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Abstract

Traditionally, hardware rasterizers only support the Phong lighting model in combination with Gouraud shading
using point light sources. However, the Phong lighting model is strictly empirical and physically implausible.
Gouraud shading also tends to undersample the highlight unless a highly tesselated surface is used. Hence, higher-
quality hardware accelerated lighting and shading has gained much interest in the recent five years.

The research on hardware lighting and shading is two-fold. On the one hand, better lighting models for local il-
lumination (assuming point light sources but evaluated per pixel) were demonstrated to be amenable to hardware
implementation. On the other hand, recent research has demonstrated that even area lights, represented as envi-
ronment maps, can be combined with complex lighting models. In both areas, many articles have been published,
making it hard to decide, which algorithm is well-suited for which application. This state-of-the-art report will
review all relevent articles in both areas, and list advantages and disadvantages of each algorithm.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors; 1.3.3
[Computer Graphics]: Bitmap and frame buffer operations; 1.3.7 [Computer Graphics]: Color, Shading, Shadowing

and Texture

1. Introduction

Until the mid-1980s, computer graphics was mainly con-
cerned with offline rendering. Many techniques, such as ra-
diosity and ray tracing were developed to create photorealis-
tic still images, often taking hours to compute.

Yet many applications call for interactive image synthesis.
Initial systems could only provide simple wireframe views,
but the true potential of interactive 3D graphics became soon
apparent. A huge effort was undertaken to improve the speed
and quality of interactive techniques. The biggest leap for-
ward was the introduction of hardware support by com-
panies like SGI, which offered high-end workstations with
hardware-accelerated 3D graphics. Soon a new direction of
research was born: real-time rendering. Many new applica-
tion areas, such as Virtual Reality, benefitted and still benefit
from the advances in this field of research.

Although interactive 3D graphics became more and more
commonplace, hardware 3D support could only be found in
high-end workstations until the mid-1990s. Then 3D games
like Quake appeared, and soon graphics hardware became
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available for the mass PC market. The first PC 3D graph-
ics cards mainly tried to catch up with developments in the
high-end market. After only a few years, at the end of the
century, PC graphics started to take the lead. Nowadays, at
the end of 2002, low-end PC graphics hardware is capable
of handling over 300 million vertices per second, and the fill
rate achieves several gigapixels per second. This increase in
performance also raises expectations of higher and more re-
alistic image quality. Today, realistic shading is one of the
main areas in research on real-time rendering.

Over the recent years, many different algorithms have
been proposed in this area. This STAR will present all the
related algorithms in a common framework. The advantages
and disadvantes of the algorithms will be listed.

We first present the necessary background in the area
of materials and material representation. Then we continue
with background on lighting computations and how these
computations can be approximated to speed up the process.
Before we go on to the actual algorithms, we present the
hardware capabilities of current graphics hardware, such that
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the reader understands the difficulties to incorporate better
lighting and shading in real-time rendering.

2. Materials

First, we would like to show the different kinds of materi-
als that exist in reality. We take a fairly practical approach,
and do not classify the materials based on their exact phys-
ical properties but rather qualitatively. We then introduce
the bidirectional reflectance distribution function, which de-
scribes how light is reflected from a surface. It is the most
important function in order for rendering realistic materials.

2.1. Classification

We will classify materials into three categories: opaque,
translucent, and transparent. These different classes are not
strictly disjunct, but they help understand with which kinds
of materials we are concerned.

2.1.1. Opaque Materials

Opaque materials, as the name already suggests, are not
translucent at all. This includes for example stone, wood,
metals, etc. Light does not penetrate into opaque materials,
it is only reflected off the surface!. Opaque materials can
be either homogeneous (optical properties are constant) or
heterogeneous (optical properties vary across the surface).
A good example of a heterogeneous material is wood, as it
exhibits a typical ring structure.

Opaque materials offer various types of reflections. Lam-
bertian diffuse reflections are view-independent, i.e. they do
not depend on the viewing position, which is for example
(almost) true for white chalk. A reflection is called specular,
if a material is highly polished, such as a mirror or smooth
metals. A glossy reflection is called everything between dif-
fuse and specular reflections and is often generated by rough
surfaces; varying roughness leads to varying glossiness. A
glossy reflection of a light source is often called a highlight.
See Figure 1 for a depiction of these three kinds of reflec-
tions.

diffuse glossy specular

Figure 1: Different kind of reflections from a single beam of
light. Light hitting a surface is reflected in various directions.

There are two main types of opaque materials: dielectrics

Tn reality, light may penetrate the material to some extent, but not
enough that it needs to be simulated for rendering purposes.

and metals. The highlight of a dielectric has the color of the
light source (e.g. plastic, which consists of a white substrate
with color pigments that do not contribute to a highlight),
whereas metals change the color of the highlight.

The reflection properties of all opaque materials can be
described by a six-dimensional function, which depends on
the position on the surface, the incident light direction, and
the viewing direction. For more detail see Section 2.2.

Most work on real-time shading is concerned with opaque
materials, see Section 6 and Section 7.

2.1.2. Translucent Materials

In contrast to opaque materials, light enters a translucent ma-
terial, is scattered inside the material and finally leaves the
material again. In a translucent material a photon can enter
and leave the material at very different positions (called sub-
surface scattering). This creates a very distinct look that is
e.g. known from small marble statues but also from skin. For
example, when light shines from behind on someone’s ear,
it will usually look very reddish from the front, since light
is scattered inside the blood vessels and exits the ear at the
opposite side towards the front, see Figure 2 for an exam-
ple. Other materials that fall into that category include milk,
certain plastics, alabaster, etc.

k=3

Figure 2: An example of possible light paths through a
translucent material.

Conceptually, translucent materials could be represented
by an eight-dimensional function, where 2 times 2 dimen-
sions are used for light entrance and exit position, and 2
times 2 dimensions for the incoming and outgoing light di-
rection. Since this 8D function depends highly on the ge-
ometry of the object, no analytical formulation can be used.
Instead, the 8D function must be sampled or computed on
the fly.

Only very recent work 23.46.52 deals with interactive ren-
dering of translucent materials. Precomputed radiance trans-

fer 71 can easily be extended to include subsurface scattering
72

2.1.3. Transparent Materials

Transparent materials, such as glass, form a special case of
translucent materials. Light enters transparent materials but
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will generally not be scattered inside the material. It will pass
through the material and simply exit again.

Nonetheless, transparent materials require special treat-
ment .47 since the direction of light changes when it enters
or exits the material.

2.1.4. Materials covered in this STAR

In this STAR we will only present algorithm for rendering
opaque materials. The very recently proposed algorithms
for real-time rendering translucent 23.46.52.72 and transpar-
ent 247 materials will be omitted to keep the focus of this
STAR.

2.2. Bidirectional Reflectance Distribution Function

The bidirectional reflectance distribution function (BRDF)
describes how light incident on a surface is reflected into
a continuum of directions. It is defined as the ratio of the
differential reflected radiance Lo leaving x in direction G
and the differential irradiance arriving from &y:

dLo(X, (%) dLo(x, (%)

fr (X, 0 — @) := dE(x, &) = Lin(x, &) cos6;ddy @

For a list of used variables, see Table 1. The directions Gy and
G vary over the unit hemisphere and x is the 2D position on
the surface; the unit of the BRDF is [1/sr]. Itis implicitly as-
sumed to depend on the wavelength A as well, i.e. the BRDF
is possibly different at different wavelengths A (often, it is
only defined for the RGB color channels separately).

Variable Meaning

v viewing direction (global)
\zw or Gy viewing direction (local)
[ light direction (global)

I, or & light direction (local)

Le emitted radiance

LinorL incident radiance

Lout Or Lo  reflected exit radiance

fr(lw,Vw) BRDF

f*(lw,9w)  BRDF product function: fr (i, Vo) (A1)
Vi spherical harmonic functions

Table 1: List of used variables/terms.

The BRDF can be extended to account for refraction
and transmission (in case the material is translucent), it is
then called the bidirectional scattering distribution function
(BSDF). In this case the directions &y and G vary over the
unit sphere.

If the BRDF depends on the position ¥, it is often called
spatially varying or shift-variant, otherwise the material is
homogeneous. The dependency on x is often implicitly as-
sumed, removing the parameter x.
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A material is called anisotropic, if its reflection changes
when the surface is rotated about the normal. Otherwise it is
called isotropic. Let 65 = (8;,@) and 6% = (80, @), where
0 is the elevation and @ is the azimuth, then the BRDF for
isotropic materials simplifies to fr(x,8;,00,@ — @), drop-
ping one dimension.

Although the BRDF in its general form is already a six-
dimensional function (plus another dimension for the wave-
length dependency), it already makes a few assumptions 1°.

First, it assumes that light exits the surface at the same
location where it hit the surface. This means that certain sur-
faces, such as marble, cannot be correctly modeled with a
BRDF, since those materials exhibit a considerable amount
of subsurface scattering.

The definition of the BRDF further implies that light is
reflected immediately, i.e. light is not stored for some time
and then re-emitted later (phosphorescence).

Finally, the BRDF cannot model materials that change the
frequency of the incident light (flourescence). For example,
neon colors cannot be represented, since they absorb light
at certain wavelengths and re-emit light at different wave-
lengths, making the color appear overly bright.

The BRDF has to fulfill two important properties to be
physically correct. First it needs to be energy conserving,
i.e. no more energy must be reflected than is received °. Fur-
thermore, it must obey the Helmholtz reciprocity ®, meaning
that the BRDF must be symmetric in &y and Go. Please note
that this only holds for reflections but not for refractions,
i.e. not for the BSDF.

3. Rendering Techniques

In this section, we will outline how the illumination in a
scene can be solved in a general way and how its results
are displayed. We will explain in more detail how approx-
imations can be made, such that graphics hardware can be
exploited to speed up the computation.

3.1. Rendering Equation

The complete illumination of a scene (neglecting ef-
fects such as subsurface scattering or participating media,
flourescene and phosphorescence) is usually described using
the rendering equation proposed by Kajiya 3. It is an inte-
gral equation describing all the light exchange in a scene:

Lo(x.9) = Le(x.) + [ r(x,f B Linx, D(T-A)aT. @)

This equation says, that the radiance leaving x towards v
(e.g. the direction towards the viewer) equals the radiance
emitted from x in direction V, in case x lies on an emitter,
plus all the reflected radiance, i.e. the integral over all the
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incident radiance at x scaled by the BRDF and the cosine
weighting term.

This equation also accounts for indirect illumination,
since the incident radiance Lin possibly includes radiance

reflecteq from other parts of the scene (i.e., Lin(x,1) =
Lo(y,—1)-

3.2. Accurate Solutions of the Rendering Equation

There are two main approaches that can be used to solve the
rendering equation. The first approach traces individual rays
to solve it, whereas the second approach determines the en-
ergy transfer between surface patches until an equilibrium is
reached. Although these methods are accurate in a sense that
they do not directly simplify the rendering equation, they
still might introduce bias or not support all types of trans-
port paths, e.g. caustics.

In this STAR, we are concerned with real-time shading
and lighting using graphics hardware, so we list these meth-
ods for completeness only.

3.2.1. Ray Tracing Methods

As the name already implies, ray tracing methods trace rays
(transferring radiance) through a given scene in order to
compute the light transport between all components.

Many variants of ray tracing have been developed to solve
the rendering equation , e.g., path tracing 3, the improved
bidirectional path tracing 43, distribution ray tracing 3, pho-
ton mapping 32, density estimation 6, and many more.

Recently, it has been shown that ray tracing can also be
implemented at interactive rates on PC clusters 7675 and
even on commodity PC graphics hardware 8.

3.2.2. Radiosity

Radiosity 11 methods subdivide the entire scene geometry
into patches. Some of the patches are emitters, whereas the
other patches are receivers. The rendering equation equation
assumes that the illumination is in equilibrium (emitted pho-
tons equal the number of absorbed photons), so energy is
exchanged between patches until the solution converges (of
course taking visibility into account).

Early radiosity methods work only for diffuse receivers
but can also be extended to glossy receivers 3111, The result
is usually stored at the vertices of the subdivided geometry.

Research on Radiosity has decreased, since Monte Carlo
techniques, such as photon mapping 32, seem to be better
suited to accurately solving the rendering equation.

3.3. Approximate Solutions of the Rendering Equation

The rendering equation can be simplified in order to be com-
puted more quickly. These approximations also make it more
amenable to graphics hardware. Here we list popular choices
of approximate solutions.

3.3.1. Ambient lllumination

If the algorithm used for image synthesis does not compute
indirect illumination, an ambient term is usually introduced
which tries to account for all the indirect illumination re-
emitted from all surfaces. It cannot be expressed as a BRDF,
it is simply the average emitted radiance La in the scene
scaled by a constant ka, which is added to the rendering
equation:

Lo(x,V):kaLa-kLe(x,\?)—i-/m fr (%, fooy Vo) Lin(x, D) (T-A)dI T,

©)
where we assume that the incident illumination L, only ac-
counts for direct illumination, i.e. light emitted from a light
source.

This new equation can be solved more easily. For every
point x, it is only necessary to integrate the light incident
from light sources that are not blocked on the way to x. This
can be written more clearly by expanding the incident radi-
ance into two terms

Lin(x, ) = Ls(x, )V (x, D), @
where the term Ls is the radiance received from light sources,
and the term V takes care of self-shadowing or shadowing
from other objects.

3.3.2. Distant lllumination

Illumination of an object can often be simplified by assum-
ing that the incident illumination is at infinity in addition to
assuming no interreflections (we will also assume the object
does not emit light without limiting generality). The incident
illumination term then simplifies to:

Lin(x,1) = Ls(DV (x,1), ()
dropping the dependency on x. This approximation is com-
monly used in interactive computer graphics, where Ls(f) is
represented using an environment map 8. We will refer to this
case as global illumination for real-time rendering, although
it does not include all effects that are usually associated with
global illumination 13-33.11  sych as indirect illumination and
caustics.

3.3.2.1. Without Shadowing. If shadows are neglected
then the original rendering equation simplifies to:

Lo(x,0) = /Q fr (%, oo, Vo) LD (T-A)AT.  (6)

For special kinds of BRDFs it has been shown that this equa-
tion can be precomputed 54 21.9.29.35.66.44.50 byt only if the
BRDF is not spatially varying and obeys certain restrictions.
Rendering is then just the application of a so-called pre-
filtered environment map. On-the-fly filtering is also pos-
sible if certain restrictions apply 3866 71; spatially varying
materials can also be incorporated 38. We will detail these
techniques in Section 7.
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3.3.2.2. With Shadowing. Asyou can see in the following
equation
Lo(x,V) = fr (X, o, Vo) Ls(DV (x, ) (1 - A)d I, (7)
shadowed distant illumination is fairly complicated to com-
pute, since the shadowing term varies for every x. Nonethe-
less, real-time evaluation of this integral is possible as was
shown by Sloan et al. 72, This technique can illuminate ob-
jects with distant (low-frequency) lighting including self-
shadowing and even interreflections at interactive rates. Re-
cently Ng et al. 80 showed that shadowing can also be inco-
porated for distant higher-frequency lighting as well.

These techniques will be presented in detail in Section 7.

3.3.3. Point Lights

Illuminating a scene with point lights greatly simplifies the
computations, especially since interreflectons are commonly
ignored as well in this case. The rendering equation then
simplifies to:

n . l; R
Lo(x,9) =kaLa+ $ fr(% I, V) 2V (x,D(T-A),  (8)
i;l 2

where 1; is the intensity of light source j (assuming it has
a uniform spherical distribution), and r is the distance from
the light source to x. As you can see, the only complicated
parts that are left is shadowing and the BRDF. We will refer
to this case as local illumination.

3.3.3.1. Without Shadowing. If even shadowing is ne-
glected, then only the BRDF has to be evaluated at every
visible point of the scene. Traditionally, graphics hardware
can only handle this case. Even worse, it only directly sup-
ports the Blinn-Phong BRDF model 7.

Hence, much research has focused on including more
complex reflectance models into real-time rendering
29,34.37,49.51.50.57_ A\ detailed overview of these methods will
be presented in Section 6.

3.3.3.2. With Shadowing. Shadowing for point light
sources can be seen as an extension to the unshadowed case.
We can first shade every point in the scene ignoring shadows,
and then in a second pass check which points are actually in
shadow and darken (corresponds to assuming some ambient
illumination) or blacken these points.

There are two main techniques using either shadow vol-
umes 14 or shadow maps 7°. Both these methods can be accel-
erated using graphics hardware. Recent research deals with
linear light sources 2* and with spherical light sources 1.

This STAR is not mainly concerned with shadowing from
point light sources, but the main algorithms will be explained
in Section 6.4.
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3.4. Displaying the Solutions

Some of the above mentioned algorithms for solving the ren-
dering equation (e.g. radiosity) still need an additional ren-
dering pass to actually display the solution, since the so-
lution is only stored on the surfaces. There are two main
display methods: one is again based on ray tracing, and the
other method is based on (hardware-accelerated) rasteriza-
tion.

3.4.1. Ray Tracing

The ray tracing approach traces rays from the camera
through every pixel on the viewplane into the scene. At every
intersection point, it queries the stored solution and displays
the result of the query. The query depends on the strategy
that was used to compute the solution of the rendering equa-
tion. E.g., for a diffuse-only radiosity algorithm this corre-
sponds to looking up the stored radiosities at the vertices of
the intersected patch, computing a bilinearly filtered result,
and converting it to exit radiance.

3.4.2. Rasterization

Rasterization is what graphics hardware usually does to ren-
der the geometric primitives (see also next section), but it
can also be implemented in software.

Rasterization iterates over all primitives and renders each
primitive into a so-called framebuffer according to the cur-
rent camera settings. Rasterization first projects a primitive
(usually triangles only) to its 2D screen coordinates. Then it
iterates over all pixels that the projected primitive takes up
in screen-space; for every pixel the radiance value (interpo-
lated from the vertices or by texture lookup) and the depth
is stored in the framebuffer. During rasterization of a primi-
tive, its depth value at the current pixel position is compared
to what has already been stored at that position, and only if
it is in front of the old content, it is rendered.

This can also be used to display e.g. a radiosity solution.
At every vertex we look up the stored radiosity, convert it to
radiance, set it as the color at the vertex, and then just raster-
ize the primitive. For every pixel in the framebuffer we will
get the bilinear filtered radiance, correctly taking visibility
into account.

In the next section, we will take a closer look at graphics
hardware.

4. Hardware Rendering Pipeline

In this section we will take a closer look at current graph-
ics hardware, how it works and what features it supports.
Graphics hardware is accessed via a graphics API, such as
OpenGL 67-59 or DirectX 33, In this work we make use of
OpenGL only but DirectX could be used as well, as both
APIs offer the same functionality.

Most graphics hardware implements a variation of the
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Geometry Processing (T&L)

|_ (Multi-)Texturing I - - — -
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Rasterization
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ModelView — Perspective
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eomey E=1 Transfomaton Lihing Transiomaton ey “

Per Fragment Operations

Figure 3: The standard fixed function rendering pipeline.

standard rendering pipeline 8. Figure 3 depicts the pipeline
as it is defined by OpenGL. Geometry — usually only poly-
gons, lines, and points are supported — is sent to the graph-
ics hardware. It is first processed in the geometry processing
stage, also called transform and lighting (T&L) unit, which
transforms the 3D geometry and also performs the lighting
computations. Then during the rasterization stage, the pro-
jected geometry is scan-converted, textured and fog is added.

Then the created fragments are piped through a series of
tests (e.g. alpha test, depth test, ...), which they can pass or
fail, and finally the fragments are blended with the already
stored fragments, and the result is written to the framebuffer.

This pipeline is also known as the fixed function pipeline,
since the functions executed for every incoming geomet-
ric primitive are fixed in order, they can only partially be
turned on or off, or modified to some degree. Newer graph-
ics hardware 6157 supports a modified pipeline that is more
programmable 47.

In the following, we will take a closer look at the individ-
ual units of the hardware rendering pipeline.

4.1. Geometry Processing

The main task of the T&L unit, which usually works with
floating point data, is to transform the geometric primitives
according to the specified transformation matrices. Geome-
try is specified with the help of vertices. Each vertex is first
transformed with the modelview matrix from object coordi-
nates into the viewing coordinate system. Normal vectors
(needed for lighting) are transformed by the inverse trans-
pose of the modelview matrix.

After a vertex has been transformed, lighting computa-
tions (with point or directional light sources) are performed.
The fixed function pipeline graphics hardware only sup-
ports one lighting model, the so-called Blinn-Phong model 7,
which is simple to compute but unfortunately fairly limited.

After the lighting computations, the vertices are trans-
formed with the perspective matrix. All primitives are now
clipped and then the vertices are transformed into screen co-
ordinates using the viewport transformation.

Texture coordinates are also specified together with ver-
tices and normals. They are specified by homogeneous coor-
dinates as well to allow for projective textures. Texture coor-
dinates can also be generated automatically in the T&L unit,
either by a linear combination of the vertices’ coordinates or
with a special mode for environment mapping 2.

In the last two years, it became clear that this fixed
pipeline cannot accommodate all the needs of 3D program-
mers. Lighting calculations are not general enough, more
complex lighting models are desirable. Furthermore the tex-
ture coordinate generation is very limited. As a result, a pro-
grammable geometric processing unit was developed 47.

4.1.1. Vertex Shader

The programmable part of the T&L unit is called vertex
shader or vertex program. It completely substitutes the first
three stages of the fixed T&L pipeline, see Figure 4, which
also means that a vertex program always has to implement
all three stages, unless one stage, e.g. lighting, is not needed
by the application.

Viewport
ModelView " Perspective . ;
Geometry F~¥ Transiomaton Lighing Transformaton UIRTIE | g

Geometry Processing (T&L)

Substitute fixed function
pipeline with programmable
version

Figure 4: The new vertex shader functionality replaces parts
of the standard fixed function rendering pipeline.

A vertex shader is an assembler program that runs on the
graphics card. A vertex shader gets an untransformed, unlit
vertex, possibly including normals, colors, and other data as
its input, from which it creates a transformed vertex. Option-
ally, it can also compute lighting at the vertex, create texture
and fog coordinates, and also change the point size for point
primitives. Current vertex shaders, however, cannot create
or delete a vertex or change topology.

The instruction set is tailored towards vertex processing.
It is a SIMD instruction set, where each instruction works
on 4-floats (e.g. colors or coordinates). The initial version
of the vertex shaders 47 supports almost 20 instructions, in-
cluding instructions for computing dot products, recipro-
cals, and even logarithms. The instruction set supports in-
put and output mappings. For example, the input can be
negated or its components can be swizzled. The output can
be written specifically to certain components of the 4-floats
only. The latest version of vertex shaders even allows some
simple branching 57, but for increased performance set-on-
comparison style operations are also supported.

(© The Eurographics Association 2003.
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Vertex
Data
16x4 registers

|

Vertex
Program
128 instructions

Vertex Fifteen floating 4- vectors
Output Homogeneous clip space position
15x4 registers Colors, fog coordinates
Point size, texture coordinates

Figure 5: Vertex shader overview. The mentioned numbers
are for a GeForce 3.

Automatic tracking of global matrices, such as the mod-
elview and perspective matrix is also supported. In Figure 5,
one can find an overview of vertex shaders.

4.2. Rasterization

After the T&L unit has transformed each primitive, their
associated data, i.e. transformed vertices, associated colors
and texture coordinates are passed on to the rasterizer. The
rasterizer scan-converts these primitives yielding so-called
fragments. A fragment consists of depth, color, alpha value,
and texture coordinates; it can be seen as a preliminary pixel
that still has to undergo the per-fragment operations, see Sec-
tion 4.3. Scan-conversion interpolates the incoming data lin-
early, except for the texture coordinates, which are interpo-
lated in a perspectively correct manner.

If texturing is enabled, the rasterizer does a lookup into the
specified texture map at the interpolated coordinates (with
multi-texturing the lookup can be done into multiple tex-
tures at the same time). The color retrieved from the texture
is then blended together with the interpolated vertex color
(for multi-texturing the results from the multiple textures are
blended iteratively). Different blending modes are available,
e.g. multiplication and addition 59 67,

Rasterization is usually done in fixed-point arithmetic, on
lower-end systems with 8 bits and on high-end systems such
as the SGI Onyx with 12 bits. Newer graphics hardware,
such as the ATI Radeon 9700 or NVIDIA’s GeForce FX even
support floating point arithmetic in the rasterizer.

4.2.1. Fragment Shader

The programmable fragment shader, which is also called
pixel shader, substitutes the old (multi-)texturing units. It
provides a similar functionality as the vertex shader. A small
assembler program is executed on the graphics card, but this
time for every fragment instead of every vertex.

Initial versions of the pixel shader, as in NVIDIA’s
GeForce series, where it was called register combiner, pro-
vided a reduced programmability. We will rather summarize
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the functionality now available in ATI’s Radeon 9700/9800
and NVIDIA’s GeForce FX.

As just explained, the fragment shaders execute a user-
defined program. The input to the program is the interpolated
color value, the texture coordinates, and also user-defined
data. The instruction set works on 4-vectors (color and al-
pha); operations include dot-products, multiplications, etc.
More complicated operations such as reciprocals and square
roots already start to appear 53 57,

Texture lookups are also very flexible with fragment
shaders. Texture access is possible at different places in the
fragment shader, and not necessarily only at the beginning of
a shader. The most interesting operation is the dependent tex-
ture lookup. In this case, texture coordinates are computed in
the fragment shader itself and then the lookup is performed
in the same shader. This for example allows to sample com-
plex functions into textures, and then to do a lookup into
the texture instead of evaluating the complex function. Vari-
ous other applications have already been shown . Fragment
shaders do not support branching, again for performance rea-
sons, although upcoming hardware may change this.

The latest hardware 57-49 works with 16 or 32 bit floating
point numbers, up from 16 bit fixed point on the AT1 Radeon
8500, and 8 bits on the NVIDIA GeForce cards.

4.3. Per-Fragment Operations

A number of tests, if enabled, are performed before a frag-
ment is written to the framebuffer. We will only name the
commonly used ones.

The alpha test tests the fragment’s alpha value against a
user-specified reference value. The stencil test compares a
reference value against the stencil value stored in the stencil
buffer at the fragment’s position. Depending on the result the
stencil buffer is modified and the fragment passes or fails.
Finally, the fragment’s depth value is tested against the depth
value stored in the framebuffer.

Fragments passing all tests, are written to the framebuffer.
The color and alpha values of a fragment can either be
combined with the values already stored in the framebuffer
(blending) or directly written to the framebuffer.

4.4. Framebuffer

The framebuffer consists of several separate buffers. The
color buffer stores the color and the alpha value of a pixel.
The depth buffer stores the depth at a pixel. Stencil values are
stored in the stencil buffer. The color buffer often has only 8
bits per component per pixel, which comes to 32 bits total.
On most graphics hardware, the depth buffer has at least 24
bits. The stencil buffer usually only has 8 bits.

When a frame is finished, i.e. after it has been rendered,
the color-content of the color buffer is displayed. Whatever
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is stored in the alpha channel or in the other buffers is not
displayed, it is only needed during rasterization.

4.5. Per-Pixel vs. Per-Vertex

Graphics hardware is now programmable at the vertex and
at the fragment level. So one has to decide which parts of an
algorithm should be implemented where.

It is preferable to perform computations at the pixel level
that involve quickly varying input data or that produce
quickly varying results. For example, it is better to compute
glossy lighting at the pixel level instead of only at the ver-
tex with bilinear filtering across a primitive, since artifacts
may arise from undersampling the lighting and highlights
might be completely missed. On the other hand, slowly vary-
ing data can be easily computed per vertex, as for example
diffuse lighting.

Of course, this is also a quality/performance trade-off.
Higher quality can be achieved with per-pixel computations
while using only per-vertex computations might be faster.

4.6. Summary

Current graphics hardware, and future graphics hardware
even more, is very flexible and, as it turns out, well-suited to
perform complex tasks for which it was not even designed
for.

The work presented in this STAR makes heavy use of the
new functionality. We will not give very detailed information
about the actual implementations, since for newer or differ-
ent hardware the implementation will change anyway. More
information is only given, if it is necessary to understand oc-
curring problems or artifacts.

5. STAR Overview

We will first cover all algorithms concerning local illumi-
nation (Section 6). We will start with rendering homoge-
nous materials, go on to heterogenous materials, and finally
present how shadowing and interreflections can be incorpo-
rated.

Then we present all methods for incorpoarting global in-
cident lighting (based on environment maps). We first start
with techniques that need to filter the incident lighting in a
preprocess and are therefore only useful for static incident
lighting. Then we present techniques that allow to change
the incident lighting on-the-fly. Finally, we review recent
work on incorporating self-shadowing and interreflections
for globally lit objects.

6. Local lllumination

In this section we will deal with local illumination, i.e. with
illumination from point light sources. We present different
real-time shading methods for this specific case.

The reason, why many algorithms deal with this special
case, can be seen in Equation 8. Point lights are much easier
to handle than global illumination, because the no integral is
necessary for computing the visible exit radiance.

6.1. Standard OpenGL

Standard OpenGL only supports one specific BRDF, the
Blinn-Phong model 7. This model is neither reciprocal nor
energy conserving, but its mathematical simplicity allowed
to build graphics hardware that can evaluate it directly. Un-
fortunately, standard OpenGL only evaluates the model at
every vertex and uses bilinear interpolation within triangles
(also called Gouraud shading). For mostly diffuse surfaces
this is fine, but for more specular objects, this often results in
undersampled highlights. These problems lead to extensive
research in hardware-accelerated shading. On the one hand,
the research deals with incorporating homogeneous BRDFs
and on the other hand with inhomogeneous BRDFs.

6.2. Homogeneous BRDFs

In this part of the tutorial we will explain how surfaces with
homogeneous materials can be rendered at interactive rates.

6.2.1. Analytical Shaders (per Vertex)

Since nowadays most graphics hardware support vertex
shaders, and since many mathematical operations are sup-
ported, some BRDFs can be implemented directly in such a
vertex shader. NVIDIA 62 has shown that e.g. the Minnaert
BRDF 36 can be implemented per vertex. This technique can
also produce Gouraud artifacts, if the used mesh is not tes-
selated finely enough. Hence, this method is not commonly
used.

6.2.2. Analytical Decomposition

Heidrich and Seidel 2 proposed to do a analytical decom-
position of BRDFs such that they can be incorporated into
real-time rendering. We will use the Cook-Torrance BRDF
model 22 to illustrate the technique, as it was used by Hei-
drich and Seidel 2° as well.

Let us now have a look at the Cook-Torrance BRDF
model 12

0D = F(h-NG(A-T,A-9)D(h-A)
R (A - D)(A-0) ’

where F() is the Fresnel term, G() the so-called geometric
term (Heidrich and Seidel used 73), and D() is the micro-
facet distribution (Heidrich and Seidel used ®). Plugging
the above equation into the local radiance equation (Equa-
tion 8), one can see, that the term (A - i) from the BRDF’s

genominator cancels out. Now we see, that the term F(h-
1)D(h-fi) only depends on two variables and that the term

©9)

(© The Eurographics Association 2003.



J. Kautz / Hardware Lighting and Shading

G(A-1,A-¥)/(A- V) also only depends on two variables. Hei-
drich and Seidel then tabulate these two terms into two two-
dimensional texture maps. 2D texture mapping is used to im-
plement the lookup proecss. During rendering, one only has
to compute the texture coordinates for the textures (simple
dot-products, software or vertex shader). The results from
both textures need to be multiplied together, which can be
done using blending or in a pixel shader. This way the re-
flectance model can be changed from the Blinn-Phong to
the physically plausible Cook-Torrance model. Furthermore,
evaluation is now done per-pixel avoiding undersampling ar-
tifacts from standard OpenGL.

Figure 6: Two examples for analytical decomposition 27-29,
Left: Cook-Torrance model 2. Right: Banks model 3.

The same technique can be applied to other models, such
as the anisotropic Banks model 3, which was also shown by
Heidrich and Seidel 27. Two examples are found in Figure 6.

6.2.3. Numerical Decomposition

An algorithm called “separable decomposition” approxi-
mates a given 4D BRDF (i.e. homogenous) through numeri-
cal decomposition 3651,

Each of the two directions that a BRDF uses can be mod-
eled as a 2D parameter, hence a reflectance model usually
depends on 4 parameters. For an accurate representation this
4D function could just be sampled, but graphics hardware
does not support 4D texture and a lot of memory would be
needed for this representation.

Instead a separable decomposition is used, which approx-
imates the 4D function with a product of two 2D functions.

fr (Vo lw) = 9(0w) - h(lw),
L(T0) = gn(lo) (1)

Using texture mapping, L(Vc,) can be easily evaluated on the
graphics hardware. Each of these 2D functions g(Vw) and
h(fw) can be sampled and stored in a texture map. At every
vertex of every polygon, V¢, and o need to be computed and
are then used as texture coordinates. Then the polygon has
to be texture mapped with the textures containing g(Vc,) and
h(ix) and the computed texture coordinates. Blending has to

(© The Eurographics Association 2003.

be set to modulate, so that g(Ve) and h(ie) are multiplied
together. The term Lin (i) (A - Iey) can be multiplied to the re-
sult of g(Ve) - h(fw) by enabling OpenGL lighting with only
a diffuse component.

Figure 7: Hardware accelerated rendering of an anisotropic
marble teapot.

Rendering of arbitrary materials using this approximation
is very fast because it boils down to computing texture coor-
dinates and blending two texture maps together.

Separating the BRDF along i and Vi, often does not lead
to satisfying results. Reparameterizing the original 4D re-
flectance model in a better way, increases the approximation
quality. We refer the reader to 36, 40, or 8! for suggestions of
reparameterizations. See Figure 7 for an example rendered
with this technique at real-time rates.

6.3. Inhomogeneous BRDFs

As mentioned, it is desirable to perform lighting calculations
per pixel in order to avoid Gouraud artifacts. In this section
we will show different possibilities to do so (i.e. bump map-
ping and arbitrary BRDFs).

6.3.1. Bump Mapping

Blinn ¢ has shown how wrinkled surfaces can be simulated
by only perturbing the normal vector, without changing the
underlying surface itself. The perturbed normal is then used
for the lighting calculations instead of the original surface
normal. This technique is generally called bump mapping.

If we have another look at the lighting model equation
(see Equation 8), we can see a dependence on the normal
fi (i.e. the local view and light directions are defined rela-
tive to it). As mentioned before, OpenGL lighting is usually
only evaluated at every vertex and not within a triangle, so
the normals from the vertices are used to evaluate the Equa-
tion 8.

In order to simulate wrinkles, bump mapping requires a
per-pixel normal, which is used for the evaluation of this



J. Kautz / Hardware Lighting and Shading

equation. Graphics cards now support complex per-pixel op-
eration (see Section 4.2.1) which allow to perform this bump
mapping technique at interactive rates 4.

Bump mapping is fairly simple to implement with these
new features. For every pixel we simply have to evaluate the
lighting model.

Usually the Blinn-Phong model 7 is used to do bump map-
ping, because this model mainly uses dot-products. Let us
have a look at the lighting equation using the Blinn-Phong
reflectance model:

L(Ve) = kd:?(ﬁ'rm)+ks:7(ﬁ-ﬁ)N

If this is used in conjunction with bump mapping, the first
term of the sum is usually called diffuse bump mapping and
the second term is called specular bump mapping. Using the
new per-pixel operations, this formula can be easily com-
puted at every pixel. First, the normals are encoded in a tex-
ture map. Then &y and h are computed on a per-vertex basis
(will be interpolated across the triangle). Now, the graphics
card has to be configured, such that it computes the equation
above. For more details, please see 41.

This method achieves good results and can even be imple-
mented on older consumer graphics hardware 4. The disad-
vantage is that it is limited to the Blinn-Phong model.

6.3.2. Bump Mapping with a Spatially Varying
Reflectance Model

As just mentioned, bump mapping usually uses the simple
Blinn-Phong lighting model 7 for the lighting calculations.
While this is an appropriate and fast method to do bump
mapping, it is not very flexible. The Blinn-Phong model does
not have many parameters that can be tweaked to change the
appearance of the bumpy surface and the chosen parameters
(i.e. at least the exponent) have to remain constant over a

polygon.

We will introduce a different bump mapping technique 37
which can incorporate (almost) arbitrary analytical BRDF
models. It allows to change all parameters of the BRDF on a
per-pixel level. See Figure 8 for an example of what can be
done.

The main idea is to decompose the BRDF into instructions
supported by the fragment shader (e.g. multiplication) and
not supported by the shader (e.g. tan()). The unsupported
instructions/functions are then tabulated into textures. Using
dependent texturing values from the tabulated function can
be lookup, effectively evaluating the unsupported function.

This works with a variety of BRDFs, e.g. a modified ver-
sion of the Blinn-Phong model 37 (see Figure 8), Ward’s
model 77, or the Lafortune model 42 as shown by McAllis-
ter et al. %0,

This method achieves high frames rates, since most
BRDFs can be implemented in a single rendering pass.

Figure 8: Marble sphere with elevated “veins’ using a spa-
tially varying anisotropic Blinn-Phong model.

There may be quality problems (see original paper 37) if
quickly varying data (e.g. normals for bump mapping) is
looked up from texture maps with only bilinear filtering.
This is a general problem if data is stored in texture maps
that cannot be interpolated linearly (e.g. vectors).

6.4. Transfer (Shadowing, Interreflections)

In this section, we will briefly explain various techniques
how shadows can be incorporated into local illumination.

6.4.1. Standard Shadowing Techniques

There are two main techniques to incorporate shadows for
local illumination (see again Equation 8). The first one is us-
ing so-called shadow volumes 14 and the second one shadow
maps 7°.

Shadow volumes create a volume (using a polygonal rep-
resentation) around the blocker geometry, which tells you
that everything inside this volume is in shadow. Rendering
with shadow volumes can be done quickly by counting how
many front- and backfacing polygons defining the shadow
volume there are between the point to be drawn and the eye
point.

Shadow maps work in image space and not in object
space. A shadow mapping algorithm renders the scene from
the light source and stores the depth values. Then in a second
pass, the scene is rendered from the eye point and for every
point the algorithm compares the distance to the light source
with the stored value. Depending on the result, the point is
either in shadow or lit.

Both these methods can be accelerated using graph-
ics hardware. Recent research even deals with linear light
sources 2 and with spherical light sources 1.

There is many more paper on shadowing, which we will
omit, as this is not the main focus of this survery.

(© The Eurographics Association 2003.
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6.4.2. Shadows in Bump Maps

Bump maps usually do not cast shadows onto themselves,
which of course is very unrealistic. There are two tech-
niques 270 that add shadows to bump maps. See Figure 9
for an example of a bump map casting a shadow.

Figure 9: Simple bump map, where all the bumps are casting
shadows according to the light direction.

Both techniques precompute information on when a pixel
is in shadow and store this per-pixel information in texture
maps. To decide whether a pixel is in shadow, you only have
to know whether the light source position (point or parallel
light only) is above or below the horizon visible from that
point.

The technique proposed by Sloan and Cohen 70 samples
the height of the horizon at a number of position and stores
these heights in texture maps. When rendering the bump map
they transform the light position into a height value, and use
per-pixel operations to perform the comparison between the
stored per-pixel height values and the light source height
value.

The other technique 2 fits an ellipse to the horizon, stores
the parameters of the ellipse in texture maps and performs
per-pixel operations to check whether a pixel is inside or out-
side the ellipse, i.e. whether it is lit or in shadow.

Both techniques achieve similar results and comparable
rendering speed (single pass rendering in both cases). Only
approximate respresentations of the actual horizon is used
by both algorithms as well. The approximation quality of
Sloan and Cohen’s algorithm can be increased more easily
by storing more samples of the horizon.

6.4.3. Interreflections

Heidrich et al. 2> showed how interreflections in bump maps
can be incorporated using graphics hardware. This was then
extended by Daubert et al. 15 for arbitrary geometry. We will
explain the basic technique for height fields, but it can be
directly applied to geometry as well.

The fundamental idea of these two methods is to calculate
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Figure 10: Light is reflected at point q towards point p and
is then reflected towards the viewer.

the visibility in a precomputation step, and to store it in a
set of scattering textures S;. In order to do this, a fixed set
D = {d; } of sample directions on the sphere is chosen. Then
aray is shot from each grid point in the height field into each
of the directions d; and intersected with the height field ge-
ometry. A scattering texture S; holds the intersections for all
rays starting at any point in the height field in one particular
direction d;. Each of these intersections is uniquely charac-
terized by a 2D texture coordinate.

Let us turn to an example how the scattering textures are
used for computing indirect illumination. Figure 10 depicts
the scenario. Light arrives at the height field from direction i,
is reflected at point g in direction —d; e Dand finally leaves
the surface in the direction of the viewer V.

The computation is split into two parts, corresponding to
the reflections at g and later at p. First the direct illumina-
tion of the height field in viewing direction —d; with light
arriving from | is computed by a bump mapping step 4%-37
(including self-shadowing, see previous section) and stored
in a texture Ly. Afterwards the second reflection is computed
in a similar manner. This time the light direction is d; and
the viewing direction is V, however the incoming radiance
needs to be looked up in the direct illumination texture Lq.
For each surface point p the visible point g = Sj[p] is looked
up in the scattering texture corresponding to d;. q is used as
an index into the direct light texture Lg, yielding the light
arriving at p in direction —dj. In order to account for inter-
reflections not only from a single point q, the contributions
from all g; = Sj[p] have to be summed up. This algorithm
can be easily mapped onto graphics hardware, if dependent
texturing is available. The authors report that they achieve
interactive results on NVIDIA GeForce cards. Good quality
needs more than 50 sample directions d;.

For non-heightfield geometry, the method has to be
changed slightly 15. If the geometry is parameterized, then
the intersection points can be uniquely characterized. If it is
unparameterized, the method is only applied per vertex, and
the vertex number is used for characterizing an intersection
(which then have to be quantized to lie on vertices though).

The achieved frame rates are near-interactive to interac-
tive. The authors propose to use their method for applica-
tions that need to do a lot of preprocessing, such as synthetic
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BRDF generation (virtual gonioreflectometer) or BTF gen-
eration.

6.5. Comparison

In this section, we classify all local real-time shading algo-
rithms and according to the following categories:

diffuse BRDFs handles diffuse BRDFs

certain isotropic BRDFs handles certain fixed isotropic
BRDFs

certain anisotropic BRDFs handles certain fixed aniso-
tropic BRDFs

isotropic BRDFs handles arbitrary isotropic BRDFs

anisotropic BRDFs handles arbitrary anisotropic BRDFs

shift-variant BRDFs BRDFs can vary spatially

bump mapping supports bump mapping

self-shadowing supports self-shadowing

interreflections supports interreflections

dynamic lighting handles dynamically changing lighting

dynamic objects handles deforming objects

The actual classification can be found in Figure 11. All the
algorithms with an I’ are for local illumination and were de-
scribed in this section. All these algorithm work in real-time,
there are only minor speed differences. Which algorithm to
take still depends on the desired effect. The algorithm by
Kautz and Seidel 37 is probably the most flexible and most
widely used one. On the other hand only certain BRDFs can
be implemented, whereas e.g. other work 3451 allows arbi-
trary but only homogeneous BRDFs.

7. Global lHlumination

In this section, we will explain all relevant techniques
for real-time global illumination. Here, global illumination
refers to globally incident light as described in Section 3.3.2.
These techniques are mostly based on so-called environment
maps.

7.1. Environment Maps

Blinn and Newell® first introduced the environment map
technique for producing mirror-like reflections on curved
objects. An environment map stores the radiance incident
from all directions at a single point, see Figure 12 for a 2D
example. A reflection on an object is created by computing
the reflected viewing direction (reflected about the surface
normal) and then using this reflection direction for a lookup
into the environment map. Since the environment map is
only valid for a single point but a real object has some extent,
this technique introduces some parallax error. It basically as-
sumes that the environment is at infinity (see Section 3.3.2).

Environment map

Figure 12: Radiance incident at a single point is stored
in an environment map. Here, we have used the parabolic
parameterization?® to store the incident radiance.

7.2. Filtered Environment Maps

Greene?. 21 first observed that a filtered environment map
could be used to simulate diffuse and glossy reflections. In-
stead of storing the incident radiance, Greene simply stored
exit radiance, i.e. the incident radiance already integrated
against the BRDF. This is the basis which most environment
map methods are derived from.

Generally speaking, filtered environment maps capture all
the reflected exitant radiance towards all directions V from a
fixed position x:

Lgosy (060.0.6) = [ 100l Lin D) 8- D . (20)

where V is the viewing direction and I is the light direction in
world-space, {f,f,A x £} is the local coordinate frame of the
reflective surface, Ve, = (7,1, f) represents the viewing di-
rection and I, = w(I,A,f) the light direction relative to that
frame, fr is the BRDF, which is usually parameterized via
the local viewing and light direction. A filtered environment
map stores the radiance of light reflected towards the view-
ing direction V, which is computed by weighting the incom-
ing light L;j,, from all directions i with the BRDF f;. Note,
that L, can be interpreted as the unfiltered original environ-
ment map. This map should use high-dynamic range radi-
ance values to be physically plausible. As you can see, in the
general case we have a dependence on the viewing direction
as well as on the orientation of the reflective surface, i.e. the
local coordinate frame {A,, A x f}.

This general kind of environment map is five dimensional.
Two dimensions are needed to represent the viewing direc-
tion V (a unit vector in world coordinates) and three di-
mensions are necessary to represent the coordinate frame
{A,,A x t}; e.g. three angles can be used to specify the ori-
entation of an arbitrary coordinate frame.

The prefiltered environment maps which we will examine
usually drop some dependencies (e.g. on the tangent f) and
are often reparameterized (e.g. indexing is not done with the
viewing direction V, but the reflected viewing direction).

(© The Eurographics Association 2003.
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Figure 11: Classification of Algorithms. | = local, g = global, x = supported, p = potentially, but not described in paper, s =
shadowing with 25, i = interreflections with 2570, n = near interactive, d = diffuse in real-time, otherwise interactive, w = only
without shadowing/interreflections.

In this section we will classify diffuse environment The classification is done separately for environment
maps 34, specular environment maps 8, Phong environ- mapping techniques that work only for static lighting and
ment maps 2% 54, Lafortune environment maps %0, environ- techniques that can be applied to dynamic lighting.

ment maps filtered with isotropic BRDFs 9 3539.44.66 gnd
anisotropic BRDFs 3938,
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7.3. Environment Mapping for Static Lighting

We first classify environment mapping techniques for static
lighting.

target environment map

source environment on sphere

source environment map

pixel to be computed

O

Figure 13: Filtering of an environment map. A pixel in the
target environment map is computed by applying a filter to
the source environment map. Both are usually given in a rep-
resentation like the dual paraboloid map 28. The filter which
is defined on the sphere has to be projected to the environ-
ment map space.

dual paraboloid
environment map

filter kernel

The limitation to static lighting comes from the slow pre-
filtering process that these methods use. The general filtering
idea is depicted in Figure 13. A shift-variant filter kernel (ac-
cording to some BRDF and the actual proposed technique) is
applied to the original environment map containing incident
radiance. This yields one pixel in the filtered target environ-
ment map. The actual details depend on the chosen method,
please see the following sections.

In order to render an object using a prefiltered environ-
ment map, we store the prefiltered environment map in a tex-
ture (often only 2D). The parameters which the environment
map depends on are used as texture coordinates to index into
the environment map then. Hence, it is necessary to compute
the texture coordinates at every vertex by hand (e.g. in a ver-
tex shader). In case of general 5D prefiltered environment
maps, one would need to index into the environment map
with the view direction and the local tangent frame (total of
5 texture coordinates).

7.3.1. Specular Environment Maps

Specular environment mapping is the traditionally used envi-
ronment map technique, which was first introduced by Blinn
and Newell 8. The purely specular BRDF is given by:

fr(0,0) = %

where ks € [0,1] describes the absorption of the surface.
The delta Dirac function 8(fy(fi) — I) is infinite when the
reflected incident angle fv(fi) = 2(fi- ¥)A — V equals the light
direction I. It is defined by the following sifting property:
[3(a—Db)f(b)db = f(a).

(11)

Figure 14: Torus with specular reflection.

Now consider Equation 10 using this reflectance function:

Lspec( Vﬁf) = /Q%I))I)Lm()(ﬁf)df(ﬂ)
- /Q ked(Ru(A) — NLin(D dl  (13)
= ksLin(Fu(f)). (14)

Obviously the tangent f is not used and can be discarded.
Instead of indexing the environment map with v and A, it
can be reparameterized so that it is directly indexed by the
reflection vector fy:

Lspec(X; Fv) = ks'—in(fv)7 (15)
which is what we expect.

An example of a specular environment map can be seen
in Figure 14.

7.3.2. Diffuse Environment Maps

Miller 34 has proposed to use a purely diffuse BRDF to pre-
filter environment maps. A diffuse BRDF can be written as:
kg

fr(@l) = 5, (16)

where kq € [0,1] describes the absorption of the surface.
Moving this into Equation 10, we get:

Lot 000 = [ LDl @)

We can drop all dependencies except the one on the normal f
and we get the following two dimensional environment map:

Ldlffuse = / |—|n r (18)

This environment map accurately stores the diffuse illu-
mination at the point x. It is only two-dimensional and it is
indexed by the surface normal. An example is depicted in
Figure 15.

(© The Eurographics Association 2003.
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Figure 15: Bust with diffuse environment map.

7.3.3. Phong Environment Maps

Heidrich 2° and Miller 3 used the original Phong reflection
model 63 to prefilter environment maps. The Phong BRDF is
given by:

A \N

fr (V,1) := ks M (19)
(A-1)

where fy(fi) is the reflected viewing-direction in world-

space. The parameters ks and N are used to control the shape

and size of the lobe. Using the Phong model, the Equation 10

becomes

/ks (Pv( : L.n(“)(ﬁ

= ks [ (R(M)- DL ol @)

Using the same reparameterization as with the specular
BRDF, we get:

Lphong (X; V, A, ) . |A) di'(20)

Lohong (x; ) = ks /Q F- DL dl. (22)

Although the Phong model is not physically based, the re-
flections make a surface look metallic, only at glancing an-
gles one expects sharper reflections. This indexing via the re-
flection vector fy is also used for specular environment maps
and is therefore supported in OpenGL % via the spherical,
parabolic and cube map parameterizations. An example is
shown in Figure 16.

Miller 54 and Heidrich 2 proposed to use a weighted sum
of a diffuse and a Phong environment map to get a complete
illumination model. They also propose to add a Fresnel term
so that the ratio between the diffuse and glossy reflections
can vary with different viewing angles:

Lo(fv,A) = (1 —F (fv-f))Lgiffuse + F (Fv- A)Lpnong  (23)

This way a wider range of materials can be created.
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Figure 16: Torus with a Phong (N = 30) reflection.

7.3.4. Environment Maps with Approximations of
Isotropic BRDFs

Kautz and McCool 35 extended the Phong environment maps
idea to other isotropic BRDFs by approximating them with
a special class of BRDFs:

fe(0,0) := p(A-fu(f),y(R)-1), (24)

where p is an approximation to a given isotropic BRDF,
which is not only isotropic, but also radially symmetric about
fv(f), and therefore only depends on two parameters.

Now consider Equation 10 using this reflectance function:

Liso(X;9,A,£) = Qp(ﬁ-fv(ﬁ),fv(ﬁ)-I)Lin(f)(ﬁ-f)df. (25)

Then the authors make the assumption that the used BRDF
is fairly specular, i.e. the BRDF is almost zero everywhere,
except when fy(A) ~ I. Using this assumption they reason
that fi- (A1) A~ fi- . Now the equation can be reparameterized
and rewritten the following way:

Liso@;fv,ﬁ-fv):(ﬁ-fv)/g p(fi- fu, fy-T)Lin(T) di,  (26)
which is only three dimensional. Additionally, they pro-
posed to use the following approximation to a given isotropic
BRDF:

fr(0,0) := F(A-A(A))p(Ry(R)-1). 27)

This approximates a BRDF with a constant lobe (defined by
p) that is scaled by a factor which depends on the angle be-
tween fi and fv(f). An environment map prefiltered with this
model is only two dimensional:

Liso (X; Pv, - Pv) = (- Fv)F(A-Fy) / p(fy-NLin(1) di. (28)

It is two dimensional only, because the dependence on (fi- fy)
can be moved outside the integral. It is sufficient to multiply
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the two factors onto the prefiltered environment map during
rendering.

Figure 17: Copper teapot reflecting environment. Top: Com-
puted using ray tracing. Middle: 2D approximation. Bottom:
3D Approximation.

Figure 17 shows a copper teapot. There is almost no vi-
sual difference between the ray traced and 3D approxima-
tion. The simpler 2D approximation does show some minor
differences.

This technique has the big advantage that it can use ap-
proximations of arbitrary isotropic BRDFs and achieves in-
teractive frame rates. Off-specular peaks can also be incor-
porated into this technique, fy is then substituted with a func-
tion 6(fv) that changes the lookup direction accordingly. An
additional Fresnel factor like Miller % and Heidrich 2° pro-
posed is not needed because real physically based BRDFs
can be used. The 2D approximation is directly equivalent to
Phong prefiltered environment maps with a separate Fres-
nel factor, but a more generally shaped lobe is used and the
Fresnel factor is computed from a real BRDF. In contrast
to that, the 3D approximation does not compute a separate
Fresnel factor, instead it is incorporated into the approxima-
tion, which allows to vary the shape of the lobe not only with
a scale factor.

Depending on the BRDF, the quality of the approximation
varies. For higher quality approximations Kautz and McCool

also propose to use a multilobe approximation, which basi-
cally results in several prefiltered environment maps which
have to be added.

For instance, if a BRDF is to be used, which is based
on several separate surface phenomena (e.g. has retro-
reflections, diffuse reflections, and glossy reflections) each
part has to be approximated separately, since no radially
symmetric approximation can be found for the whole BRDF.
This again corresponds to the technique by Miller or Hei-
drich, just that it is based on a real BRDF, see Equation 23.

7.3.5. Tabulated Environment Maps with Isotropic
BRDFs

Cabral et al. © use a similar technique, called reflection-space
image-based rendering, which also assumes an isotropic
BRDF. They prefilter an environment map for different fixed
viewing directions, resulting in view-dependent environment
maps. In contrast to the previous approach, they actually use
a four dimensional environment map:

Ltab(x;\?,ﬁ):/Qfr(a(v,ﬁ,f*),a)(f,ﬁ,f*)).

(29)

where £* is an arbitrary tangent, which is possible since the
BRDF is assumed to be isotropic. This four dimensional
environment map is sparsely sampled in V. A two dimen-
sional spherical map is extracted from this four dimensional
map for every new viewpoint. This map corresponds to one
specific viewing direction and is generated using warping.
This new view-dependent environment map is then applied
to an object. The warping compensates for the undersampled
viewing directions, and no visible artifacts occur.

Figure 18: Rendering result with a tabulated environment
map. Courtesy Marc Olano.

Using a sparse four dimensional environment map makes
it unnecessary to approximate the factor (fi - I). The neces-
sary warping requires high-end graphics hardware to achieve
interactive frame rates, but the final rendering can be done
with standard OpenGL environment mapping, which is why

an intermediate two dimensional spherical map is generated.

Warping is done based on an assumption what the central

(© The Eurographics Association 2003.
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reflection direction of the BRDF is (the reflected viewing di-
rection and the surface normal are mentioned). This assump-
tion fails for BRDFs that have off-specular reflections.

As mentioned before, the generated two dimensional en-
vironment map is view-dependent, so the reflective object
needs to be viewed with an orthographic projection or other-
wise the reflections are incorrect, since the reflection direc-
tions are computed based on an infinite viewer.

Latta and Kolb 44 use the same input data, but compress
the 4D environment map using a homomorphic factoriza-
tion 51, Rendering is very simple and works in real-time, it
only requires blending of various textures. Of course this
technique potentially introduces compression artifacts, al-
though they seem to be negligible.

7.3.6. Environment Maps with Anisotropic Banks
BRDF

The first technique for rendering anisotropic reflections from
environment maps was proposed by Kautz et al. 2.

Figure 19: Anisotropic teapot.

They chose to use the Banks model 3, which is simple and
depends only on dot products. It yields a three dimensional
environment map if self shadowing is excluded. The specu-
lar part of the BRDF is given by:

(@)= (V1= @02y 1- @07 - 00D

N
(30)

where N controls the sharpness of the highlight. Inserting
this into the environment map equation (10) yields:

LbankS(X;V,ﬁ,f):/Q(\/17(r.f')2\/1,(v.f')2,
(-0-0) LT

(1) d.
To decrease the dimensionality of this environment map, the
authors discard the self-shadowing term < i, | >, and then

31

(© The Eurographics Association 2003.

reparameterization gives the following three dimensional en-
vironment map:

Lpanks (%; T, (V1)) = /Q <\/1 - (T-f)z\/l —(V-T)2—
(r'f)(V'f))NLi(x;T) dr.

Now we have an anisotropic prefiltered environment map.
This anisotropic environment map can then be rendered at
interactive rates if the hardware supports three dimensional
texturing. In Figure 19 a teapot is shown, which was ren-
dered with an anisotropic prefiltered environment.

(32)

Since the self-shadowing term is omitted, an object using
this environment map does reflect light from behind it. This
is usually not noticeable unless a bright light source shines
“through”.

The diffuse part of the Banks model: TODO: really do
this?

7.3.7. Environment Maps with Anisotropic Lafortune
BRDF

Recently, McAllister et al. 0 have proposed an environment
mapping technique based on the Lafortune model 42. As we
will see, it is a special case of the Kautz and McCool % en-
vironment mapping method, see Equation 28. The specular
part of the Lafortune BRDF can be written as follows:

fr (Vo leo) = ks P(6(V) - To), (33)
P(fw-lw) = (Fo-lw)\, (34)
Cx\7m,x
A(‘L)Zé(vm) = Cyv(,l)7y . (35)
Cz\7co,z

Substituting this into Equation 10 and moving (A - fv(f))
outside the integral (making the same approximation as
Kautz and McCool 3, see above) yields:

and then reparameterizing in terms of f, this gives us:

Liaf(X; Foo, - Fv) = (A fv)ks/Q p(fe-DLin(D di.  (37)

This is only a 2D environment map, since the integral can be
precomputed for all directions f, (the factor (fi- fy) need not
to be included in the precomputation). It has to be accessed
with fe, which basically is the reflected viewing direction,
but potentially including off-specular peaks.

Comparing this to Equation 28 makes it obvious that it is
the same technique, keeping in mind that Kautz and McCool
also proposed to substitute fg by a function o(fg) to handle
off-specular peaks.

McAllister et al. noticed that using a normalized function
6() makes the precomputed environment maps completely
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independent of the parameters Cxyz, only ks needs to be
scaled to take the norm of 6() into account. Hence an en-
vironment map only needs to be prefiltered for different N,
whereas Cxy,z are moved outside the integral and have no
influence.

This technique works specifically for the Lafortune model
only, whereas the Kautz and McCool method works for any
isotropic BRDF but only using a numerical approximation.
As this derivation shows, the Kautz and McCool technique
is actually accurate for the Lafortune BRDF.

7.4. Environment Mapping for Dynamic Lighting

For interactive applications it would be interesting if envi-
ronment map filtering could be done on the fly, for exam-
ple using graphics hardware. This means that if the scene
changes, glossy reflections change accordingly. In this sur-
vey, we will only deal with the accelerated filtering of a given
environment map. It is obvious 6 that environment maps can
be generated on the fly. Live video capturing of an environ-
ment map is also conceivable. For example the Omnicam 58
directly captures an environment as parabolic map.

In the following we will describe different methods that
allow to render glossy reflections from dynamic lighting
through fast filtering of environment maps.

7.4.1. Diffuse Environment Maps

Equation 18 describes how an original environment map L,
has to be filtered with a diffuse BRDF. Basically, a hemi-
spherical cosine kernel has to be applied to Lj,. Since this
is a low-frequency kernel, the resulting filtered environment
map will also be low-frequency (see Figure 15).

Ramamoorthi and Hanrahan® proposed to do this filter-
ing in frequency space in order to exploit the low-frequency
nature of the kernel. This can be done using the spherical

harmonics 7 (SH) basis {y;(l)}, which is the analogue on
the sphere to the Fourier basis on the line or circle.

An environment map is represented in the spherical har-
monics basis as:

Lin(1) = 3 Lavi(0), (38)
I
where the coefficients L; are computed numerically:

L = [ Lin(Dyi(h o (39)

As it turns outb®, convolving an environment map in
spherical harmonics with the hermispherical cosine kernel is
very simple. In fact, convolution and lookup with the surface
normal fi can be combined:

=1
[{e]

Laiffuse (1) =~ AiLiyi (1), (40)

where Ao =TI A1;2;3 = %T[, and A4;5;6;7;8 = %Tl'. For a com-
plete derivation, please see Ramamoorthi and Hanrahan .

This filtering and lookup step is so simple, that it can be
easily implemented in a vertex shader on modern graphics
hardware. Per-pixel evaluation is also possible but not nec-
essary, since Lgitfuse (i) only varies slowly.

7.4.2. Environment Maps with Approximations of
Isotropic BRDFs

Kautz et al. 3 noticed that the Phong model, as well as the
isotropic approximations of BRDFs 33, presented in Equa-
tion 28, correspond to a circular and radially symmetric fil-
ter kernel over the sphere. l.e., the filter kernels are shift-
invariant over the sphere.

The OpenGL imaging subset supports shift-invariant two
dimensional filters of certain sizes 5. Unfortunately, this fea-
ture of graphics hardware cannot be directly applied to speed
up the filtering process defined in Equation 28. The imaging
subset performs the shift-invariant convolution on a 2D tex-
ture, whereas environment map filtering is defined over the
sphere.

Hence, for hardware accelerated filtering we have to
choose an environment map representation that keeps the fil-
ter shift-invariant in the 2D texture domain. It turns out that
the dual paraboloid mapping proposed by Heidrich and Sei-
del 28 comes close to this desired property. A infinitesimal
circular filter kernel which is mapped from the parabolic
environment map back to the hemisphere is again circular,
i.e. it is a conformal mapping. A (negligible) distortion oc-
curs depending on the radius and the position of the filter.

Figure 20: Variation of originally shift-invariant filter kernel
when mapped to a parabolic map (only one hemisphere is
shown).

Although the shape of the filter almost remains the same
in the parabolic space, the radius of the filter kernel varies
with the distance d (see Figure 20). The ratio between the
smallest filter radius and largest filter radius is about 2. The

(© The Eurographics Association 2003.
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authors overcome this problem by generating two prefiltered
environment maps, one with the smallest (yields map S) and
one with the largest necessary filter size (yields map L). Then
they blend between both prefiltered environment maps. The
value with which we need to blend between both maps is dif-
ferent for different pixels in the parabolic environment map,
but it depends only on the distance d and is always d?. Fora
pixel in the center of the paraboloid this means that we use
0% of map L and a 100% of map S; for a pixel with distance
d = 0.5 to the center of the parabolic map, we use 25% of
map L and 75% of map S, and so on.

This algorithm maps easily onto graphics hardware, see 3°
for more detail.

The result in Figure 16 was done with this technique.
The authors report rendering speeds of 70 fps for the Phong
model with an exponent of N = 10 and 11 fps for an expo-
nent N = 500 on an NVIDIA GeForce 4. For smaller expo-
nents (corresponding to larger filter kernels), the authors use
a downsampled version of the parabolic environment map,
which explains the difference in speed.

7.4.3. Frequency-Space Environment Maps with
Isotropic BRDFs

Ramamoorthi and Hanrahan %8 noticed as well as Cabral °
did, that the variation of such a 4D environment in V is much
smaller than the variation in fi. Especially, if the (isotropic)
BRDF and also the environment map is reparameterized by
the reflected viewing direction fy:

Lis(x; g, V) = fr(d)(v,ﬁ*,t‘*),d)(f,ﬁ*,t‘*))~
Q
Lin(h)(8* - 1) di, (41)
with At = T (42)
|9+ Fol|

then the variation in V is even smaller. As we have seen for
Phong BRDFs, there is no variation at all, it is constant for
all v reducing the environment map to 2D.

Ramamoorthi and Hanrahan decided to use spherical har-
monics 17 to represent the variation in V and tabulate the en-
vironment map for all directions fy, i.e. the directions corre-
sponding to the reparameterized surface normals. They store
the spherical harmonics coefficients of the spherical func-
tion, being exit radiance:

Lts(x;Fo,¥) &~  Bi(Fo)yi(7). (43)

They call this representation spherical harmonics reflection
maps (SHRM). They report that a quadratic or cubic expan-
sion is sufficient for many BRDFs to achieve more than 90%
accuracy.

If a distant viewer is assumed, i.e. V is constant for every
point on the object, then this sum can be computed interac-
tively (in software) resulting in a standard environment map

(© The Eurographics Association 2003.

parameterized by fg, but which is only valid for the current
view direction V.

Ramamoorthi and Hanrahan report, that converting an
environment map into a SHRM takes between .1 seconds
and up to 2 seconds, depending on the BRDF. This means
that dynamic lighting can be incorporated for some (low-
frequency) BRDFs.

7.4.4. Frequency-Space Environment Maps with
Anisotropic BRDFs

Another technique based on spherical harmonics was pre-
sented by Kautz et al. 3. We start again with the general
filtered environment maps from Section 7.2 and derive their
method:

Lan(9) = /g)Lin(f)fr(Om7fw)max(0,ﬁ-f)df (44)
- /QLm(l“)f*(vw,l‘w)dl“, (45)

where f* is the BRDF product, i.e. the BRDF times the dot
product between fi and I.

project lighting

4 . per
L@ object

< oF
==

lookup ¢,(V,)

....-.".

rotate lighting (to local

- AR e

L pixel/vertex
compute integral
[ ] = D

Lo, = [ 1,15 0,)dl

Figure 21: Overview. The lighting coefficients are rotated to
the local tangent frame at every point on the object, BRDF
coefficients are read from texture maps for the local viewing
direction, and then an inner product between the coefficient
vectors is computed resulting in exit radiance.

They first parameterize f* by the local viewing direction
Ve to get spherical functions, which are represented in the
SH basis via

~ n2

oo (lo) ~ Zlci(%)yi(fw)-, (46)

where y; (IL,) are again the SH basis functions. The SH coef-
ficients c; are tabulated in terms of the local view direction
V. For each ¥, the result is a vector of n? (n =5 in their
case) coefficients representing a spherical function, see up-
per right of Figure 21. The vectors are stored in (multiple)
2D textures in terms of V¢, (parabolic map).

If also the incident illumination L, is represented as a SH
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Figure 22: Brushed metal head (Ashikhmin-Shirley BRDF
2) in various lighting environments.

coefficient vector L, the lighting integral (Equation 45) be-
comes a simple dot-product 7 between the coefficient vec-
tors.

Inconveniently, f* is represented using the local surface
tangent frame which varies over the object while the incident
lighting typically uses a global coordinate system shared
across the whole object. Thus to perform the integration, we
first need to rotate the lighting into this local frame at each
p. Fortunately, this can be performed with a simple matrix-
vector multiplication 38:

n2

Lpi = _ZlRp.,iij» 47)
J:

where Rp is a higher-dimensional rotation matrix 8. Then
the lighting integral reduces to:

Lsh (V) = _zlL(ﬁ),iCi(\?w)- (48)

Figure 21 shows the whole rendering pipeline for this
technique. The rotation into the local coordinate system is
currently only possible on the CPU due to an instruction
count limit in the vertex shader. The final dot product can be
performed in a pixel or vertex shader. Results of this tech-
nique are depicted in Figure 22. Rendering times vary be-
tween 6 fps and 120 fps, depending on the implementation
(fixed lighting or fixed view is considerably faster as the ro-
tation into the local frame can be precomputed).

In contrast to the previous method, this method has the
advantage that arbitrary, anisotropic BRDFs can be used.
Drawback of this method is that only low-frequency inci-
dent illumination can be used, if interactive rates are to be
achieved. Otherwise the coefficient vectors and rotation ma-
trices become prohibitively large. Another advantage is, that
spatially varying BRDFs can be incorporated, by simply tab-
ulating the coefficient vectors of different BRDFs (i.e., the
Ci).

Lehtinen and Kautz 45 speed up the computation by ex-
pressing the BRDF product function as a matrix as well. This

is achieved by doubly-projecting the BRDF into SH 78. This
BRDF matrix can then be combined with the rotation ma-
trix R. Furthermore they perform a change of basis from SH
to a locally supported basis. This finally yields the matrix
radiance transfer:

M —
Lm({0) =3 (7o) (4pD). 9

1=
where gj is the new locally supported basis over the sphere
and the matrix Ap is the combined rotation, BRDF, and
change of basis matrix. Since the basis is locally supported,
not all M basis functions contribute to the exit radiance. Only
the contributing basis functions need to be taken into account
(in their case, always only four). By additionally compress-
ing the matrices Ap using PCA, they achieve speed ups of
about a factor of 10.

PCA was also used by Sloan et al. 72 to compress and
speed up rendering. This technique performs the PCA only
on a local neighborhood to enable better compression (the
local neighborhood has very likely the same shading char-
acteristics). They also show evaluation of their compressed
data on graphics hardware.

7.5. Transfer (Shadowing, Interreflections)

In this section, we will explain how shadows and interreflec-
tions can be incorporated into global incident illumination.

7.5.1. Precomputed Radiance Transfer

Here we present the technique of Sloan et al. 71, which builds
on the technique by Kautz et al. 38 from last section.

Again, Sloan et al. assume that the object is illuminated
by distant low-frequency illumination Ls(I), represented for
example by an environment map. To compute exit radiance

from a point p on an object’s surface, the integral

Low(9) — /QLS(l“)vp(f) f.(9,1) max(0, - ) df =

/Q Ls(DVp(D) £ (9,1) df (50)

needs to be evaluated at each p. All used terms and vari-
ables have been explained before, except Vp(f), which is the
visibility function — zero for directions along which the en-
vironment cannot be seen due to self-shadowing and one if

the environment can be seen.

In the general case, this integral is expensive to compute,
since the visibility function Vp(f) changes at every point on
the object. Fortunately, under the assumption that the ob-
ject is rigid, this function remains constant for each point,
and thus has to be computed only once. Furthermore, if
the incident lighting is represented as a coefficient vector
in the spherical harmonics basis, the transferred radiance
Lj(1) = Lin(I)Vp(0), or more precisely its coefficient vec-
tor in the SH basis, can be computed with a matrix-vector

(© The Eurographics Association 2003.
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Figure 23: Bust with self-shadowing. Compare to Figure 15.

multiplication from the SH projection coefficients L of the

incident lighting. This transfer matrix 7p, which varies with

the surface location p, can also include interreflection effects

in addition to self-shadowing when determining transferred

radiance 1. Transferred radiance is then computed by:
Lp(D) ~ 5 (ToLyi(D).

The transferred radiance is usually required to be rep-
resented in the local tangent space of a vertex (see Sec-
tion 7.4.4); this is again achieved by multiplication with the
high-dimensional rotation matrix R p. We denote the trans-
ferred radiance SH vector in local coordinates by Le:

Ly = RpTpL.

All that remains to be done is the integration against the
BRDF. This is e.g. possible with the technique proposed by
Kautz et al. 38 (Section 7.4.4):

Lpr(F) = .nglL*sfciww). (51)

The only difference to before, is the inclusion of the addi-
tional transfer matrix. The remaining computations are the
same as in the work of Kautz et al. 38, see Equation 48. For an
example of self-shadowing from environment maps, please
see Figure 23.

Alternatively, the matrix radiance transfer technique can
be used to compute final exit radiance (incorporating the
transfer matrix) 4.

Sloan et al. /1 proposed a solution for the Phong BRDF,
which is based on convolution (performed in the frequency
domain). Since it is only valid for the physically incorrect
Phong model, we omit the details here.

Sloan et al. ™ also propose a special solution for dif-
fuse surfaces. In this case, the BRDF is simply a constant
and self-shadowing boils down to a dot-product between the

(© The Eurographics Association 2003.

SH incident lighting coefficients and the SH coefficients of

ka/TVp(D)(A-1).

Ng et al.  use the same idea as Sloan et al. for dif-
fuse surfaces, except they project into a Haar wavelet basis.
For about 100 coefficients, they achieve very sharp shadows,
which the SH basis is not capable of (at least not with a rea-
sonable number of coefficients). On the other hand, the SH
basis is better suited if few coefficients are used, because SH
only blur the shadows, which is less disturbing than “quan-
tized” shadows which you would get from too few Haar
wavelet coefficients.

7.6. Other Techniques

A few other techniques have been proposed for interactive
rendering of glossy reflections, which are not based on en-
vironment maps. Diefenbach and Badler 16 used multi-pass
methods (Monte Carlo integration) to generate glossy reflec-
tions. Photon maps 32 were used by Stirzlinger and Bas-
tos 74; photons were “splatted” and weighted with an arbi-
trary BRDF. Precomputed glossy reflections were stored in
surface light fields by different authors 55 80.10, Bastos et al.
4 used a convolution filter in screen-space to produce glossy
reflections. Lischinski and Rappoport 48 used a large collec-
tion of low resolution layered depth images to store view-
dependent illumination.

7.7. Comparison

In this section, we classify all real-time shading algorithms
for global illumination. The categories for the classification
are listed in Section 6.5. The actual classification is listed
in Figure 11. All the algorithms with an ’g’ are for global
illumination and were described in this section.

Again, it is hard to decide which algorithm is the overall
best. It again depends on the application. For diffuse sur-
faces, the algorithm by Ramamoorthi et al. 65 is very good if
shadowing does not need to be included. If diffuse surfaces
with self-shadowing are desired, then Ng et al.’s € or Sloan
et al.’s "1 algorithm is very well-suited.

If arbitrary BRDFs are to be included (with or without
shadowing), then one of the SH precomputed radiance trans-
fer methods 45 7172 js suited if you can live the restriction to
low-frequency SH (differences are only in speed and diffi-
culty of implementation).

Higher-frequency (dynamic) illumination is possible with
Kautz et al.’s 3° method, at the cost of only working with
approximations of isotropic BRDFs and no self-shadowing.

If the lighting is static, then the method by Latta and Kolb
44 is best. It allows arbitrary isotropic BRDFs to be rendered
in real-time but with good quality.
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8. Conclusions

In this STAR, we have presented all recently proposed algo-
rithms for real-time shading. These algorithms either allows
local illumination (point light sources) or global illumina-
tion (usually assumed to be distant). We have classified the
algorithms in order to show what the advantages and disad-
vantages of each algorithm are. There is no clear “winner”.
It depends on the desired effects and the desired rendering
speed.

There is still a lot of work to be done in this area. The goal
of real-time rendering globally illuminated virtual worlds
has not been reached yet. The presented algorithms show
the way to go: precompute parts of the necessary compu-
tation to save processing power at run-time. Unfortunately,
this is very difficult for completely dynamic worlds.
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