
the mipmap.

Given the amount of texture memory required by the sys-
tem, we need a method of improving the variety and visual
interest of large crowds of impostors, while keeping mem-
ory usage to a minimum and ensuring that rendering speed
is uncompromised. Our contribution in this area is that we
improve upon existing impostor techniques for adding vari-
ety by taking advantage of recent improvements in program-
mable graphics hardware in order to perform an arbitrary
number of colour changes in one pass. Since the colouring
regions are encoded in the alpha channel (as described in
Section 3), this number is limited only by that channel’s pre-
cision. Our further contribution is the real-time shading of
the impostors implemented in programmable hardware.

To render the impostors, we need to calculate which view-
point image needs to be displayed and rotate its quadrilateral
so that it always faces the viewer. Using the position of the
virtual human’s root bone−→H and the camera’s position−→C ,
the quadrilateral’s normal vector−→N can be calculated using
Equation 3.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 4: A MaxScript plug-in removes unused space from each viewpoint image and combines 17*8 viewpoint images into a
single 1024x1024 image for a particular frame.

−→N =
−→H −

−→C
|
−→H −

−→C |
(3)

The vector from the camera to the human projected onto
the ground plane−→CH can be calculated (Equation 4) using
−→N . It should be noted that in Equation 3, it is assumed that
the ground is the XZ plane and that the camera’s position
cannot be lower than the ground. Therefore, it is not neces-
sary to pre-generate any viewpoint images from these eleva-
tions.

−→CH =
(Nx,0,Nz)

|(Nx,0,Nz)|

(4)

The amount by which to rotate the quadrilateral around
the x-axisθx and y-axisθy is calculated using Equation 5.
The viewpoint’s row and column ID (VRowand VColumn) can
be used to lookup which viewpoint to render using Equa-
tion 6, where Nx and Ny are the number of viewpoint images
pre-generated around the x- and y-axis.

θx = cos−1(Ny)

θy = cos−1(CHz)

(5)

VRow = θx×
Nx
90

VColumn = θy×
Ny
180

(6)

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

For improving realism, interactive lighting of impostors
is highly desirable. Additionally, since we are presenting a
hybrid system that switches between two representations, it
is crucial that there is no difference in the shading of each
representation for the interchange to be imperceptible to the
viewer. By using a per-pixel dot product between the light
vector and a normal map image, Tecchia et al. [TLC02]
computed the final shaded value of a pixel through multi-
pass rendering, which required a minimum of five rendering
passes. However, multi-pass rendering can have a detrimen-
tal effect on rendering time, which limits the number of im-
postors that can be shaded in real-time.

We improve upon this technique by taking advantage of
programmable graphics hardware and shade the impostors
in a single pass. The impostors are rendered with the same
lighting and material properties as the mesh representation,
and thus the shading of the impostor is based on Equation 7.

PixelColour = DetailTextureRGB∗

(AmbientLightModel∗AmbientMaterial +

(MAX(VectorLight ·NormalVertex),0)∗

(Di f f useLight ∗Di f f useMaterial))

(7)

Similar to the mesh representation, the lighting of the im-
postor representation has been implemented in hardware us-
ing both texture shaders and register combiners [NVR99],
and vertex and fragment programs [Ver02, Fra02]. This
involves implementing Equation 8 in hardware, whereby
the per-pixel dot products of the light vector and the pre-
generated normal map is multiplied with each pixel in the
coloured region map (which will be discussed in the next
section) to produce a shaded coloured region map. This re-
sult is added to an ambient term, and multiplied with the
detail map to yield the final lit, coloured pixels. The overall
shading and colouring sequence is illustrated in Figure 5.

PixelColour = DetailMapRGB∗

(AmbientLightModel∗AmbientMaterial +

(MAX((VectorLight ·NormalMapRGB,0)∗

(ColourMap[DetailMapα])∗Di f f useLight))

(8)

Similar to the mesh model, we optimise the rendering of
the impostors by precalculating and storing each of the key-
frame’s viewpoint data in a single VBO object. Since dy-
namically orientating the quad involves the computationally
expensive cos−1 function (see Equation 3), we use a lookup-
table (LUT) of cos−1 values instead. A LUT is typically an
array used to replace a run-time computation with a simpler
lookup operation and can provide a significant speed gain.

5. Variation LOD: Adding Variety to the Impostor
Model’s Appearance

At the lowest level of variety (VariationLOD), individuals in
a crowd use the same model and are a carbon copy of each
other. While this level (or lack) of variety reduces the load on
the limited computational resources per frame, this is only
suitable for a specific type of crowd without having a dis-
concerting effect on the viewer e.g., the army of droids in
Star Wars: Attack of the Clones. To increase a model’s level
of variety regarding its appearance, changing the colours of
a virtual human’s clothing and skin is a method that is simple
and yet has high visual impact when viewed in a crowd.

In order to do this, we use a set of different template hu-
man meshes and change their appearance by using different
“outfits”. Outfits define a set of colours for the virtual hu-
man’s skin and clothes, where each colour is associated with
a specific body part material. The production of these out-
fits is controlled entirely by artist-drawn textures produced
in an ‘Outfit Editor’ application, allowing a quick and easy
method of producing many different colour maps that are re-
alistic and suitable to the model being rendered. The outfit
editor is an OpenGL application that allows the artist to se-
lect particular colors for each body material from a colour
palette (see Figure 6).

A multi-pass method, as described in [TLC02], achieves
this goal by performing a rendering pass for every differ-
ent region of colour that needs to be changed. We exploit
the programmability of graphics hardware to efficiently in-
crease the variety and interest of each impostor. In order to
match the virtual human’s geometric representation, the im-
postors must also be able to change colour, depending on the
human model and outfit materials. We achieve this by stor-
ing distinct material IDs in the alpha channel of the impostor
detail image upon generation, and use these IDs to address
a changeable colour map at run-time. We perform a lookup
on the detail map, using the alpha-encoded material IDs to
address a colour map texture that can be altered to match the
outfit of the virtual human currently being rendered (Fig-
ure 7). It should be noted that, since the alpha channel of
the impostor’s detail map contains alpha encoded regions,
nearest filtering needs to be used. Otherwise, linear filter-
ing results in the linear interpolation of these values when
the impostor representation is at a distance, causing shading
artefacts due to the wrong outfit colour being looked up. This
problem can be solved by using a high-level shader written
in the OpenGL shading language to linear filter the looked
up color values [Gui05].

6. Animation LOD: Adding Variety to the Impostor
Model’s Animation

Similar to the mesh model, we add variety to the anima-
tion at a lower level of detail by pre-generating the template
model’s impostor images using the same default animations,

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 5: Impostor shading and colouring sequence.

Figure 6: (a)Example of an artist in progress of generating an outfit for a model using the ‘Outfit Editor’ application. (b) Nine
outfits for three template meshes.

that can reflect the age and gender of the model. To avoid
the impostors moving in step, each virtual human’s anima-
tion is offset by a particular number of frames to achieve a
more varied crowd motion. However, since each animation
key-frame is stored in a separate texture, this type of varia-
tion is limited depending on the number of textures needed
in a single frame.

Increasing an impostor representation’s sense of individu-
alism is a tricky problem, since it is limited to the animation
used in the pre-generation of its images. We solve this prob-
lem by layering head and arm gestures on top of the default
impostor animation, whereby a particular body-part in the

impostor image is replaced with a gesturing mesh represent-
ing the body-part. Since each body-part of the impostor is
represented by a particular alpha value in the detail image’s
alpha channel, the impostor can be rendered without these
body-parts by changing the alpha function accordingly. Us-
ing the corresponding mesh’s skeleton, the gesturing bones
are updated and the affected part of the mesh is deformed
and rendered (Figure 8). The main advantage of this ap-
proach is that it avoids the cost of deforming and render-
ing the entire mesh by replacing it with the impostor repre-
sentation. Thus, only the triangles affected by the gesturing
bones need to be rendered. While minor rendering artefacts

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Alpha ValueBody Part Material Outfit\Colour MapTexture Coordinate

(0.0, Alpha Value/255)

(0.0, 0.94)

(0.0, 0.82)

(0.0, 0.69)

(0.0, 0.56)

(0.0,0.44)

(0.0, 0.31)

(0.0, 0.19)

(0.0, 0.06)

240

208

176

144

112

80

48

16
0.0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1.0
Unused

Unused

Head Skin

T-Shirt

Arm-Skin

Socks

Trousers

Shoes

Detail Map

Alpha Channel

Figure 7: Using programmable texture addressing to add
variety to the impostor representation.

can appear caused by the layering of the mesh on top of the
impostor, these can be removed through blending.

Figure 8: Adding variety to the virtual human model’s ani-
mation by layering head and arm gestures on top of the de-
fault walk animation.

The problem with this method is that, depending on the
viewpoint being displayed, holes appear when a body part
is not rendered since the body part may sometimes be oc-
cluding other areas of the impostor. When the virtual human
performs a head gesture this artefact is not as much of a prob-
lem as when they are performing an arm gesture. Currently,
virtual humans that are rendered with an impostor represen-
tation switch to a low resolution mesh representation when
they request an arm animation. As a possible solution, dy-
namically generated impostors could be used to render the
virtual human’s body without its arms and this will be inves-
tigated in future work.

7. Virtual Human LOD Shadows

Our run-time system enhances the realism of the virtual hu-
mans and the environment they inhabit by creating shadows
on the ground wherever the light is blocked. Our shadow

technique is based on the planar projected shadow algorithm
and is implemented in hardware using per-pixel stencil test-
ing. This section will describe how this technique is used to
render the virtual humans’ shadows.

The planar projected shadow algorithm is used to cast a
geometric model’s shadow onto a ground plane based on the
light’s position. In order to achieve this, a planar projected
shadow matrix can be constructed. Given the equation for a
ground plane G:−→N + d = 0 and the homogenous position of
the light−→L , a 4×4 planar projected shadow matrix S can be
constructed using Equation 9 (see [Bli88] [HMAM02] for
the derivation of the matrix).

S=







D−Lx ∗Nx −Lx ∗Ny Lx ∗Nz −Lx ∗d
−Ly ∗Nx D−Ly ∗Ny −Ly ∗Nz −Ly ∗d
−Lz∗Nx −Lz∗Ny D−Lz∗Nz −Lz∗d
−Lw ∗Nx −Lw ∗Ny −Lw ∗Nz D−Lw ∗d






(9)

where D= Nx ∗Lx +Ny∗Ly +Nz∗Lz+d∗Lw

Stenciling works by tagging pixels in one rendering pass
to control their update in subsequent rendering passes. It is
an extra per-pixel test that uses the stencil buffer to track the
stencil value of each pixel. When the stencil test is enabled,
the frame buffer’s stencil values are used to accept or reject
rasterized fragments. When rendering the scene, the stencil
buffer is cleared at the beginning and a unique non-zero sten-
cil value is assigned to pixels belonging to the ground plane.
In the first rendering pass, the shadow cast by each virtual
human’s geometric representation is rendered. Using the ma-
trix S, the geometry is projected onto the ground plane and
rendered into the stencil buffer, where each pixel is tagged
with the ground plane’s unique stencil value. In the subse-
quent rendering pass, each virtual human’s representation is
rendered and the appropriate areas of the stencil buffer are
simultaneously cleared. This prevents an artefact whereby
shadows might overwrite real objects, damaging the realism
of the scene. Finally, a single semi-transparent quad is ren-
dered over the whole scene (where the stencil buffer pixels
have been set to the unique stencil value) resulting in realis-
tically blended shadows.

Our shadow technique uses a LOD approach, where ei-
ther the impostor or mesh representation is projected onto
the ground plane depending on which LOD representation
the virtual human is currently using (see Figure 9 (a) and
(b)). To render the virtual human’s shadow using the im-
postor representation, we need to calculate which viewpoint
image needs to be displayed with respect to the light’s po-
sition and rotate its quadrilateral so that it always faces the
light. Using the virtual human’s position−→H and the light’s
position−→L , the quadrilateral’s normal vector−→N can be cal-
culated using Equation 10. The projection of the impostor
onto the ground plane with respect to the light position can
be calculated using−→N and Equations 4 and 6 (previously

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

Figure 9: (a) Projected impostor shadow. (b) Projected mesh shadow. (c) Crowd and city without shadows. (d) Crowd and city
with projected LOD shadows.

described in Section 4). The impostor’s shadow requires no
more than a single textured quad, and therefore is extremely
fast to render.

−→N =
−→H −

−→L
|
−→H −

−→L |
(10)

While this method is similar to that employed by Loscos
et al. [LTC01], our use of the stencil buffer instead of dark-
ened textures results in shadows that blend realistically with
both the underlying world and each other (see Figure 9 (d)).
The main advantage of implementing this shadow algorithm
with the stencil buffer is that it can avoid artefacts caused
by double blending and can limit the shadow to an arbi-
trary ground plane surface. Unfortunately, unlike full geo-
metric stencil shadows, our projection shadows are restricted
to the ground plane and do not project onto nearby static

objects, or other dynamic objects. While shadow mapping
could be used to solve this problem, a LOD approach would
be needed to deal with the many hundreds or thousands of
shadows. It should be noted that shadow volumes were not
considered in the system as this technique can decrease the
pixel fill rate and the constructed shadow volume for an im-
postor is incorrect as a result of being a semi-transparent
quadrilateral.

8. Performance Optimisations

8.1. Virtual Human Occlusion Culling

As a first step towards improving performance, view frus-
tum culling can be used to eliminate those humans that
are not potentially on screen. However, due to the densely
occluded nature of an urban environment, large groups of
humans may be in the frustum but occluded by buildings

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

and therefore rendered unnecessarily. By avoiding the ren-
dering of these humans using occlusion culling techniques,
this should greatly improve the performance of the sys-
tem [CT97,BHS98,SVNB99,WS99,Zha98].

We make use of hardware accelerated occlusion culling
similar to the technique used by Saulters et al. [SF02]
to cull large sections of the crowd. We utilise the
ARB_occlusion_queryextension to determine the visibility
of an object. This extension defines a mechanism whereby an
application can query the number of pixels drawn by a prim-
itive or group of primitives. Typically, the major occluders
are rendered and an occlusion query for the bounding box of
an object in the scene is performed. If a pixel is drawn for
that object’s bounding box, then the object is not occluded
and therefore should be displayed. The main performance
advantage of this extension is that it allows for parallelism
between the CPU and GPU, since many queries can be is-
sued before asking for the result of any one. This means that
more useful work, such as the rendering of other objects or
other computations on the CPU, can be carried out while
waiting for the occlusion query results to be returned.

Since the city is populated by several thousand humans,
there could potentially be a large number of humans in the
view frustum and therefore it would be computationally in-
efficient to perform a separate occlusion query for each hu-
man. To facilitate the occlusion culling of buildings, the vir-
tual city is divided into a grid of regular-sized nodes. By
re-using these nodes so that they store which virtual humans
inhabit them, this can help to avoid performing separate oc-
clusion culling queries for each human. Having initially ren-
dered the static environment, we perform occlusion queries
on the bounding volume of any nodes in the view-frustum,
thus allowing us to rapidly discard those nodes hidden by
the environment and the humans within them. With regards
to the unoccluded nodes, we perform view-frustum culling
on the virtual humans within these nodes, since parts of these
nodes may not be within the view frustum. It should be noted
that the height of each node’s bounding volume is set to the
height of the tallest virtual human used in the system to allow
humans to still be displayed when they are behind an occlud-
ing object whose height is less (e.g., walls). This occlusion
culling method could be extended so that the number of pix-
els drawn for a node could be used as a metric to decide on
what level of detail the humans in the node should use, with
regards to representation, behaviour, and animation.

8.2. Virtual Human Simulation LOD

While frustum and occlusion culling decrease the rendering
workload, there are still overheads associated with updating
the positions of thousands of humans in motion. To lighten
the workload we pause humans within nodes that have not
been visible for more than a certain number of seconds. This
technique takes advantage of the fact that a large number
of humans are occluded per frame and therefore their posi-

tion in the world can remain unchanged without the viewer
noticing. By storing the time each node was last unoccluded,
the position of a human is only updated if the node it in-
habits has been unoccluded for the last five seconds. This
time delay prevents temporal artefacts becoming noticeable
amongst the nearby humans when performing rapid camera
rotation. In addition to this, checking whether a node is oc-
clusion culled is only performed every 100 milliseconds if
the camera has moved or rotated, since the same nodes will
be occluded if the camera remains stationary. Since the hu-
mans only move every 100 milliseconds, we reduce the num-
ber of times we check whether a human is within the view-
frustum by performing this test every time the humans move
instead of every frame.

However, simulation artefacts can arise when the camera’s
position remains static for a period of time and the humans
move from an unoccluded node to an occluded node. This re-
sults in the congregating of humans on the boundary of these
occluded nodes since their steering behaviour is not being
updated. A potential solution to this problem would involve
a LOD simulation approach whereby humans are updated at
a frequency dependent on the last time the node was unoc-
cluded.

8.3. Minimising OpenGL State Changes

OpenGL is a simple state machine with two operations: set-
ting a state, and rendering utilizing that state. By minimizing
the number of times a state needs to be set, this can max-
imize performance since it minimizes the amount of work
the driver and the graphics card have to do. This technique
is generally referred to asstate sortingand attempts to orga-
nize rendering requests based around the types of state that
will need to be updated. Generally, the goal is to attempt to
sort the render requests and state settings based upon the cost
of setting that particular part of the OpenGL state.

With regards to our crowd, rendering is optimized by sort-
ing the virtual humans in the following order based on the
most to least expensive state changes: binding a shader, bind-
ing a texture, and setting VBO data pointers. By organis-
ing the rendering of our crowd in this manner, our approach
sorts each virtual human by LOD representation, then by
template model, and finally by the current key-frame of an-
imation. Sorting the virtual humans by LOD representation
minimizes the number of times that the following states have
to be changed: the setting of lighting parameters, alpha test
enabling and disabling, and vertex and fragment programs.
Next, sorting the LOD representations based on template
model minimizes texture loads and binds. Finally, sorting
virtual humans using the same template model by animation
key-frame reduces the setting of VBO data pointers, since
each VBO stores the data for a particular key-frame. In the
case of rendering virtual humans using the same model and
animated with the same key-frame, an extra step needs to be
implemented to sort them based on the viewpoint required

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

with respect to the camera. This is necessary, since certain
viewpoints for the current key-frame are obtained by mir-
roring the same viewpoint for the symmetrical key-frame.
By sorting impostors based on whether the viewpoint is mir-
rored, this minimizes texture loads and binds.

8.4. Minimising Texture Thrashing

Texture thrashing can become a serious problem when popu-
lating a virtual city with crowds using a number of different
pre-generated impostor models. In addition to each impos-
tor model requiring 1.5MB of texture memory every frame,
the city model will also require a certain amount of tex-
ture memory. Therefore, as the number of template models
within the virtual city increases, texture thrashing will occur
much sooner as a result of the extra texture memory being
consumed by the city model. It should be noted that, in the
case of real-time applications where the camera is fixed, say
at eye-level, only 17 viewpoint images are needed for each
frame of animation and therefore the consumption of texture
memory is less of a problem. Since we wanted to implement
a more generic system, where the camera can view the city
from any height, 17 by 8 viewpoints are needed for the im-
postor representation.

However, as only a subset of the viewpoints in the impos-
tor textures is being used every frame, we propose splitting
the impostor detail and the normal map images into eight
separate smallerelevationimages containing the set of view-
points pre-generated at each camera height. To facilitate the
creation of these elevation images, an application was writ-
ten in C to allow the positioning of viewpoint images within
a larger image. The application reads in the 17 viewpoint im-
ages for a particular camera height and, based on the sum of
these images’ area, the minimum dimensions of the eleva-
tion image are calculated. Once the viewpoints have been
loaded in, the application allows the user to organise the
viewpoints within the new elevation image. Unfortunately,
since the area of each viewpoint image varies, it is not guar-
anteed that they will all fit within the minimum dimensions
and therefore have to be increased by a factor of two along
a single dimension. Once the user has got all the 17 images
to fit, the new elevation image is exported (shown in Figure
10).

The number of elevation images needed to render impos-
tors using a particular human model type depends on the
height of the camera and the distance of the camera from
each impostor. Since buildings in a city environment gen-
erally occlude humans in the distance, all elevation images
should never be needed simultaneously. The angle (θE) be-
tween the impostor and the camera around the horizontal
axis, can be calculated using Equation 11, where hcam is the
camera height and dxz is the distance on the x-z plane from
the camera to the impostor. UsingθE, the elevation image
needed for that impostor can be calculated. As the camera’s
height decreases, the number of elevation images needed is

Figure 10: Normal map split into smaller elevation images.

reduced dramatically (see Equation 11). Taking advantage
of the occluding nature of city environments, this method of
separating impostor and normal map images for each ele-
vation permits greater variety, without texture thrashing, as
a result of each human model type consuming less texture
memory.

θE = tan−1(
hcam
dxz

) (11)

9. Short-Comings of the Pre-Generated Impostor
Representation

While the impostor used in the Geopostor system is com-
putationally efficient to render, the following short-comings
are associated with this representation:

• Anti-Aliasing: Since the impostors are not rendered with-
out anti-aliasing, this results in the silhouette being pixel-
lated in appearance and is especially noticeable when the
impostor is close to the viewer. Future work will investi-
gate how anti-aliasing techniques would improve the im-
postor’s visual appeal.

• Models and animations need to be symmetric: To reduce
the number of viewpoint images needed, both the model
and animation have to be symmetric in the XZ plane. If
this is not possible then the impostor’s texture will con-
sume twice as much memory in order to fit the additional
viewpoint images that are needed.

• No viewpoint images generated from directly above or
below the ground-plane: No viewpoint images were gen-
erated from directly above the virtual human model or
from below the ground-plane, resulting in parallax arte-
facts when the impostor is viewed from these camera an-
gles. However, these viewpoints were not needed since the
camera is not allowed to move below the ground plane in
the city simulation system. The number of viewpoint im-
ages needed depends on what camera angles the impostors
will be viewed from and this should be considered when
generating the impostor’s textures to minimize memory
consumption.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Real-Time Crowd Rendering with Pre-Generated Impostors

• Pixellated shadows when the sun is low in the sky: Since
the impostor texture are used in projecting ground-plane
shadows (see Section 9), this results in the shadows being
pixellated when the sun is low in the sky and is especially
noticeable when the shadows are close to the viewer. In
this case, the virtual human’s mesh representation should
be used in the projection of the shadow.

References

[3Dc] 3dc white paper, ATI Technologies.http://www.
ati.com/products/radeonx800/3DcWhitePaper.pdf.

[BHS98] BITTNER J., HAVRAN V., SLAVÍK P.: Hierar-
chical visibility culling with occlusion trees. pp. 207–219.

[Bli88] B LINN J.: Me and my (fake) shadow.IEEE Com-
put. Graph. Appl. 8, 1 (1988), 82–86.

[CT97] COORG S., TELLER S.: Real-time occlusion
culling for models with large occluders. SI3D ’97:
Proceedings of the 1997 Symposium on Interactive 3D
Graphics(1997), 83–90.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time geometry /
impostor crowd rendering system.SI3D ’05: Proceed-
ings of the 2005 symposium on Interactive 3D graphics
and games(April 2005), 95–102.

[Fra02] Arb_fragment_programs extension, Silicon
Graphics. http://oss.sgi.com/projects/ogl-sample/registry
/ARB/fragment_program.txt(2002).

[Gui05] GUINOT J.: Image filtering with GLSL - con-
volution kernels.http://www.ozone3d.net/tutorials/image
_filtering.php(2005).

[HMAM02] H AINES E., MÖLLER T., AKENINE-
MOLLER T.: Real-Time Rendering. A.K. Peters,
2002.

[Lee02] LEESON W.: Games Programming Gems III -
Subdivision Surfaces for Character Animation. Charles
River Media, 2002, pp. 372̋U–383.

[LTC01] LOSCOSC., TECCHIA F., CHRYSANTHOU Y.:
Real-time shadows for animated crowds in virtual cities.
VRST ’01: Proceedings of the ACM Symposium on Virtual
Reality Software and Technology(2001), 85–92.

[NVR99] NV_register_combiners extension,Silicon
Graphics.http://oss.sgi.com/projects/ogl-sample/registry/
NV/register_combiners.txt(1999).

[OCV∗02] O’SULLIVAN C., CASSELL J., VILHJÁLMS-
SON H., DINGLIANA J., DOBBYN S., MCNAMEE B.,
PETERS C., GIANG T.: Levels of detail for crowds and
groups. Computer Graphics Forum 21, 4 (2002), 733–
742.

[SF02] SAULTERS S., FERGUSONR.: Real-time render-
ing of dynamically variable scenes using hardware occlu-
sion queries. Proceedings of the Eurographics Ireland
Rendering Workshop(2002), 47–52.

[SVNB99] SAONA-VÁZQUEZ C., NAVAZO I., BRUNET
P.: The visibility octree: a data structure for 3d navigation.
Computers & Graphics 23, 5 (1999), 635–643.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments.Pro-
ceedings of the Eurographics Workshop on Rendering
Techniques(2000), 83–88.

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Visualizing crowds in real-time.Computer Graphics Fo-
rum 21, 4 (2002), 753–765.

[Ver02] Arb_vertex_programs extension, Sillicon Graph-
ics. http://oss.sgi.com/projects/ogl-sample/registry/ARB/
vertex_program.txt(2002).

[Wil83] W ILLIAMS L.: Pyramidal parametrics. SIG-
GRAPH ’83: Proceedings of the 10th Annual Confer-
ence on Computer Graphics and Interactive Techniques
(1983), 1–11.

[WS99] WONKA P., SCHMALSTIEG D.: Occluder shad-
ows for fast walkthroughs of urban environments.Com-
puter Graphics Forum (Eurographics ’99) 18, 3 (1999),
51–60.

[Zha98] ZHANG H.: Effective Occlusion Culling for the
Interactive Display of Arbitrary Models. PhD thesis,
1998.

c© The Eurographics Association 2006.

EUROGRAPHICS 2006 Tutorial

Populating Virtual Environments with Crowds: Perceptual
Evaluation of Virtual Human Models

S. Dobbyn and C. O’Sullivan

Interaction, Simulation and Graphics (ISG) Lab, Trinity College Dublin, Ireland

Abstract
Usually developers of real-time crowd systems decide on the virtual human representation they will use based on
three factors: the size of the crowd being rendered, each representation’s rendering cost and its visual appeal.
While there has been extensive research on the numerous ways of graphically representing virtual humans (in-
cluding their associated rendering cost), there has been no research conducted on perceptually evaluating them.
However, evaluating these representations based on the plausibility of visual appearance and motion would pro-
vide a useful metric to help developers of LOD-based crowd systems improve its visual realism while maintaining
real-time frame rates. With regards to improving our crowd system, we carried out perceptual evaluation experi-
ments on various virtual human representations using experimental procedures from the area ofpsychophysics.

1. Psychophysics

Psychophysicsis the science of human sensory perception
and is used to explore two general perceptual problems in-
volving the measurement of sensory thresholds: discrimina-
tion and detection [LHEJ01]. Discrimination is the ability to
tell two stimuli apart, where each differ by a small amount,
usually along a single dimension. Detection is a special case
of the discrimination problem, where the reference stimu-
lus is a null stimulus. Typically, both perceptual problems
can be investigated using either a classicalyes-noor aforced
choiceexperiment design [Tre95]. A yes-no design involves
experiment participants deciding on whether the stimuli are
the “same” (no response) or “different” (yes response) while
forced choice designs consist of the participant identifying
a specific target stimulus given a number of choices. Us-
ing these designs, the participants responses for each stimu-
lus level can be collected and analyzed to estimate discrim-
ination or detection thresholds. In order to measure these
thresholds, the participant’s cumulative responses are plotted
as a graph ofpercentage yesresponses (using a yes-no de-
sign) orpercentage correctresponses (using a forced choice
design) for each stimulus level. An S-shaped curve termed a
Psychometric Functionis fitted to the cumulative responses,
where the percentage yes or percentage correct is plotted as
a function of stimulus.

For a yes-no design, the sensitivity threshold is specified

Figure 1: An Ogive function fitted to a participant’s data for
a yes-no design.

by the stimulus intensity required for a person to reach a 50%
yes point i.e., the point where same and different responses
are equally likely. This threshold is known as thePoint of
Subjective Equality(PSE). For this design, a simple Ogive
inverse normal distribution function (see Equation 1) can be
use to plot a curve that fits the participant’s data (shown in
Figure 1) and, from this curve, the PSE can be estimated as
the 50% point and calculated using Equation 2. The inverse

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

normal distribution function computes the stimulus intensity
(x) for a given probability (P).

POgive(x) =
1

σ
√

2Π
exp

−(x−µ)2

2σ2 (1)

where: σ is the mean,
µ is the standard deviation, and
µ2 is the variance.

PSEOgive= POgive(0.5) (2)

For forced choice designs, the threshold is often chosen as
a halfway point between chance and 100% correct [Tre95].
For example, for a two alternative forced choice (2AFC) par-
adigm, the target stimulus is one of two choices. Therefore,
the sensitivity threshold is the midpoint between chance
(50% point in the case of 2 choices) and 100% correct, which
is the 75% point. For experimental data using a 2AFC para-
digm, a logistical function is normally used to fit a suitable
curve to the participant’s data and estimate the PSE using
the 75% point. In our experiments we use a slightly modi-
fied version of the logistical function (given in Equation 3).
The PSE for an experiment using a 2AFC design can be cal-
culated using Equation 4

PLogistic(x) = 1− γ(1
1+(x

α)−β) (3)

where: α is the stimulus at the halfway point,
β is the steepness of the curve, and
γ is the probability of being correct by chance.

PSELogistic = PLogistic(0.75) (4)

Another interesting threshold that can be estimated from
these curves is thedifference thresholdor thejust noticeable
difference(JND). The JND is the smallest difference in in-
tensity required for a person to distinguish two stimuli and
this can be estimated as the amount of additional stimulus
needed to increase a participant’s detection rate from 50%
to 75% (for a yes-no design) or from 75% to 87.5% (for
a 2AFC design) on the fitted psychometric function. Equa-
tion 5 and Equation 6 are used to calculate the JND for a ex-
periment using a yes-no and 2AFC experiment, respectively.
Finally, ANalysis of Variance (ANOVA) is used to test the
null hypothesis that two means are equal. The null hypothe-
sis is rejected if there are significant differences between the
means.

JNDOgive= POgive(0.75)−POgive(0.5) (5)

JNDLogistic = PLogistic(0.875)−PLogistic(0.75) (6)

The main problem with measuring thresholds of percep-
tion is that participants do not always respond in the same
way when presented with identical stimuli in an ideal, noise-
free experimental setup. This is mainly due to the fact that
the neurosensory system is somewhat noisy, but other rea-
sons such as attentional differences, learning, and adaptation
to the experimental setup can also have an effect. To reduce
some of these problems, many psychophysical techniques
for collecting data have been developed [Tre95]. With re-
gards to our experiments, we use a staircase experimental
procedure.

A simple up-down staircaseprocedure involves setting
the stimulus level to a pre-defined intensity and present-
ing the stimulus to the participant [Cor62, Lev71]. Depend-
ing on the participant’s response, the stimulus level is de-
creased (for a positive response) or increased (for a nega-
tive response) by a fixed amount orstep-sizeand the altered
stimulus is presented to the participant again. The experi-
ment is terminated once the participant’s response changes
from positive to negative and vice versa (called areversal)
a certain number of times. Figure 2 illustrates the stepping
procedure for an up-down staircase terminated after four re-
versals. It should be noted that care is needed when select-
ing the step-size. Too large a step-size results in inaccurate
threshold estimates and the possibility ofoutliersin the data.
Alternatively, too small a step-size may result in an accu-
rate threshold estimate but the risk of participants becoming
bored, tired or losing their attention is high. Normally, the
appropriate step-size is selected based on the results from
preliminary experiments testing several different step-sizes.

To eliminate response bias caused by participants learning
how the experimental procedure works, a pair of randomly
interleaved staircases can be used [ODGK03]. This involves
setting upascendinganddescendingstaircases, where their
respective stimulus level is initialised to a maximum and
minimum intensity. These two staircases are then presented
to the participant in a randomly interleaved manner to elim-
inate the participant guessing the direction of change of the
stimulus intensity. To avoid data being sampled at too high
or too low stimulus levels, adaptive procedures can be used
to specify how to adapt the stimulus level depending on the
participant’s response. As a result of this, data sampling is
concentrated around the participant’s threshold on the psy-
chometric function. Levitt provides an overview of adaptive
staircase procedures [Lev71] such as thetransformed up-
downmethod and theweighted up-downmethod. With trans-
formed up-down methods (used in [MAEH04]), the stimulus
is altered depending on the outcome of two or more preced-
ing trials. For example, a three-up one-down (3U-1D) step-
ping procedure involving the stimulus level is increased only
after three successive incorrect responses and decreased with

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

Figure 2: Example of the stepping procedure for an up-down
staircase terminated after four reversals.

each correct response. With weighted up-down methods, dif-
ferent step-sizes for upward and downward steps are used.

While there has been little previous work related to
the perception of virtual human representations [HDMO05,
MDO05], research has been conducted on perception of hu-
man motion in the context of computer graphics and has
mainly been focused on the effect of animation quality on
user perception. Wang et al. [WB03] conducted a set of ex-
periments to evaluate a cost function proposed by Lee et
al. [LCR02] for determining the transition quality between
motion clips. Other recent work by Harrison et al. [HRD04]
examined the perceptual impact of dynamic anomalies in
human animation. Reitsma and Pollard [RP03] conducted a
study, developing a metric to evaluate the perceived error
introduced during motion editing. Harrison et al. [HBF02]
focused on higher-level techniques for specifying and mod-
ifying human motions. Oesker et al. [OHJ00] investigated
the extent to which observers perceptually process the LOD
in naturalistic character animation. The study most related
to our work is by Hodgins et al. [HOT98]. They performed
a series of perceptual experiments, the results of which in-
dicated that a viewer’s perception of motion characteristics
is affected by the geometric model used for rendering. Par-
ticipants were shown a series of paired motion sequences
and asked if the two motions in each pair were the “same”
or “different”. The motion sequences in each pair were ren-
dered using the same geometric model. For the three types of
motion variation tested, sensitivity scores indicated that sub-
jects were better able to observe changes when viewing the
polygonal model than they were with a stick figure model.

With the goal of improving the realism of our crowd sys-

tem, we carried out the following three perceptual experi-
ments:

1. Experiment 1: Impostor Vs. Mesh Detection Experi-
ment
At what distance can experiment participants detect that
a virtual human is using an impostor or mesh representa-
tion?

2. Experiment 2: Low Vs. High-Resolution Mesh Dis-
crimination Experiment
At what distance and at what resolution can experiment
participants discriminate between a high resolution and
low resolution mesh representation?

3. Experiment 3: Impostor/Mesh Switching Detection
Experiment
At what distance can experiment participants detect an
impostor switching to a mesh?

4. Experiment 4: Perception of Human Motion
How well do different virtual human representations
replicate motion?

2. Experiment 1: Impostor Vs. Mesh Detection
Experiment

2.1. Experiment 1: Aim

While a pre-generated impostor is significantly faster to ren-
der than the corresponding mesh, its main aesthetic problem
is that, once the impostor is close to a viewer, certain arte-
facts are quite noticeable and the viewer is able to perceive
the difference between the two representations, especially
when displayed side-by-side. These artefacts may be caused
either by aliasing, loss of depth information, or using a fixed
number of pre-generated viewpoint images.

In this experiment, we aimed to establish the distance at
which a virtual human’s pre-generated impostor is perceptu-
ally equivalent to its mesh. In order to establish this distance
threshold, we simultaneously presented two virtual humans
using the impostor and mesh model at various distances to
the experiment participant, and tested the participant’s abil-
ity to detect which virtual human was using which repre-
sentation. By recording the participant’s responses at each
distance the virtual humans were displayed at and plotting
a psychometric function to this data, this distance thresh-
old was estimated from the fitted curve using the PSE. This
PSE signifies the distance at which the participant is likely
to choose either representation with equal likelihood, and
therefore provides a good estimate to the distance at which
the impostor is perceptually equivalent to the mesh (for that
person).

The goal in establishing such a threshold was to provide
us with a guide to the distance at which both representations
could be displayed in our system without a user detecting the
impostor. This distance can be calculated in terms of a pixel
to texel ratio i.e., where the ratio of the screen size of an im-
postor quadrilateral to the size of the viewpoint image equals

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

a certain threshold [DHOO05]. A texel (TEXtured ELement)
is the basic unit of measurement when dealing with texture
mapped 3-D objects. When a texture map is loaded into tex-
ture memory as an array of n×m texture elements, each el-
ement is referred to as a texel. When a 3-D texture-mapped
object appears close to the viewer so that the texture ele-
ments appear relatively large, there may be several pixels in
each texel and the pattern of the texture map is easy to see.
Therefore, it was hypothesised that beyond the point of one-
to-one pixel to texel ratio, the participants would be unable
to detect the impostor, as aliasing starts to occur when the
size of the impostor’s quadrilateral is greater than the size of
the texture-mapped image, resulting in the stretching of the
image on the impostor’s quadrilateral.

Often it is difficult to find the exact experimental para-
meters and variables for a staircase procedure (such as step-
size, maximum and minimum stimulus levels etc.). A study
was first carried out using a weighted up-down experimental
procedure followed by a second study on a different set of
participants using a transformed up-down experimental pro-
cedure. In order to validate and fine tune results found in the
first study, which produced approximate threshold ranges,
we exploited our earlier findings to find the exact pixel to
texel ratio in the second study.

2.2. Experiment 1: Apparatus and Participants

The equipment used was a high end commodity PC with
an NVidia GeForce graphics accelerator card. For the first
study, a 19-inch monitor was used, while a 21-inch monitor
was used for the second study. Both monitors were at a res-
olution of 800x600 pixels with a screen refresh-rate of 85
Hertz.

Eleven participants (2 females, 9 males, aged between 22
and 39) took part in the first study, while 38 participants
(13 females, 25 males, aged between 17 and 35) took part
in the second. All participants were drawn from the staff
and students of the authors’ institution, had normal or cor-
rected to normal vision and were both familiar and unfamil-
iar with graphics. All of the experimental participants were
positioned approximately 28"-30" from the screen at zero
elevation, so the full display subtended a visual angle of ap-
proximately 26◦. User input for the experiments was pro-
vided by a USB gamepad featuring two trigger buttons to
allow the participant to make their selection.

2.3. Experiment 1: Visual Content and Procedure

An OpenGL test application was used to present the exper-
imental stimuli to the participants. The experiment environ-
ment consisted of a black grid with a white background (for
the ground plane). The 3D world was configured for a stan-
dard 45◦ field of view of the environment. All representa-
tions in the test application were lit by a directional light

source pointing towards them and positioned directly behind
the camera.

Figure 3: Virtual human impostor Vs. mesh detection exper-
iment.

The participants were shown the mesh and pre-generated
impostor model side by side at different distances from the
participant (as shown in Figure 3) for 5 seconds. The vir-
tual humans were separated by a fixed number of screen
pixels to keep the distance between the representations con-
stant. Both representations were animated with the same one
second walk-cycle consisting of one keyframe of animation
every 100 milliseconds. Since applications containing vir-
tual humans would typically involve displaying them from
multiple viewpoints, both virtual humans were rotated at
5.625 degrees every 100 milliseconds in a randomised direc-
tion around the y-axis so that the participant was not com-
paring the representations based on a single viewpoint and
therefore eliminating directional bias. It should be noted that
all models were displayed in grey-scale, as in these experi-
ments we wished to determine people’s ability to detect de-
tail. Colour would complicate this issue by introducing fur-
ther confounding factors, so we left this aspect for future
examination.

This experiment employed a two alternative forced choice
(2AFC) design, whereby the participant was asked to choose
which virtual human “looked better” at each distance. We
considered the virtual human using the mesh representation
to be the “correct” response. Depending on the participant’s
response, the distance at which to display the virtual humans
was either increased (for a correct response) or decreased
(for a incorrect response). To avoid the participant guess-
ing the direction of change in the virtual humans’ distance,
we used randomly interleaved ascending and descending
staircases. Each staircase terminated after twelve reversals,
where a reversal occurred whenever the participant changed
his response from correct to incorrect and vice-versa.

To concentrate the data sampling around the participant’s

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

distance threshold, an adaptive step-size was employed with
a adaptive procedure. The set of experiments in the first
study employed a 3:1 weighted up-down adaptive proce-
dure. The initial step-size for each staircase was set to 2.5
units, and was halved after each of the first four reversals,
resulting in a final step-size of 0.15625 units. The ascend-
ing staircase started at the initial distance of 5 units, and
the descending staircase at an initial distance of 31 units.
By using a 3:1 Weighted Up-Down procedure, this resulted
in the virtual humans being moved closer by three times
the current step-size for every “incorrect” guess, otherwise
they were moved away by just the current step-size for each
“correct” response. The second study employed a Three-
Up, One-Down (3U-1D) stepping procedure i.e., each time
the participant indicated 3 consecutive correct responses, the
distance at which the virtual humans were displayed was in-
creased by the step-size, otherwise one incorrect response
caused the distance to decrease by the step-size. The initial
step-size was set to 4 units, and after the first four rever-
sals the final step-size was 0.25 units. The ascending stair-
case began with the virtual humans displayed at the furthest
stimulus distance of 29 units, while the descending staircase
started at the closest distance of 9 units.

2.4. Experiment 1: Results

For each staircase, we recorded the participants’ responses at
each distance, as well as the distances at which the 12 rever-
sals occurred. A participant’s results were accepted if both
staircases converged to approximately the same answer. To
check this, we compared the minimum and maximum dis-
tance at which the last 4 reversals occurred for the ascend-
ing and descending staircase. If they did not overlap with
each other, then the participant’s data was considered to be
diverging and therefore unusable. After eliminating any di-
verging results, the experimental data from nine out of the
eleven participants and sixteen out of the thirty-eight partic-
ipants experimental data converged properly for the first and
second study, respectively.

The large amount of diverging data is thought to be a re-
sult of a flaw related to using a 2AFC task, whereby a series
of lucky guesses at low stimulus levels i.e., when the rep-
resentations are far away from the viewer, can erroneously
drive the staircase to levels that are too low [Kle01]. On fur-
ther analysis of this diverging data, it was discovered that the
ascending staircases were not able to recover from a string
of lucky guesses. However, it was found that, for the major-
ity of the descending staircases, the minimum and maximum
distances of the last 4 reversals overlapped with the results
of both staircases for the converging data.

A psychometric curve ranging from 100% to 50% was fit-
ted to each participant’s experimental data using Equation 3.
Using Equation 4 and Equation 6, the PSE and JND for each
study were calculated as the 75% and 87.5% levels on the
curve, respectively. At this PSE, the participant will judge

the representations with equal likelihood as “looking better”.
The corresponding pixel:texel ratio values were calculated
for the PSE and JND using Equation 7. The one-to-one pixel
to texel ratio equivalent distance for the virtual human model
used in this experiment is listed in Table 1 along with the
two-to-one distance for comparison.

Pixel : TexelRatio(distance) =
distance×PixelSize

TexelSize
(7)

Pixel:Texel Ratio Distance
1:1 11.0 units/meters
2:1 22.0 units/meters

Table 1: One-to-one pixel to texel ratio distances for the vir-
tual human with a 45◦ Field of View at 800x600 Resolution.

The mean PSE and JND for the 9 participants in the first
study were 1.4± 0.142 and 0.492± 0.152 (see Figure 4(a)).
The mean PSE showed that users perceived the impostor rep-
resentation of human models at a distance greater than the
hypothesized ratio (a pixel to texel ratio of 1.4:1). However,
the mean JND is quite large indicating that the participants
were not sensitive to small changes to the pixel to texel ratio
at which the impostor was being displayed. The mean PSE
and JND for the 16 participants in the second study were re-
spectively 1.164± 0.064 and 0.1± 0.01 (see Figure 4(b)).
The mean PSE is close to the hypothesized value of one-to-
one, and this result represents an improvement on the first
study. This change in results is attributable to learning from
the first study’s experimental results and adapting the psy-
chophysical procedure accordingly. Since only one virtual
human model was used for this experiment there were no
means to compare, hence an ANOVA was not performed.

Figure 4: Results of the impostor Vs. mesh detection exper-
iments (showing PSE and JND in terms of pixel to texel Ra-
tio) using: (a) a 3:1 weighted up-down procedure (PSE 1,
JND 1) and (b) a 3U-1D procedure (PSE 2, JND 2).

3. Experiment 2: Low Vs. High-Resolution Mesh
Discrimination Experiment

3.1. Experiment 2: Aim

A common LOD approach for reducing the computational
cost associated with rendering a high detailed mesh, is to

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

render a simpler mesh containing less triangles when the
loss of detail will be imperceptible to the viewer of the sys-
tem. However, care has to be taken in generating the low
resolution mesh, as removing too much detail can result in
blocky shaped meshes with animation artefacts caused by
not enough joint vertices. Due to these artefacts, the overall
visual realism of the virtual human is reduced.

In this second experiment, we aimed at establishing the
resolution, in terms of both the percentage of vertices and
the distance at which a virtual human’s low resolution mesh
is perceptually equivalent to a high resolution mesh. In or-
der to establish this resolution threshold, we simultaneously
presented each experiment participant with two virtual hu-
mans using the high and a low-resolution mesh at a particu-
lar distance, and tested their ability to discriminate whether
the two resolution models were identical or not. The par-
ticipant’s responses for each low resolution mesh displayed
were recorded, and a psychometric function was plotted to
this data for each distance at which the virtual humans were
displayed.

The goal in establishing such a threshold was to provide a
guide to when a low-resolution mesh could be used in place
of the high resolution mesh in our system without a user de-
tecting the reduction of detail in the character’s appearance.

3.2. Experiment 2: Apparatus and Participants

The equipment used was a high end commodity PC with an
NVidia GeForce graphics accelerator card. A 21-inch moni-
tor was used at a resolution of 800x600 pixels with a screen
refresh-rate of 85 Hertz.

18 participants (5 females, 13 males, aged between 17 and
28) took part in the second experiment. All participants were
drawn from the staff and students of the authors’ institution,
had normal or corrected to normal vision and were both fa-
miliar and unfamiliar with graphics. All of the experimen-
tal participants were positioned approximately 28"-30" from
the screen at zero elevation and so the full display subtended
a visual angle of approximately 26◦. User input for the ex-
periments was provided by a USB gamepad featuring two
trigger buttons to allow the participants to indicate their re-
sponse.

3.3. Experiment 2: Visual Content and Procedure

The same OpenGL test application as in the experiment in
Section 2 was used to present the two virtual humans using
the high resolution and a low resolution mesh to the par-
ticipants for 5 seconds. The high resolution mesh consisted
of 2170 triangles, and nineteen low resolution meshes were
generated from this original mesh by hand. Solely using au-
tomatic simplification would result in losing important ver-
tices needed to maintain the appearance of the model under
motion, especially for the very low resolution models, which

would subsequently bias the experiment’s results. There-
fore, the low resolution meshes were automatically simpli-
fied with manual intervention to keep the integrity of the re-
ally low resolution meshes. Using the 3D Studio MAXmul-
tires modifier, nineteen low resolution meshes were gener-
ated in this manner, ranging from a reduced vertex percent-
age of 60% to 15% at intervals of 2.5%. Preliminary obser-
vations were used for setting the appropriate range of reso-
lutions for the low LOD mesh. A minimum vertex percent-
age of 15% was selected, as this was the maximum amount
which the mesh’s detail could be reduced while still retain-
ing the general shape and motion of the virtual human’s high
resolution mesh. The corresponding number of vertices and
triangles for each resolution model are shown in Table 2.

Mesh Resolution Vertex % Vertices Triangles
High LOD 100% 1,383 2,170

Low LOD 18 60% 854 1,258
Low LOD 17 57.5% 819 1,204
Low LOD 16 55% 786 1,148
Low LOD 15 52.5% 754 1,096
Low LOD 14 50% 725 1,043
Low LOD 13 47.5% 688 990
Low LOD 12 45% 653 937
Low LOD 11 42.5% 617 881
Low LOD 10 40% 584 824
Low LOD 9 37.5% 553 773
Low LOD 8 35% 520 719
Low LOD 7 32.5% 489 665
Low LOD 6 30% 456 612
Low LOD 5 27.5% 417 559
Low LOD 4 25% 385 499
Low LOD 3 22.5% 345 453
Low LOD 2 20% 313 397
Low LOD 1 17.5% 278 352
Low LOD 0 15% 245 298

Table 2: Low resolution mesh details

The participants were simultaneously shown two virtual
humans side by side using the high resolution mesh and a
low resolution mesh at 3 specific distances from the partic-
ipant. The virtual humans were separated by a fixed num-
ber of screen pixels to keep the distance between the repre-
sentations constant. As in the experiment in Section 2, both
models were animated with the same one second walk-cycle
and were rotated by 5.625 degrees every 100 milliseconds
in a randomised direction around the y-axis, to eliminate di-
rectional bias. All models were displayed in grey-scale, as
in these experiments we only wished to determine people’s
ability to discriminate loss of detail.

This experiment consisted of 3 pairs of ascending and
descending staircases randomly interleaved, where each
pair displayed the virtual humans at one of the three dis-
tances from the participant. A yes-no design was employed,

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

Figure 5: Mean PSE and JND values for low resolution
models.

whereby the participants were asked to indicate whether the
virtual humans looked the “same” (no response) or “differ-
ent” (yes response) by pressing the respective left or right
trigger button on a USB gamepad. For each staircase, a sim-
ple up-down stepping procedure was employed i.e., each
time the participant indicated a “same” response, the res-
olution of the low LOD mesh was decreased by the step-
size, otherwise a “different” response increased the resolu-
tion by the step-size. Each staircase ran for twelve reversals
i.e., each time the participant’s response changed. An adap-
tive step-size was used, where the initial step-size was only
halved once after the first reversal for each staircase.

The ascending staircase began with the low LOD mesh
displayed at the highest resolution of 60%, and the descend-
ing staircase started with the low LOD mesh displayed at the
lowest resolution of 15%. The initial resolution step-size was
set to 5% and, after the first reversal, the final step-size was
2.5%. As mentioned previously, 3 distances at which to dis-
play the representations from the viewer were chosen. The
first distance was 5 units, and the other 2 distances were cal-
culated based on a percentage of the representation’s initial
screen-space size at the first distance. The second distance
was 8 units and the third distance was 16 units which corre-
sponded to 66.6% and 33.3% of the representation’s initial
screen space size.

3.4. Experiment 2: Results

For each staircase, we recorded each participant’s response
for each mesh resolution displayed, as well as the resolution
at which the 12 reversals occurred. We eliminated any di-
verging data using the same method as in Section 2. In this
experiment, out of the 18 participants, 16 converged for the
first distance, 13 converged for the second distance and fi-
nally 12 converged for the third distance.

Using the converging data, for each pair of staircases, we
calculated the percentage of yes responses for each resolu-
tion displayed, and plotted this as a function of the resolu-
tion. For this experiment, a psychometric function based on
Equation 1 was used to fit a curve to the data set and we sub-
sequently calculated each participant’s PSE and JND. The
mean PSE and JND for each distance were calculated and

are shown in Figure 5. The corresponding number of ver-
tices and polygons for the PSE are shown in Table 3.

From this study, we found that, for this human mesh
model, a low resolution mesh is perceptually equivalent to
the high resolution mesh at a vertex percentage of 36.4% for
a distance of 5 units, 31.7% for a distance of 8 units, and
22.5% for a distance of 16 units. A single factor ANOVA
comparing the mean PSE averaged over 12 participants for
the 3 distances, revealed a statistically significant difference
between the mean PSE values for the 3 distances (see Ta-
ble 4). This difference shows that distance affected percep-
tion of the low resolution mesh’s visual appearance, with
participants being able to discriminate better between dif-
ferent resolution meshes at closer distances. There was no
significant difference between the mean JND values, which
indicates that the same amount of stimulus change had to be
added to the stimulus level at each distance in order for the
participant to notice a difference. What is interesting about
this result is that people were equally sensitive to the amount
of vertex percentage difference, irrespective of distance.

Distance 5.0 8.0 16.0
PSE Vertex % 36.4±1.0 31.7±1.0 22.5±1.0
JND Vertex % 4.9±0.6 5.3±0.6 4.7±1.0
PSE Vertices 456 397 282
PSE Polygons 700 605 409

Table 3: Mean PSE and JND for low resolution geometry

PSE Comparisons F1,22 P
Distance 1 vs Distance 2 18.45 < 0.0005
Distance 1 vs Distance 3 103.28 ≈ 0
Distance 2 vs Distance 3 24.54 ≈ 0

Table 4: PSE comparisons for distance

4. Experiment 3: Impostor/Mesh Switching
Discrimination Experiment

4.1. Experiment 3: Aim

Typically developers use the LOD approach of switching be-
tween a detailed mesh representation and a lower detailed
model based on some selection criteria, to help maintain the
interactivity of their system. It is important that the switch-
ing between models is imperceptible to the viewer, other-
wise the overall believability of the system is reduced. While
the selection of the model’s resolution can be based on sev-
eral switching criteria, usually this is based on some distance
threshold from the viewer of the system. With respect to our
system, we achieve interactive frame rates by using an im-
postor representation that can be displayed at a fraction of
the rendering cost of the mesh and switch between these rep-
resentations in order to maintain the realism of the crowd.
While having thresholds for the believability of an impostor

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

is useful when displayed beside its equivalent mesh repre-
sentation, popping artifacts often manifest during the transi-
tion from impostor to geometry. These sudden popping arte-
facts during this transition may be caused either by differ-
ences in aliasing, depth information, or using a fixed num-
ber of pre-generated viewpoint images which can also cause
shading differences.

In this experiment, we aimed to establish the distance at
which the transition from a pre-generated impostor to a mesh
is noticeable. In order to establish this distance threshold
at which to switch, we presented a virtual human switch-
ing from the impostor representation to the mesh at various
distances to each experiment participant, and tested the par-
ticipant’s ability to detect any popping artefacts. By record-
ing the participant’s responses at each distance the switch
occurred and plotting a psychometric function to this data,
this switching distance threshold can be estimated from the
fitted curve using the PSE value. This PSE signifies the dis-
tance at which the participant is equally likely to notice or
not notice the transition between representations, and there-
fore provides a good estimate to the distance at which such
transitions will be acceptable. It should be noted that once
the logistical function has been computed, other data points
(for example, when people cannot notice 90% of the time)
can be simply extrapolated.

The goal in establishing such a threshold was to provide
us with a guide to the distance at which the switching be-
tween our impostor and mesh representation should occur in
order to reduce any noticeable popping artefacts and there-
fore maintain the realism of our crowd. This distance can be
calculated in terms of a pixel to texel ratio (see Section 2),
and it was hypothesised that beyond the point of one-to-one
pixel to texel ratio, the participants would be unable to detect
the transition.

4.2. Experiment 3: Apparatus

The equipment used was a high end commodity PC with an
NVidia GeForce graphics accelerator card. A 19-inch moni-
tor was used, at a resolution of 800x600 pixels, with a screen
refresh-rate of 85 Hertz. All of the experimental participants
were positioned approximately 28"-30" from the screen at
zero elevation and so the full display subtended a visual an-
gle of approximately 26◦. User input for the experiments
was provided by a USB gamepad featuring two trigger but-
tons for the participants to indicate their response.

4.3. Experiment 3: Visual Content and Procedure

The same OpenGL test application as in the experiment in
Section 2 was used to present the virtual human, switching
between the impostor and mesh representation, to the partic-
ipants. For each trial, the same model used in the first exper-
iment was displayed, starting at a specific distance from the
viewer, then moving at a constant speed towards the camera,

and finally stopping at a specific distance. At some point dur-
ing the interval the model switched from an initial impostor
representation to a mesh representation. The virtual human
was horizontally positioned at the center of the screen, an-
imated with the same walk cycle used in the other experi-
ments, and again displayed in grey-scale.

A yes-no design was employed, whereby the participants
were asked to indicate whether they noticed a “definite
change” in the model, by pressing the left or right trigger
buttons of the gamepad to indicate their respective yes/no
response. The experiment consisted of a single pair of as-
cending and descending staircases randomly interleaved. For
each staircase, a simple up-down stepping procedure was
employed i.e., each time the participant indicated a “yes”
response, the distance at which the switch occurred was
increased by the step-size, otherwise a “no” response de-
creased the distance by the step-size. Each staircase ran for
twelve reversals i.e., each time the participant’s response
changed. An adaptive step-size was used, where the initial
step-size was only halved once after the first reversal for each
staircase.

Two separate experiments were carried out, with the
model either facing the user or spinning on the spot at a
rate of 5.625◦ every 100 milliseconds in a randomised di-
rection. For both experiments, the model started at a range
of 36 units, and then moved at a speed of 6 units/sec toward
the screen. The stopping point was a range of 1 unit from
the screen. After the first four reversals, the final step-size
was 0.3125 units. The virtual human switched from its im-
postor to its geometric representation at a switching distance
ranging from 6 to 31 units.

The results of pilot experiments were used for setting the
speed of the camera. It was found that, when the virtual hu-
man approached the camera too quickly, the resulting rate
of change in the texture detail of the geometric representa-
tion (since mipmapping was not employed for its texture),
caused the participants to perceive a switch where there was
none. While the effect of popping artifacts may be reduced
by blending, such as in Ebbesmeyer [Ebb98], we aimed to
establish baseline thresholds were this would not be neces-
sary. For urban simulations (which generally are constrained
to the ground plane), transitions typically occur at the dis-
tance where the change in depth information is small due
to perspective, and for virtual humans the overall change of
depth information is similarly small. A further investigation
of the effect of blending on transition detection is desirable.

4.4. Experiment 3: Results

For the first case, where the virtual human faced the viewer,
there were seventeen experimental participants (13M-4F,
ages 12-39), 10 of whose experimental data converged prop-
erly. For the second case, where the virtual human spun,
there were 10 experimental participants (8M-2F, ages 12-
39), nine of whose experimental data converged properly.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

All participants had normal or corrected to normal vision,
and were both familiar and unfamiliar with graphics. For
each staircase, we recorded the participants’ responses for
each trial’s switching distance, as well as the distance at
which the 12 reversals occurred. We eliminated any diverg-
ing data using the same method as in Section 2.

A psychometric curve ranging from 100% to 50% was fit-
ted to each participant’s experimental data using Equation 3
whereγ = 0.5. The mean PSE calculated (shown as PSE1 in
Figure 6), was approximately the predicted one-to-one value
with a small mean JND (shown as JND1), indicating that
the participants were quite sensitive to subtle changes in the
pixel to texel ratio at which the popping occurred. The mean
PSE calculated for the second experiment (shown as PSE2),
was less than for PSE1, suggesting that the spinning was a
distracting factor. However, the differences were not signif-
icant for the PSE (F1,17 = 1.46,P > 0.3) or the JND values
(F1,17 = 0.22,P > 0.7). The large number of diverging re-
sults in the first case, however, suggests that the participants
noticed other artefacts, which were masked in the second
case when the virtual human was spinning.

It should be noted that the results from this experiment are
predicated on the texel size the impostor was pre-generated
at. The texel size of the impostor used in this experiment
was selected to ensure that all 17 by 8 pre-generated view-
points fitted into a 1024 by 1024 image which is an image
size commonly used in these type of applications. While the
switching was not detected at a ratio of one-to-one for this
texel size, it is hypothesised that this ratio will no longer
be valid for impostors generated at a larger texel size due to
aliasing artefacts being more noticeable. In order to establish
at what texel size the switching is detectable at a one-to-one
ratio, this would involve pre-generating impostors at various
texel sizes, presenting a virtual human switching from each
impostor to the mesh at the one-to-one distance, and evaluat-
ing at what texel size the participants is capable of detecting
any popping artefacts.

5. Experiment 4: Perception of Human Motion

In a LOD crowd system that simultaneously displays differ-
ent model representations, as described in [DHOO05], it is
important that the quality of the motion of the lower LODs
is not significantly different from that of the high resolu-
tion. Hodgins et al. [HOT98] showed that model type af-
fected user perception of human motion, when a stick figure
model’s motion was compared to a polygonal model. We
found in Hamill [HDMO05] that the motion of the impos-
tor accurately replicated the motion of the high resolution
model. We now test whether or not the low resolution poly-
gon mesh replicates the motion of the high resolution mesh
as accurately as the impostor, using the same psychophysi-
cal procedure. We also test the performance of a stick fig-
ure model to compare our results to those of Hodgins et

Figure 6: Results of the popping detection experiments
(showing the PSE and the JND in terms of pixel to texel ra-
tio) for humans facing viewer (1) and spinning (2).

al. [HOT98] and a point light source model as a baseline
test.

5.1. Model Types

Five different representations of a male model were used
(Figure 7). Two of the models were polygonal models with
deformable meshes which were manipulated by an under-
lying skeleton; the high resolution polygon model had a
deformable mesh of 2022 polygons, while the low resolu-
tion polygon model had only 808 polygons for a deformable
mesh. The low resolution model was created by applying
the 3D Studio Maxmultiresmodifier to the high resolution
model. The modifier allows one to manually maintain part
of the mesh at full resolution while reducing the LOD of
the rest. Initially, we chose this option in order to keep a
high number of polygons around the areas that would be de-
formed most by the joints. However, this manual selection is
only necessary when simplifying meshes to very low resolu-
tions, so we used automatic simplification. We automatically
simplified the mesh as much as possible, without making the
simplified version look different from the original, resulting
in a mesh of 40% of the number of vertices of the original.

Figure 7: High resolution, low resolution, impostor, stick fig-
ure and point light source model.

Impostors were the third type evaluated and the same pre-

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

generated approach was used as in the other experiments.
All geometric and impostor representations were dynami-
cally lit in the experiments. A stick figure was the next type
and was created by drawing lines between the joints of the
underlying skeleton. This representation was used in order to
compare our findings with those of Hodgins et al. [HOT98].
Studies have shown that 13 moving light points, attached to
the joints of the body, suffice to create a rich perception of a
moving human figure [Joh73]. Using only 13 dots to display
a human is the simplest representation and it is also the least
computationally expensive of the 5 models, so we included
this representation as the lowest LOD.

5.2. Method and Participants

We used a between-groups design for this experiment, where
each group viewed a different model representation. This ap-
proach was chosen as we felt that, if allowed to view all of
the models, the participants might base their judgments on
characteristics of the models rather than the actual differ-
ences in motion, e.g., the impostor images contain artefacts
along the edges which may cause the participant to focus
on the artefacts instead of the overall motion if they had al-
ready seen the geometric model which showed less artefacts.
Sixty-five participants (23 females, 42 males, aged between
17 and 35) took part in the experiment and were given book
tokens as a reward for participation. They ranged from col-
lege staff, postgraduate students, undergraduate students and
professionals and were all from different educational back-
grounds. All participants were naive as to the purpose of the
experiment and had normal or corrected to normal vision.
The experiment was displayed on a 21 inch flat screen C.R.T.
monitor. A grey-scale checkerboard floor plane was used so
that the movement of the model could be seen clearly. All
models were rendered in grey-scale in order to eliminate any
bias due to colour that may have occurred. Lighting and ren-
dering conditions were constant throughout the experiment.

5.3. Creating the Motion Variation

A reference motionR was created which consisted of 10
frames of a key-framed walk motion. This motion was cyclic
and was repeatedly looped until 4 seconds of animation were
recorded. The 10 frames ofR were modified a number of
times to create the arm, leg, and torso motion variation se-
quences. The arm and the torso variations were chosen as
they were also used by Hodgins et al. [HOT98].

Firstly, the performance of the participants in distinguish-
ing smaller and larger dynamic arm motions was examined.
Assessing the arm motion variation involved comparingR
to a set of motions which altered the distance of the arm
from the body at certain keyframes.kAl andkA2 were the
keyframes inR where the arms were furthest away from
the body (Figure 8).kA1andkA2were modified by a fixed
amount 10 times, and the resulting 10 motions represented

Figure 8: Ten frames of animation of the reference motion
R. kA1 is the frame highlighted on the left, kA2 is the frame
highlighted on the right.

the 10 different steps in the staircase analysis. The modifica-
tions were made by rotating the upper left arm joint inkAl
at the shoulder along the positive horizontal axis by a fixed
number of degrees. The right arm was altered by the same
amount in the reverse direction. The pose of the skeleton at
kA1 was then copied and the inverse pose was pasted onto
the skeleton atkA2.

The 10 altered biped motion sequences were then ex-
ported and loaded into an OpenGL rendering system and ap-
plied to our high and low resolution models with deformable
meshes. The stick figure and point light source models were
also rendered using these motion sequences. All of the al-
tered motions were cyclic and looped until 4-second movies
could be recorded. Forty of these movies were recorded
(10 for each model type). The 10 impostor sequences were
then rendered from the high resolution polygon model and
recorded as movies. A similar test was conducted to test the
ability of the participants in distinguishing larger and smaller
leg motions for all representations. A further set of 50 mo-
tion sequence movies was created in a similar manner to
the arm motions, except that the leg was altered by iterative
translations along the longitudinal and vertical axes. Finally,
the ability of the participants to distinguish modifications to
the torso was tested. A further 50 movies were created by
making kinematic alterations toR. In this instance, the alter-
ations were made by iteratively rotating the lower spine of
the skeleton by a fixed number of degrees around the longi-
tudinal axis.

5.4. Experiment Procedure

Participants viewed pairs of movies, and were asked to spec-
ify whether they thought that the motion of the character in
the movies was the “same” or “different” (Figure 9). They
were told to judge difference based on the overall motion
of the character and not to focus on colour, speed or any
other factors which were constant throughout the experi-
ment. After the first 4-second movie was viewed, the par-
ticipant pressed a “view next” button on the screen using the
mouse. The next movie was then presented for 4 seconds
and the participant had to decide whether they thought that
the motions were the same or different and press the cor-
responding on-screen button. Five groups of 13 participants

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

took part, with each group seeing a different model repre-
sentation.

Figure 9: Participant taking part in the experiment.

Experimental data was gathered using a staircase proce-
dure. This experiment consisted of 3 ascending staircases
and 3 descending staircases randomly interleaved, i.e., an
ascending and descending staircase for each of the motion
variation types. The ascending staircases began with a com-
parison of the reference motionR to itself, and the descend-
ing staircases began with a comparison ofR with the most
exaggerated motion sequence (i.e., step 10 of the staircase).
For the ascending staircases, a simple up-down staircase was
employed so that, for every correct response, 2 steps were
added to the current step, and for every incorrect response,
1 step was subtracted from the current step. A reversal oc-
curred when the participant made a different decision on the
comparison from the decision they made about the previous
comparison. We adapted the step-size after the first rever-
sal so that only 1 step was added or subtracted. We felt that
this refinement would keep the comparisons occurring in the
area of interest i.e., close to the point at which they began to
distinguish the differences in motion. Once the refinement
to the step-size was made, the procedure was continued un-
til 8 reversals were recorded. For the descending staircases,
the same procedure was employed, but with the steps de-
creasing in the opposite direction. Staircases were randomly
interleaved, and participants were randomly shown eitherR
or the motion sequence at the current step-size. This gave a
50% detection threshold which is used to estimate the PSE.

5.5. Joint Weighting

The animations were created by altering certain joints by
discrete amounts, but it was not immediately obvious how
to compare the changes made to the arms with those of the
legs or torso. Originally we used steps 0-10 for the arm, leg,
and torso step-sizes. This scale told us nothing about the ac-
tual differences in motion, e.g., the arm moved only a small

amount between steps whereas the legs moved a much larger
amount. In order to be able to compare the performance of
the different models used for rendering across all motion
variation types, a scheme was needed to scale the variations
and consequently the step-sizes. This involved finding a dis-
tance metric to compute the actual amount of motion change
made at each step for the arm, leg and torso animations.

We took the approach of comparing the pose of the skele-
ton at the keyframe with the most exaggerated pose between
two steps of the motion variation. The distance metric de-
scribed in [LCR02] was used to compute the difference be-
tween the 2 frames of animation. This distance metric sums
the weighted differences of joint orientations and velocities.

For the arm animations, we computed the distance metric
between the most exaggerated arm pose of the skeleton at
stepθi , 0≤ i ≤ 10, and the corresponding pose at stepθi+1.
Similarly for the leg and torso motion, we chose the most
exaggerated animation keyframe at stepθi and compared it
to the corresponding frame in stepθi+1.

Lee et al.’s cost function contains a parameterwk which
adjusts the transition cost by weighting the differences in
orientation of the joints. They report setting the weights to
one for the important joints: shoulders, elbows, hips, knees,
spine and pelvis; and all others are set to zero. We propose
that the joints should be weighted depending on how much
of a change is observed when that joint is moved. An empir-
ical approach was taken to weighting the joints in an attempt
to capture this observed change. We approximated the im-
portance of the joints based on their projected pixel area.
This area was computed by counting the number of pixels
for each joint of the skeleton that was applied to all of the
models at the appropriate camera angle and pose. The dis-
tance metric was computed for arm variation, leg variation
and torso variation, and was used to scale the step-sizes of
the experiments. It was found that the distance of the arm
variations was (dA = 0.049), the torso (dT = 0.483) and the
leg (dL = 1). The steps for the arm were then set todA, 2dA,
3dA up to 10dA, and similarly for the leg and torso varia-
tions.

5.6. Results

For each participant, the number of times that they viewed
a pair of motions at each stimulus level was recorded, along
with the number of correct responses that they gave at that
level. The percentages of correct responses were then plotted
against the stimulus level values. The data for the ascend-
ing and descending staircases were combined, and a sep-
arate curve was created for each motion variation type for
each participant. Psychometric curves were then fitted to the
datasets and, for each participant, a PSE and JND were cal-
culated from these curves. The PSE was the stimulus level
value at the 50% detection level. The JND was then found
by calculating the difference between the PSE and the stim-

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

ulus level value that corresponded to 75% correct responses
on the psychometric curve.

Firstly, we will look at the performance for the model
types over the whole dataset in order to get an overall picture.
We will then look in more detail at the results for each of
the motion variation types in the hope of gaining further in-
sights. A two-factor ANOVA with replication was performed
on the full dataset by collapsing all the recorded JND and
PSE values over model type.

Results showed no significant differences between the
mean PSE values of the participants when viewing different
model types (Figure 10). This implied that the point at which
people could notice differences in motion was the same for
all model types. However, this measure gave no indication of
their uncertainty. Similarly, an ANOVA was used to compare
mean JND values across all of the participants and showed
that there was a significant difference in their sensitivities
with respect to the changes viewed (Table 5). The signifi-
cances for the differences between model types indicate that
the motion of the impostor was closer to that of the high res-
olution polygon model than that of the low resolution model
(Figure 11).

We suggest that this is due to the fact that, even though
the impostor appears perceptually different to the high res-
olution model at the distance shown in the experiments, it
replicated the motion of the high resolution model accu-
rately. The low resolution model may not replicate this mo-
tion as effectively because there are fewer vertices on the
mesh, and even though it is the same skeleton used to deform
this mesh, the deformation loses subtle motion information.
As expected, the perception of the lowest LOD model (the
point light source model) was furthest from the high resolu-
tion model. The stick figure was a closer match, as it retained
the links between the joints of the skeleton.

We then looked closer at the results for the arm, leg and
torso motion variations. The arm motion was an example of
a very subtle motion, as it was altered by only a very small
amount each step, the torso was altered more than the arm
and the leg motions were altered by a large amount each
step. We used single factor ANOVAs to compare the means
of the PSE and JND values between the model types. A sum-
mary of the ANOVA results can be seen in Tables 6 and 7.
Figures 10 and 11 show an illustration of these results. The
granularity chosen for the steps was due to the inability to
dynamically create the impostor motions, each walk cycle
at each level took approximately 1 hour to compute with
a further 30 minutes of manual cleanup to recapture lost
viewpoints in frames. As discussed previously, the results
for the mean JND values of the full dataset highlighted a
trend where the performance for the high resolution and the
impostor were most similar, with the stick figure and the low
resolution at the next level and the point light source model
eliciting the worst scores. This same trend can be seen with
the JND values for the Leg motion variation, indicating that

the participants found it most difficult to notice changes in
the leg motion on the lowest LOD model.

JND comparison for all model types F2,72 P
High vs. Low 4.3 < 0.05
High vs. Stick 4.8 < 0.05
High vs. Point 17.7 ≈ 0

Impostor vs. Low 4.3 < 0.05
Impostor vs. Stick 4.8 < 0.05
Impostor vs. Point 18.0 ≈ 0

Low vs. Point 4.6 < 0.05

Table 5: ANOVA results of mean JND comparisons for
model types (Fcrit = 4).

Leg PSE Comparision F1,24 P
High vs. Low 4.71 < 0.04
High vs. Stick 4.39 < 0.05

Impostor vs. Low 4.6 < 0.04
Impostor vs. Stick 4.6 < 0.04

Torso PSE Comparison F1,24 P
High vs. Impostor 18.86 < 0.0005
Impostor vs. Low 12.14 < 0.005
Impostor vs. Stick 7.11 < 0.01
Impostor vs. Point 13.35 < 0.001

Table 6: ANOVA results of mean PSE comparisons (Fcrit =
4.3).

Arm JND Comparision F1,24 P
Impostor vs. High 7.52 < 0.01
Impostor vs. Low 7.3 < 0.01
Impostor vs. Stick 3.61 < 0.07
Impostor vs. Point 8.88 < 0.01

Leg JND Comparision F1,24 P
High vs. Stick 4.42 < 0.05
High vs. Point 11.31 < 0.003

Impostor vs. Point 9.55 < 0.005
Low vs. Point 5.25 0.03

Torso JND Comparison F1,24 P
High vs. Low 4.53 < 0.04
High vs. Point 10.83 ≈ 0

Impostor vs. Low 5.68 < 0.03
Impostor vs. Point 13.08 < 0.001

Stick vs. Point 5.19 < 0.03

Table 7: ANOVA results of mean JND comparisons (Fcrit =
4.3).

A similar overall trend is present for the arm and torso, as
illustrated by the mean JND values. However, surprisingly,
the impostor appears to be the most perceptible for the arm
motion variation, which may be due to the fact that it is pla-
nar and may have made the subtle arm motions more notice-
able. Also, the response to the torso motion variation does

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

Figure 10: (a) Mean PSE values for all motion variations collapsed over model type, (b) Mean PSE values for arm motion
variation, (c) Mean PSE values for torso motion variation, (d) Mean PSE values for leg motion variation. The vertical axis
shows differences in motion as estimated in Section 5.5.

Figure 11: (a) Mean JND values for all motion variations collapsed over model type, (b) Mean JND values for arm motion
variation, (c) Mean JND values for torso motion variation, (d) Mean JND values for leg motion variation.

not follow the overall trend, because participants were less
able to notice these changes on the low resolution model than
any other model representation. We attribute this to the fact
that the torso motion is the motion which moves the most
number of bones of the skeleton, and as the low resolution
model had fewer vertices to move than the high resolution
model, the resulting poor deformation had an effect on the
perception of the motion.

6. Discussion of Evaluation Results

In this section, we will discuss the advantage and disadvan-
tage of each virtual human LOD representation based on the
perceptual evaluation experiments. We hope that the our sug-
gestions will provide developers of real-time crowd systems
with a guide of when to use these LOD representations, in
order to balance realism with interactivity.

In Section 2, it was found that an impostor and its cor-
responding mesh representation are not perceptually equiv-
alent at a distance of less than a 1.16:1 pixel to texel ratio
when simultaneously displayed side by side. Additionally, in
Section 4, it was found that people could detect a virtual hu-
man switching between its impostor and mesh representation
at a distance of less than a 1.04:1 pixel to texel ratio. This is
lower than in the previous experiment, probably because the
two representations are never compared side by side. These
results provide developers with a metric of approximately a
1:1 pixel to texel ratio for the use of a pre-generated impostor
representation. Also, these test results could be considered
conservative, since the complexity of the test scene was ex-

tremely basic. We hypothesise that, in more complex scenes
containing several hundred humans, switching between an
impostor and a mesh representation could occur at a closer
distance and we plan to test this hypothesis.

Low resolution meshes can be generated that are percep-
tually equivalent to the high resolution mesh at particular
distances (Section 3). Since these models consist of fewer
triangles, the rendering cost of these resolutions is substan-
tially less when compared to that of the original high reso-
lution mesh. These results suggest that the high resolution
mesh should be replaced in our system with a simpler model
(depending on the distance from the viewer), since the ex-
tra detail in the high resolution mesh is not perceived by the
viewer, and therefore is unnecessary. The results also suggest
that we are using a mesh that is too detailed (2,170 triangles)
for the highest LOD at a distance less than 5 units.

In Section 5, we showed that a low resolution model was
not perceptually equivalent to the high resolution model at
conveying subtle variations in motion, whereas the impos-
tor representation was. Therefore, if the application requires
the motion of the models in the crowd to accurately repli-
cate the motion of the high level geometry, designers should
be aware that the lower the LOD of the character, the less
likely it is to retain the motion of the high level geometry
model. Impostors are better at replicating the motion of the
high resolution model, but due to texture memory considera-
tions, can only be used for a small set of pre-determined an-
imation sequences. Table 8 summarizes the advantages and

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

Pre-Generated Impostor Low Resolution Geometry
Advantage Disadvantage Advantage Disadvantage

Can appear visually Limited to animation Can appear visually High rendering cost
equivalent to high used in pre- equivalent to high
resolution meshes generated sequences resolution meshes

Small rendering cost Large texture memory Possible to have Doesn’t replicate the
consumption different animations motion of the high

resolution geometry well

Replicates motion well Texture memory
consumption minimal

Table 8: Comparison of advantages and disadvantages of the 2 different low LODrepresentations.

disadvantages of the two different representations, based on
our results.

It was also found in Section 2, that impostors are percep-
tually equivalent to the high resolution model at a pixel to
texel ratio of approximately 1.16, which corresponds to a
distance of 12.416 virtual world units. However, low reso-
lution meshes can be perceptually equivalent to their high
resolution mesh at a closer distance. By using the results
from Section 3, we can estimate the percentage of vertices
at which to generate a low resolution mesh that is indistin-
guishable from the high resolution model at the same dis-
tance as the impostor. This corresponds to a low resolution
mesh of approximately 27.5%. Due to the rendering cost
of each model (see Table 9), we suggest that it would be
advantageous to use the impostor instead of a low resolu-
tion mesh for virtual humans being displayed at a distance
greater than the 1.16 ratio or acting as scene extras. The dis-
tances at which different LOD representations are perceptu-
ally equivalent to the highest resolution mesh is illustrated in
Figure 12.

LODGeometry Distance CostLOD Crowd Size
(units) (ms) @ 30FPS

High Res 100% < 5.0 0.0645 370
Low Res 36.4% > 5.0 0.0206 1,615
Low Res 31.7% > 8.0 0.0185 1,804
Low Res 27.5% > 12.416 0.0163 2,044
Low Res 22.5% > 16.0 0.0135 2,464
Impostor 12.416 0.00697 4,777

Table 9: The distance at which LODGeometrymodels are per-
ceptually equivalent and their associated rendering cost.

References

[Cor62] CORNSWEET T.: The staircase method in psy-
chophysics.American Journal of Psychology 75(1962),
485–491.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: A real-time geometry /
impostor crowd rendering system.SI3D ’05: Proceed-
ings of the 2005 symposium on Interactive 3D graphics
and games(April 2005), 95–102.

[Ebb98] EBBESMEYERP.: Textured virtual walls - achiev-
ing interactive frame rates during walkthroughs of com-
plex indoor environments.VRAIS ’98: Proceedings of the
Virtual Reality Annual International Symposium(1998),
220–228.

[HBF02] HARRISON J., BOOTH K., FISHER B.: Experi-
mental investigation of linguistic and parametric descrip-
tions of human motion for animation.Computer Graphics
International(2002), 154–155.

[HDMO05] HAMILL J., DOBBYN S., MCDONNELL R.,
O’SULLIVAN C.: Perceptual evaluation of impostor rep-
resentations for virtual humans and buildings.Computer
Graphics Forum (Proceedings of Eurographics ’05) 24
(2005), 623–633.

[HOT98] HODGINS J. K., O’BRIEN J. F., TUMBLIN J.:
Perception of human motion with different geometric
models. IEEE Transactions on Visualization and Com-
puter Graphics 4, 4 (1998), 307–316.

[HRD04] HARRISON J., RENSINK R., DEPANNE M. V.:
Obscuring length changes during animated motion.ACM
Transactions on Graphics (TOG) 23, 3 (2004), 569–573.

[Joh73] JOHANSSON G.: Visual perception of biological
motion and a model for its analysis.Perception and Psy-
chophysics 14(1973), 201–211.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Perceptual Evaluation of VirtualHuman Models

Figure 12: Distances at which different LOD representations are perceptually equivalent to the highest resolution mesh.

[Kle01] KLEIN S. A.: Measuring, estimating and under-
standing the psychometric function:a commentary.Per-
ception and Psychophysics 63, 8 (2001), 1421–1455.

[LCR02] LEE J., CHAI J., REITSMA P.: Interactive con-
trol of avatars animated with human motion data.ACM
Transactions on Graphics (TOG) 21, 3 (2002), 491–500.

[Lev71] LEVITT H.: Transformed up-down methods in
psychoacoustics.Journal of the Acoustical Society of
America 49, 2 (1971), 467–477.

[LHEJ01] LINSCHOTEN M., HARVEY L., ELLER P.,
JAFEK W.: Fast and accurate measurement of taste
and smell thresholds using a maximum-likelihood adap-
tive staircase procedure.Perception and Psychophysics
(2001), 1330–1347.

[MAEH04] M ANIA K., ADELSTEIN B., ELLIS S. R.,
HILL M.: Perceptual sensitivity to head tracking latency
in virtual environments with varying degrees of scene
complexity. APGV ’04: Proceedings of the 1st Sympo-
sium on Applied Perception in Graphics and Visualization
(2004), 39–47.

[MDO05] MCDONNELL R., DOBBYN S., O’SULLIVAN
C.: Lod human representations: A comparative study.
Proceedings of the First International Workshop on
Crowd Simulation (V-CROWDS ’05)(2005).

[ODGK03] O’SULLIVAN C., DINGLIANA J., GIANG T.,
KAISER M. K.: Evaluating the visual fidelity of physi-
cally based animations.ACM Transactions on Graphics
(TOG) 22, 3 (2003), 527–536.

[OHJ00] OESKERM., HECHT H., JUNG B.: Psychologi-
cal evidence for unconscious processing of detail in real-
time animation of multiple characters.Journal of Visual-
ization and Computer Animation 11, 2 (2000), 105–112.

[RP03] REITSMA P., POLLARD N.: Perceptual metrics for
character animation; sensitivity to errors in ballistic mo-
tion. ACM Transactions on Graphics (TOG) 22, 3 (2003),
537–542.

[Tre95] TREUTWEIN B.: Adaptive psychophysical proce-
dures.Vision Research 35, 17 (1995), 2503–2522.

[WB03] WANG J., BODENHEIMER B.: An evaluation of
a cost metric for selecting transitions between motion seg-
ments. SCA ’03: Proceedings of the 2003 ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Computer An-
imation(2003), 232–238.

c© The Eurographics Association 2006.

EUROGRAPHICS 2006 Tutorial

Populating Virtual Environments with Crowds: Navigational
Strategies

S. Dobbyn and C. O’Sullivan

Interaction, Simulation and Graphics (ISG) Lab, Trinity College Dublin, Ireland

Abstract
Urban environments are far from being obstacle-free. Therefore, virtual humans wandering around this type of
environment without obstacle avoidance would result in them walking through objects such as buildings and the
overall realism of the simulation would be greatly reduced. This part of thetutorial will describe techniques
implemented to simulate basic navigational strategies for characters.

1. Introduction

Typically, obstacle avoidance involves the virtual human
checking whether its steering vector intersects an object and,
if so, it steers in some way to avoid it. While the performance
of this method can be improved by checking only those ob-
jects within the same node as the virtual human, this method
would become computationally demanding as the number
of humans and objects in each node increases. Given that
we want to populate an environment full of static obstacles
with a large number of virtual humans, the method of obsta-
cle avoidance must be efficient enough so as not to unduly
impact on performance.

2. Background

2.1. Path Finding

Path finding is necessary for humans to navigate the envi-
ronment they inhabit in a successful and realistic manner. In
order to do this, the environment needs to store pathfind-
ing information across which a search can be performed.
Typically, this is achieved by adding an invisible layer of
nodes for the environment’s terrain, where each node stores
all accessible neighbouring nodes. Using this information, a
virtual human can perform a search across these nodes for
the shortest walkable path between its current position and
goal position. While various search algorithms exists, such
as simple breadth or depth first searches, A∗ has become the
standard in modern game development as it provides good,
predictable performance without compromising optimality.
To improve the realism of the path chosen, other important

information can be stored in the nodes so that the search
takes into account other heuristics in addition to distance,
such as the danger element, or the terrain difficulty of a path.
For a detailed discussion of the path-finding problem and the
A∗ algorithm, see [Sto96,HS02].

2.2. Obstacle Avoidance

To prevent the human colliding with the environment and
other agents, Tecchia et al. utilize a space discretization ap-
proach [TC00]. Using a height-map to store the height of
the environment at each point, the human performs collision
avoidance if the difference in height between its current and
next position is above a certain threshold. Otherwise, the hu-
man moves to its new position, updating his height above
the ground based on the height-map. To avoid the humans
getting too close to each other, a collision-map is used to
store which positions in the map are occupied. The human’s
direction is adjusted depending on whether there are other
humans in a 3×3 neighbourhood.

In [TLC01], Tecchia et al. extended their previous re-
search on collision avoidance to use a platform that seg-
ments the virtual world into a 2-D grid in order to accel-
erate the development of agent behaviours. The 2-D grid is
composed of 4 layers, where the grid cells in each layer con-
tain specific data to govern the behaviour of individuals. The
four types of layers are: inter-collision detection layer, col-
lision detection layer, behaviour layer, and callback layer.
The first two layers are used to compute collision detection
between an agent and its environment or with other agents,
while the other two layers provide more complex and in-

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Navigational Strategies

dividual behaviours. The behaviour layer encodes specific
behaviour in each grid cell as a colour. Depending on the
cell that the agent is inhabiting, the colour-encoded behav-
iour instructs the agent to perform simple actions such as
wait, or turn left. The callback layer provides for more com-
plicated agent-environment behaviour using an event-driven
approach. This allows an agent to perform actions, such as
waiting at a bus stop and getting onto the bus, by activating
the callback when the bus arrives. The main advantage of
this layer is that, even though the associated behaviours are
quite complicated, they are only executed when needed.

2.3. Steering Behaviours

Reynolds [Rey87] created an artificial life technique for
simulating the flocking behaviours exhibited in nature by
schools of fish, flocks of birds, and herds of animals, based
on a particle system approach. Particle systems are a large
collection of entities, each having its own behaviour or rules
that alter its properties such as position and velocity. By sim-
ulating generic simulated flocking creatures, termedboids,
as particles, Reynolds defined three simple steering behav-
iours from which the boids’ flocking behaviour emerges. In
addition to these steering behaviours, Reynolds improved
the boid’s navigational system by allowing them to per-
ceive their dynamic environment in order to perform obsta-
cle avoidance, and by simulating the laws of physics ruling
the boids’ motion e.g., gravity, thrust, and lift in the case of
a bird. These three steering behaviours are:
• Separation:

steers a boid to avoid other local boids.
• Alignment:

steers a boid towards the average direction of heading of
local boids.

• Cohesion:
steers a boid towards the average position of local boids.
Since the pioneering work of Reynolds [Rey87], method-

ologies from many fields have been employed to address the
problem of motion control for virtual humans [Vin97,Rey99,
Pot99]. Although AI techniques [HP88,BY95,FTT99] have
shown very promising results, such methods do not scale
well with the number of virtual humans or obstacles and
therefore are not suited for real-time applications. Alter-
natively, learning, perception, and dynamics-based tech-
niques are easily adaptable to dynamically changing envi-
ronments [TT94, NRTT95, HP97, BMH98]. The idea of us-
ing force fields around virtual humans in order to guide
them originated from work on path planning in robot-
ics [GLM98,GLM99]. Egbert and Winkler proposed a force-
field technique which used a vector field around objects to
prevent collisions between them [EW96].

3. Path Finding

With a fixed-sized grid, each node needs to store only the
node accessible in the North, South, East and West direc-

tion. The time taken for the A* search to find the shortest
path can be reduced by constructing a grid of larger rectan-
gular nodes of either walkable or blocked values (see Fig-
ure 1 (c)). Since the nodes are of variable size, several nodes
can be accessible from a node in a particular direction. To
take this into account, each node stores four separate lists of
nodes, where each list contains the nodes accessible in one
of the directions. For example, Figure 1 (b) and (d), shows
the nodes returned by the A* search (shown in green), be-
tween its current position (shown in red) and its destination
(shown in blue).

For virtual humans far from the viewer, the path stored
in the walk task can be constructed as a series of straight
lines connecting the position of each node in the path. Since
the nodes are of different sizes, a node’s position with re-
spect to a neighbouring node is the mid-point of their con-
necting edge (shown in yellow in Figure 1 (e) and (f)). The
virtual human is orientated towards the position of the next
node, and the human is translated along this direction. Once
the virtual human reaches a node in the path, its direction
is oriented towards the next node and this continues until it
reaches its final destination node. The problem with using
a straight-line path is that it can result in the virtual human
performing sudden large and unrealistic changes in the direc-
tion it is walking (see Figure 1 (e)). Therefore, it should only
be used when these artefacts are imperceptible to the viewer.
For a higher level of detail, a B-spline curve is plotted, using
the path’s nodes as control points, to provide smoother di-
rectional changes (see Figure 1 (f)). This requires additional
computations to translate the virtual human along the curve,
but results in a more realistic behaviour and therefore should
be employed for important characters.

4. Steering Behaviour: Obstacle Avoidance

To control each virtual human’s movement in the world, we
use Reynold’s approach where each human is simulated as a
simple vehicle model whose properties are based on a point
mass approximation [Rey99]. This model allows a very sim-
ple and computationally cheap physically-based model and
for this reason it is well suited to controlling the movement
of a large number of virtual humans. Using this model, spe-
cific steering behaviours can be defined for the virtual hu-
man.

In an obstacle-free world, the new position of a walking
virtual human (P’) at each time-step can easily be calculated
using its current position (P), its steering vector (−→S) and the
distance travelled (d) between its current keyframe and the
last keyframe of its walk animation (see Equation 1).

P′ = P+
−→S ∗d (1)

To avoid a virtual human walking in the same direction,
we can rotate its steering vector at every time-step by certain

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Navigational Strategies

Figure 1: (a) Grid consisting of fixed-size nodes, (b) Path returned by A* search for fixed-sized nodes, (c) Grid consisting of
variable-sized nodes, (d) Path returned by A* search for variable-sized nodes, (e) Straight Line path (Low LOD) and (f) B-spline
path (High LOD).

amount, thus generating a random steering orwanderingbe-
haviour. However, this results in the directional vector oscil-
lating and the virtual human appears to be unable to decide
on where it is going. In order to make the wandering behav-
iour more believable, the directional vector is not changed
every time-step but only every 200 milliseconds and this re-
sults in the virtual human wandering around its environment
in a more coherent manner. Additionally, by constraining the
maximum amount the steering vector can be rotated to±
2.8125 degrees, the virtual human does not perform large
unrealistic directional changes while it walks.

Due to the nature of the environment (a city filled with
vertically rising structures), we perform collision detection
in 2D using a top-down map of walkable areas similar to
that described in [TLC02] and [LMM03]. We pre-generate
a set of maps of walkable areas orwalk-mapsby captur-
ing an orthographic top-down view of the city model in the
OpenGL depth buffer. We store the city’s pavements (in-
cluding tunnels through buildings and pavements occluded

by over-passing bridges) as walkable, and buildings, roads,
and other obstacles as blocked, by selecting appropriate near
and far planes when rendering the city model into the depth
buffer. Each map is 800×600 pixels, where a pixel is white if
it is walkable otherwise black if it is blocked (Figure 3) and
corresponds to a physical area of 33×33cm. These 1 bit data
(walkable or blocked) maps require 60KB of memory and
sixty-three walk-maps for the 4.5km2 area covered by the
virtual city were pre-generated, requiring a total of 3.6MB
of memory for the city.

To perform obstacle avoidance, we perform a simple
lookup on the walk-map to determine if the virtual human’s
newly calculated position is walkable. If it is, the human
moves to its new position. However, if it is blocked, the hu-
man needs to steer away. The simplest way is to allow the
virtual human to perform anabout turnby rotating its steer-
ing vector by 180 degrees, but this provides unrealistic re-
sults.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Navigational Strategies

Figure 2: Virtual human using its steering vector to avoid a wall.

Our approach is to allow the virtual human to check
whether the positions to the left and right of its new blocked
position are free and it uses this information to either:

• Randomly choose which direction to rotate its steering
vector if both positions are walkable

• Rotate its steering vector to the right if it is walkable
• Rotate its steering vector to the left if it is walkable
• Perform an about-turn if both positions are blocked

While this provides a more realistic collision avoidance
behaviour (Figure 2), where the human seldomly needs to
perform the unrealistic about turn, the problem with this ap-
proach is that it only takes into account what is free ahead
of the virtual human, which can result in the human walk-
ing very close to and sometimes through obstacles that are
to the side of it. Since the edges of buildings and roads are
linear in nature, we can improve the realism of the obsta-
cle avoidance by making sure the humans walk along these
edges without getting too close to them. We implement this
by looking up the positions to the left and right of its current
position every second. If one of these positions is blocked,
the human steers away from this area by rotating its steering
vector in the opposite direction.

Another type of map that we use for obstacle avoidance
is a potential field map. The idea behind potential fields is
that each obstacle is considered to have a repulsion force
whose strength is inversely proportional to the distance from
it. We pre-generate these maps for the buildings, roads and
other obstacles in the environment by calculating the poten-

tial field force in the x-z plane at every walkable pixel in the
walk map. These maps are stored as 24-bit data, thus requir-
ing 1.4MB of memory per map and 88.2MB for the city.

For each walkable pixel, the total force at that pixel (∑−→F)
is calculated by summing the repulsion forces of any blocked
pixels in a 7×7 neighbourhood affecting the walkable pixel.
The summed force’s normalised x and z component−→F x and
−→F z are mapped to a value between 0 and 255 and stored in
the red and green component, respectively, of the potential
field map (using Equation 2). To store the magnitude of the
summed forces|∑−→F |, the maximum magnitude of a force
|
−→F MAX| exerted on a pixel needs to be calculated by sum-

ming all of the forces exerted on a walkable pixel inhabit-
ing a completely blocked neighbourhood. Using Equation 2,
|∑−→F | is mapped between 0 and 255 and finally stored in the
blue component of the potential field map.

R = ((
−→F x ∗0.5)+0.5)∗255

G = ((
−→F z∗0.5)+0.5)∗255

B =
|∑−→F |

|
−→F MAX|

∗255

(2)

Using these maps, the virtual human steers itself away
from the obstacles by calculating the force, if any, at its
newly calculated position and uses this to rotate its steer-
ing vector. The main advantage of potential fields maps is

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Navigational Strategies

Figure 3: (a) Walk map. (b) Potential field map. (c) Height map.

that they prevent the human walking too close to obstacles
to the side of it, since the obstacle’s force field will push it
away. However, the main problem is that these maps require
a lot of memory and thrashing occurs due to the continuous
paging in and paging out of this memory as a result of the
camera moving around the environment. While the size of
a potential field map can be reduced to 0.9MB by storing
only the direction of the force and not its magnitude, the city
still requires a total of 60.4MB of memory. Our solution to
minimize this thrashing is to use a LOD approach, where the
more simple walk-maps are used for the majority of the city
and the potential field maps are only used for selected areas
that are considered more important to the simulation.

Finally, in order to position the virtual humans so that
they do not intersect with the ground, we use aheight-field
map. We pre-generate these images in a similar manner to
the walk-maps, but the near and far planes are appropri-
ately selected so that the height of the walkable areas are
mapped to a value between 0 and 255 in the depth buffer,
thus requiring 180KB of memory per map. By looking up
this height value at its new position, the virtual human can
use this to adjust its height above the ground plane. It should
be noted that the ground is at the same height throughout the
city and therefore height-field maps are not necessary. How-
ever, these maps have been successfully implemented with
another virtual environment where the ground consisted of
several planes at different heights connected by ramps (Fig-
ure 4).

5. Steering Behaviour: Group Formation

In the real world, while a large number of humans walk by
themselves as they carry on with their everyday lives, it is
also common for humans to form and walk in groups while
conversing. To enhance the realism of a crowd populating a
virtual city, virtual humans need to form groups and interact
with each other. In our system, we allow virtual humans to
form groups of two (Figure 5) and we base our approach on
the research by Reynolds [Rey99] on three steering behav-
iours related to groups of characters: cohesion, separation

Figure 4: Virtual human using a height map so that they do
not intersect with the ground.

and alignment. We use these behaviours to determine how a
couple should react with each other when moving through
the environment, while still avoiding static obstacles.

The cohesion steering behaviour allows two virtual hu-
mans to form a group and works by steering the couple to-
wards their average position. By finding the couple’s aver-
age position, each of the virtual human’s steering vector is
rotated towards that average position. The separation steer-
ing behaviour prevents the couple getting too close to each
other. Based on their average position, if each virtual hu-
man is within a certain distance of each other, their steering
vector is rotated away from this position. Finally, the align-
ment steering behaviour allows the couple to align their di-
rection with each other. To align their direction, each virtual
human’s steering vector is rotated in the direction of the cou-
ple’s average steering vector.

References

[BMH98] BROGAN D., METOYER R., HODGINS J.: Dy-
namically simulated characters in virtual environments.

c© The Eurographics Association 2006.

S. Dobbyn & C. O’Sullivan / Navigational Strategies

Figure 5: Virtual humans walking in groups using cohesion,
separation and alignment steering behaviours.

IEEE Computer Graphics and Applications 18, 5 (1998),
59–69.

[BY95] BEARDON C., YE V.: Using behavioral rules in
animation. Computer Graphics: Development in Virtual
Environments(1995), 217–234.

[EW96] EGBERT P. K., WINKLER S. H.: Collision-free
object movement using vector fields.IEEE Computer
Graphics and Applications 16, 4 (1996), 18–24.

[FTT99] FUNGE J., TU X., TERZOPOULOSD.: Cognitive
modeling: Knowledge, reasoning and planning for intelli-
gent characters.SIGGRAPH ’99: Proceedings of the 26th
Annual Conference on Computer Graphics and Interac-
tive Techniques(1999), 29–38.

[GLM98] GOLDSTEIN S., LARGE E., METAXAS D.: Dy-
namical autonomous agents: Game applications.Proceed-
ings of Computer Animation ’98(1998), 25–33.

[GLM99] GOLDSTEIN S., LARGE E., METAXAS D.:
Non-linear dynamical system approach to behaviour mod-
eling. The Visual Computer 15(1999), 349–369.

[HP88] HAMANN D., PARENT R.: The behavioral test-
bed: Obtaining complex behaviours from simple rules.
The Visual Computer 4, 6 (1988), 332–347.

[HP97] HODGINS J. K., POLLARD N. S.: Adapting sim-
ulated behaviors for new characters.SIGGRAPH ’97:
Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques(1997), 153–162.

[HS02] HJELSTROMG., SMITH P.: Polygon soup for the
programmer’s soul: 3d pathfinding.Proceedings of the
Game Developers Conference(2002).

[LMM03] L OSCOSC., MARCHAL D., MEYER A.: Intu-
itive crowd behaviour in dense urban environments using
local laws. Theory and Practice of Computer Graphics
(2003), 122.

[NRTT95] NOSER H., RENAULT O., THALMANN D.,
THALMANN N.: Navigation for digital characters based
on synthetic vision, memory and learning.Computer and
Graphics 19, 1 (1995), 7–19.

[Pot99] POTTINGER D.: Coordinated unit movement.
Game Developer Magazine 3, 3 (January 1999), 207–217.

[Rey87] REYNOLDS C.: Flocks, herds, and schools: A
distributed behavioral model.SIGGRAPH ’87: Proceed-
ings of the 14th Annual Conference on Computer Graph-
ics and Interactive Techniques(1987), 25–34.

[Rey99] REYNOLDS C.: Steering behaviors for au-
tonomous characters.Proceedings of the Game Devel-
opers Conference(1999), 763–782.

[Sto96] STOUT B. W.: Smart moves: Intelligent path-
finding. Game Developer Magazine(October 1996), 28–
35.

[TC00] TECCHIA F., CHRYSANTHOU Y.: Real-time ren-
dering of densely populated urban environments.Pro-
ceedings of the Eurographics Workshop on Rendering
Techniques(2000), 83–88.

[TLC01] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Agent Behaviour Simulator (ABS):a platform for urban
behaviour development. GTEC ’01: The First Inter-
national Game Technology Conference and Idea Expo
(2001).

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Visualizing crowds in real-time.Computer Graphics Fo-
rum 21, 4 (2002), 753–765.

[TT94] TU X., TERZOPOULOS D.: Artificial fishes:
Physics, locomotion, perception, behavior.SIGGRAPH
’94: Proceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques(1994), 43–50.

[Vin97] V INCKE S.: Real-time pathfinding for multiple
objects.Game Developer Magazine(June 1997).

c© The Eurographics Association 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

