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Abstract
Three-dimensional image acquisition systems are rapidly becoming more affordable, especially systems based on
commodity electronic cameras. At the same time, personal computers with graphics hardware capable of display-
ing complex 3D models are also becoming inexpensive enough to be available to a large population. As a result,
there is potentially an opportunity to consider new virtual reality applications as diverse as cultural heritage and
retail sales that will allow people to view realistic 3D objects on home computers.
Although there are many physical techniques for acquiring 3D data – including laser scanners, structured light
and time-of-flight – there is a basic pipeline of operations for taking the acquired data and producing a usable
numerical model. We look at the fundamental problems of range image registration, line-of-sight errors, mesh in-
tegration, surface detail and color, and texture mapping. In the area of registration we consider both the problems
of finding an initial global alignment using manual and automatic means, and refining this alignment with vari-
ations of the Iterative Closest Point methods. To account for scanner light-of-sight errors we compare averaging
and conformance approaches. In the area of mesh integration, that is finding a single mesh joining the data from
all scans, we compare various methods for computing interpolating and approximating surfaces. We then look
at various ways in which surface properties such as color (more properly, spectral reflectance) can be extracted
from acquired imagery. Finally, we examine techniques for a producing a final model representation that can be
efficiently rendered using graphics hardware.

1. Introduction

The past few years have seen dramatic decreases in the cost
of three-dimensional scanning equipment, as well as in the
cost of commodity computers with hardware graphics dis-
play capability. These trends, coupled with increasing Inter-
net bandwidth, are making the use of complex 3D models
accessible to a much larger audience. The potential exists to
expand the use of 3D models beyond the well established
games market to new applications ranging from virtual mu-
seums to e-commerce. To realize this potential, the pipeline
from data capture to usable 3D model must be further de-
veloped. In this report we examine the state of the art of the
processing of the output of scanners into efficient numeri-
cal representations of objects for computer graphics applica-
tions.

Three-dimensional scanning has been widely used for
many years for reverse engineering and part inspection 1.
Here we focus on acquiring 3D models for computer graph-
ics applications. By 3D model, we refer to a numerical de-
scription of an object that can be used to render images of the

object from arbitrary viewpoints and under arbitrary lighting
conditions. We consider models that can be used to simulate
the appearance of an object in novel synthetic environments.
Furthermore, the models should be editable to provide the
capability of using existing physical objects as the starting
point for the design of new objects in computer modeling
systems. The geometry should be editable – i.e. holes can be
cut, the object can be stretched, or appended to other objects.
The surface appearance properties should also be editable –
i.e. surfaces can be changed from shiny to dull, or the colors
of the surface can be changed.

To achieve this flexibility in the use of scanned objects, we
consider systems which output shape in the form of clouds of
points that can be connected to form triangle meshes, and/or
fitted with NURBS or subdivision surfaces. The 3D points
are augmented by additional data to specify surface finish
and color. With the exception of surfaces with relatively uni-
form spatial properties, fine scale surface properties such as
finish and color are ultimately stored as image maps cover-
ing the geometry.
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Figure 1: The sequence of steps required for the reconstruction of a model from multiple overlapping scans.

The shape of 3D objects may be acquired by a variety of
techniques, with a wide range in the cost of the acquisition
hardware and in the accuracy and detail of the geometry ob-
tained. On the high cost end, an object can be CAT scanned 2,
and a detailed object surface can be obtained with isosurface
extraction techniques. On the low cost end, models with rel-
atively sparse 3D spatial sampling can be constructed from
simple passive systems such as video streams by exploiting
structure from motion 3, or by observing silhouettes and us-
ing space carving techniques 4.

In this report we focus on scanning systems that capture
range images – that is an array of depth values for points
on the object from a particular viewpoint. While these scan-
ners span a wide range of cost, they are generally less ex-
pensive and more flexible that full 3D imaging systems such
as CAT scanners, while obtaining much more densely sam-
pled shapes than completely passive systems. We briefly re-
view various types of range image scanners, and the prin-
ciples they work on. However, for this report we consider a
range scanners as a basic component, and consider the model
building process with range images as input.

The process of building models from a range scanning
system is shown in Fig. 1. There are fundamentally two
streams of processing – one for the geometry, and one for
the fine scale surface appearance properties. As indicated by
the dotted lines, geometric and surface appearance informa-
tion can be exchanged between the two processing streams

to improve both the quality and efficiency of the process-
ing of each type of data. In the end, the geometry and fine
scale surface appearance properties are combined into a sin-
gle compact numerical description of the object.

2. Scanning Hardware

Many different devices are commercially available to obtain
range images. Extensive lists of vendors are maintained at
various web sites. To build a model, a range scanner can be
treated as a ‘black box’ that produces a cloud of 3D points.
It is useful however to understand the basic physical prin-
ciples used in scanners. Furthermore, characteristics of the
scanner should be known to generate models accurately and
efficiently.

The most common range scanners are triangulation sys-
tems, shown generically in Fig. 2. A lighting system projects
a pattern of light onto the object to be scanned – possibly a
spot or line produced by a laser, or a detailed pattern formed
by an ordinary light source passing through a mask or slide.
A sensor, frequently a CCD camera, senses the reflected light
from the object. Software provided with the scanner com-
putes an array of depth values, which can be converted to
3D point positions in the scanner coordinate systems, using
the calibrated position and orientation of the light source and
sensor. The depth calculation may be made robust by the use
of novel optics, such as the laser scanning systems developed
at the National Research Council of Canada 5. Alternatively,

c The Eurographics Association 2000.



Bernardini and Rushmeier / 3D Model Acquisition

Laser projector CCD sensor

Figure 2: Principles of a laser triangulation system. A laser
projector shines a thin sheet of light onto the object. The
CCD sensor detects, on each scan line, the peak of reflected
laser light. 3D point positions are computed by intersecting
the line through the pixel with the known plane of laser light.

calculations may be made robust by using multiple sensors 6.
A fundamental limitation of what can be scanned with a tri-
angulation system is having an adequate clear view for both
the source and sensor to see the surface point currently being
scanned. Surface reflectance properties affect the quality of
data that can be obtained. Triangulation scanners may per-
form poorly on materials that are shiny, have low surface
albedo, or that have significant subsurface scattering.

An alternative class of range scanners are time-of-flight
systems. These systems send out a short pulse of light, and
estimate distance by the time it takes the reflected light to re-
turn. These systems have been developed with near real time
rates, and can be used over large (e.g. 100 meter) distances.
Time-of-flight systems require high precision in time mea-
surements, and so errors in time measurement fundamentally
limit how accurately depths are measured.

Fundamental characteristics to know about a range scan-
ner are its scanning resolution, and its accuracy. Accuracy is
a statement of how close the measured value is to the true
value. The absolute accuracy of any given measurement is
unknown, but a precision that is a value for the standard de-
viation that typifies the distribution of distances of the mea-
sured point to true point can be provided by the manufac-
turer. The absolute value of error increases with distance
between the scanner and object. The deviation of measure-
ments is a thin ellipsoid rather than a sphere – the error is
greatest along the line-of-sight of the sensor. The precision
of the measurements may vary across a range image. There

are some effects that produce random errors of comparable
magnitude at each point. Other effects may be systematic,
increasing the error towards the edges of the scan. Because
models are built from points acquired from many different
range images, it is important to understand the relative relia-
bility of each point to correctly combine them.

Resolution is the smallest distance between two points
that the instrument measures. The accuracy of measured 3D
points may be different than the resolution. For example, a
system that projects stripes on an object may be able to find
the depth at a particular point with submillimeter accuracy.
However, because the stripes have some width, the device
may only be able to acquire data for points spaced millime-
ters apart on the surface. Resolution provides a fundamen-
tal bound on the dimensions of the reconstructed surface el-
ements, and dictates the construction of intermediate data
structures used in forming the integrated representation.

Range scanners do not simply provide clouds of 3D
points 7, but implicitly provide additional information. Sim-
ply knowing a ray from each 3D point to the scanning sen-
sor indicates that there are no occluding surfaces along that
ray, and provides an indicator of which side of the point is
outside the object. Since range images are organized as two-
dimensional arrays, an estimate of the surface normal at each
point can be obtained by computing vector cross products for
vectors from each point to its immediate neighbors. These
indicators of orientation can be used to more efficiently re-
construct a full surface from multiple range images.

3. Registration

For all but the simplest objects, multiple range scans must be
acquired to cover the whole object’s surface. The individual
range images must be aligned, or registered, into a common
coordinate system so that they can be integrated into a single
3D model.

In high-end systems registration may be performed by ac-
curate tracking. For instance, the scanner may be attached
to a coordinate measurement machine that tracks its posi-
tion and orientation with a high degree of accuracy. Passive
mechanical arms as well as robots have been used. Optical
tracking can also be used, both of features present in the
scene or of special fiducial markers attached to the model
or scanning area.

In less expensive systems an initial registration is found by
scanning on a turntable, a simple solution that limits the size
and geometric complexity of scannable objects (they must fit
on the turntable and the system provides only a cylindrical
scan which cannot re-construct self-occluding objects), and
that leaves unsolved the problem of registration for scans
of the top and bottom of the object. Many systems rely on
interactive alignment: A human operator is shown side-by-
side views of two overlapping scans, and must identify three
or more matching feature points on the two images which
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Figure 3: One step of the Iterative Closest Point algorithm.
Point matches are defined based on shortest Euclidean dis-
tance. Scan P is then transformed to minimize the length of
the displacement vectors, in the least-squares sense.
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Figure 4: In Chen and Medioni’s method, a matching pair is
created between a control point p on scan P and the closest
point q on the tangent plane to Q at q0. q0 is the sample point
on Q closest to the intersection with the line ` perpendicular
to P in p.

are used to compute a rigid transformation that aligns the
points.

Automatic feature matching for computing the initial
alignments is an active area of research (recent work in-
cludes 8; 9; 10; 11). The most general formulation of the prob-
lem, that makes no assumptions on type of features (in the
range and/or associated intensity images) and initial approx-
imate registration is extremely hard to solve. Approximate
position and orientation of the scanner can be tracked with
fairly inexpensive hardware in most situations, and can be
used as a starting point to avoid searching a large parameter
space.

3.1. Registration of two views

Neither the controlled motion nor the feature matching tech-
niques can usually achieve the same degree of accuracy as
the range measurements. The initial alignment must there-
fore be refined by a different technique. The most successful
approach to solve this problem has been the Iterative Clos-
est Point (ICP) algorithm, originally proposed by Besl and
McKay 12 and Chen and Medioni 13.

The ICP algorithm consists of two steps: In the first step,
pairs of candidate corresponding points are identified in the
area of overlap of two range scans. Subsequently, an opti-
mization procedure computes a rigid transformation that re-
duces the distance (in the least-squares sense) between the

two sets of points. The process is iterated until some conver-
gence criterion is satisfied. The general idea is that at each
iteration the distance between the two scans is reduced, al-
lowing for a better identification of true matching pairs, and
therefore an increased chance of a better alignment at the
next iteration. It has been proved 12 that the process con-
verges to a local minimum, and in good implementations it
does so in few steps. However, the algorithm may or may
not converge to a global minimum, depending on the initial
configuration. One obvious problem arises with surfaces that
have few geometric features: Two aligned partial scans of a
cylindrical surface can slide relative to each other while the
distance between corresponding points remains zero. When
available, features in co-acquired texture images can help
solve this underconstrained problems (see Sec. 3.3).

Variations of the algorithm differ in how the candidate
matching pairs are identified, which pairs are used in com-
puting the rigid transformation, and in the type of optimiza-
tion procedure used. Besl and McKay 12 use the Euclidean
closest point as the matching candidate to a given point.
Chen and Medioni 13 find the intersection between a line
normal to the first surface at the given point and the second
surface, then minimize the distance between the given point
and the tangent plane to the second surface at the intersec-
tion point. This technique has two advantages: It is less sen-
sitive to non-uniform sampling, and poses no penalty for two
smooth surfaces sliding tangentially one with respect to the
other, a desirable behavior because in flat areas false matches
can easily occur. See Figs. 3 and 4.

Points from the first surface (control points) can be se-
lected using uniform subsampling, or by identifying surface
features. The set of candidate pairs can be weighted and/or
pruned based on estimates of the likelihood of an actual
match, and confidence in the data. Dorai et al. 14 model sen-
sor noise and study the effect of measurement errors on the
computation of surface normals. They employ a minimum
variance estimator to formulate the error function to be min-
imized. They report more accurate registration results than
Chen and Medioni’s original method in controlled experi-
ments. In related work, Dorai et al. 15 check distance con-
straints (given points p1 and p2 on the first surface, and
points q1, q2 on the second surface, jjjp1 � p2jj � jjq1 �
q2jjj < ε must hold) to prune incompatible matches, also
leading to improved registration results. Many researchers
have proposed incorporating other features for validating
matches: for example thresholding the maximum distance,
discarding matches along surface discontinuities, evaluating
visibility, and comparing surface normals, curvature or sur-
face color information. Use of the texture images as an aid
to registration is further discussed in Sec. 3.3.

Given the two sets of matching points P = fp1; : : :; png,
Q = fq1; : : :;qng, the next problem is computing a rota-
tion matrix R and translation vector T such that the sum of
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squares of pair wise distances

e =
n

∑
i=1

jjpi � (Rqi+T )jj2

is minimized. This problem can be solved in closed form by
expressing the rotation as a quaternion 16, by linearizing the
small rotations 13, or by using the Singular Value Decompo-
sition. More statistically robust approaches have been inves-
tigated to avoid having to preprocess the data to eliminate
outliers 17; 18.

3.2. Registration of Multiple Views

When pair wise registration is used sequentially to align
multiple views errors accumulate, and the global registration
is far from optimal. Turk and Levoy 19 use a cylindrical scan
that covers most of the surface of the object, and then incre-
mentally register other scans to it. In their variation of ICP,
they compute partial triangle meshes from the range scans,
then consider the distance from each vertex of one mesh to
the triangulated surface representing the other scan.

Blais and Levine 20 search for a simultaneous solution
of all the rigid motions using a very fast simulated anneal-
ing algorithm. Execution times for even just a few views
are reportedly long. Bergevin et al. 21 extend the incremen-
tal approach to handle multiple views. One of the views
is selected as the central (or reference) view. All the other
views are transformed into the reference frame of the central
view. At each iteration, each view is registered with respect
to all other views using a varation of Chen and Medioni’s
method. The process is repeated until all incremental regis-
tration matrices are close to the identity matrix. Benjemaa
and Schmitt 22 use a similar approach, but accelerate find-
ing matching pairs by resampling the range images from a
common direction of projection, and then performing the
searches for the closest points on these images.

Neugebauer 23 uses the Levenberg-Marquardt method to
solve a linearized version of the least-squares problem. A
resolution hierarchy is used to improve robustness and effi-
ciency. Invalid matches are detected and discarded at each
iteration.

Pulli 24 describes a multiview registration method that
combines some of the best available techniques with new
ideas, and is particularly suited to the registration of large
datasets. Pulli’s method consists of two steps: In the first
step, range scans are registered pair wise using Chen and
Medioni’s method. Matching points are discarded if they lie
on scan’s boundaries, if the estimated normals differ by more
than a constant threshold, or when their distance is too large.
A dynamic fraction, that increases as the registration gradu-
ally improves, of the best remaining pairs (the shorter ones)
is then used for the alignment. After this initial registration,
the overlap areas of each pair of scans is uniformly sampled,
and the relative position of sample points stored and used in

the successive step: the algorithm will assume that the pair
wise registration is exact and will try to minimize relative
motion. The second step considers the scans one at a time,
and aligns each to the set of scans already considered. An in-
ner loop in the algorithm considers all the scan that overlap
with the current scan, and recursively aligns each of these
scans until the relative change is smaller than a threshold,
diffusing error evenly among all scans.

A different class of methods models the problem by imag-
ining a set of springs attached to point pairs, and simulating
the relaxation of the dynamic system. Stoddart and Hilton 25

assume that point pairs are given and remain fixed. Eggert
et al. 26 link each data point to the corresponding tangent
plane in another view with a spring. They use a hierarchi-
cal subsampling that employs an increasing number of con-
trol points as the algorithm progresses, and update corre-
spondences at each iteration. They report better global reg-
istration error and a larger radius of convergence than other
methods, at the expense of longer computation times. Their
method also assumes that each portion of the object surface
appears in at least two views.

3.3. Using the Textures to Aid Registration

Images that record the ambient light reflected from an object
(rather than a structured light pattern used for triangulation)
may also be captured coincidently with the range images.
Color or grayscale images are recorded to be used at texture
maps (see Sec. 7.) Range and texture images in systems that
acquire both coincidently are registered to one another by
calibration. That is, the relative position and orientation of
the texture and range sensors are known, and so the projec-
tive mapping of the texture image onto the range image is
known. When texture images registered to the range images
are available, they may be used in the scan registration pro-
cess. This is particularly advantageous when the texture im-
ages have a higher spatial resolution than the range images,
and/or the object itself has features in the surface texture in
areas that have few geometric features.

Texture images may be used in the initial alignment phase.
Gagnon et al. 27 use texture data to assist a human operator in
the initial alignment. Pairs of range images are aligned man-
ually by marking three points on overlapping texture images.
The locations of the matching points are refined by an algo-
rithm that searches in their immediate neighborhoods using
image cross-correlation 28. A least-squares optimization fol-
lows to determine a general 3D transformation between the
scans that minimizes the distances between the point pairs.

Roth 9 used textures in an automatic initial alignment pro-
cedure. “Interest” points in each texture image, such as cor-
ners, are identified using any of a variety of image process-
ing techniques. A 3D Delaunay tetrahedralization is com-
puted for all interest points in each scan. All matching trian-
gles are found from pairs of potentially overlapping scans,
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and the transformation that successfully registers the most
matching triangles is used. The advantage of using the trian-
gles is that it imposes a rigidity constraint that helps insure
that the matches found are valid. The method requires an ad-
equate number of “interest” points in the textures. However,
a relatively sparse pattern of points can be projected onto
an object using laser light to guarantee that such points are
available. Projected points were added to texture maps in the
case study presented by Bernardini and Rushmeier 29, how-
ever the number of points per scan were not adequate for a
completely automatic initial alignment.

Texture images may also be used in the refinement of the
initial alignment. In general, there are two major approaches
to using texture image data in the refinement phase. In one
approach, the color image values are used as additional coor-
dinates defining each point captured in the scan. In the other
approach, matching operations are performed using the im-
ages directly.

Johnson and Kang 30; 31 describe a method in which they
use color from a texture as an additional coordinate for each
point in an ICP optimization. Because the range images they
use are of lower spatial resolution than the texture images,
the range images are first supersampled to the texture reso-
lution, and a color triplet is associated with each 3D point.
The color triplets need to be adjusted to be comparable in
influence to the spatial coordinates. They recommend scal-
ing the color coordinates so that the range of values matches
the range of values in the spatial coordinates. Further, to
minimize image-to-image illumination variations they rec-
ommend using color in terms of YIQ rather than RGB, and
applying a scale factor to the luminance, Y coordinate, that
is much smaller than the IQ coordinates. The closest point
search now becomes a search in 6D space, and a 6D k-d tree
is used to accelerate the search. For tests using scanned mod-
els of rooms which have many planar areas with high texture
variation, they demonstrate order of magnitude reductions in
alignment errors. Schütz et al. 32 present a similar extended-
coordinate ICP method, that uses scaled normals data (with
normals derived from the range data) as well as color data.

The alternative approach to using texture image data is to
perform matching operations on image data directly. This
allows image structure to be exploited, and avoids search
in high dimensional coordinate space. To compare texture
images directly, these types of methods begin by using the
range scan and an initial estimate of registration to project
the texture images into a common view direction, as illus-
trated in Fig. 5.

Weik 33 projects both the texture image and the texture
gradient image of a source scan to be aligned with a sec-
ond destination scan. The difference in intensities in the two
images in the same view are then computed. The texture dif-
ference image and gradient image are then use to estimate
the locations of corresponding points in the two images. A
rigid transformation is then computed that minimizes the

Di
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S j

D j

D̃ j

Figure 5: Registration methods that work with images begin
by projecting overlapping textures into the same view. Here
geometries Si and Sj are used to project the corresponding
texture maps Di and Dj into the same view as a third scan
Sm.

sum of the 3D distances between the corresponding point
pairs. Pulli 34describes a method similar to Weik’s that re-
places the use of image gradient and differences with a full
image registration to find corresponding points. Pulli’s tech-
nique uses a version of planar perspective warping described
by Szeliski and Shum 35 for image registration. To make the
registration more robust, Pulli describes a hierarchical im-
plementation. Similar to Kang and Johnson, Pulli examines
alternative color spaces to minimize the effects of illumina-
tion variations. For the test cases used – small objects with
rich geometric and textural features – there appears to be no
advantage of using images in color spaces other than RGB.

Both Weik’s and Pulli’s methods require operations on the
full high-resolution texture images. A high degree of overlap
is required, and scan-to-scan variability in illumination in-
troduces error. Fine scale geometry is matched only if these
details are revealed by lighting in the images. Both methods
can be effective if there are substantial albedo variations in
the scans that dominate illumination variations.

Bernardini et al. 36 present a registration method that com-
bines elements of several of the other texture-based tech-
niques. The initial alignment is first refined with a purely
geometric ICP. Similar to Weik and Pulli, the texture im-
ages are projected into a common view. Similar to Roth,
feature points are located in the texture images. However,
unlike Roth the method does not attempt to match feature
points. Rather, similar to the approach by Gagnon et al., the
initial correspondences are refined by doing a search in a
small neighborhood around each point, and finding corre-
sponding pixels where an image cross-correlation measure is
minimized. A rigid rotation is then found that minimizes the
distance between the newly identified corresponding points.
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Figure 6: Probabilistic model of measurement error
(adapted from Rutishauser et al. 37.)

3.4. Future Directions

Successful refinement of an initial registration has been
demonstrated for a large class of objects. This step does not
appear to be a major obstacle to a fully automatic model-
building pipeline. Robust solutions for the automatic align-
ment of totally uncalibrated views are not available, although
some progress is being made. Scanner instrumentation with
an approximate positioning device seems a feasible solution
in most cases. Very promising is the use of improved feature-
tracking algorithms from video sequences as an inexpensive
way of producing the initial registration estimate.

4. Line-of-sight Error

After the scans have been aligned the individual points
would ideally lie exactly on the surface of the reconstructed
object. However, one still needs to account for residual er-
ror due to noise in the measurements, inaccuracy of sensor
calibration, and imprecision in registration. The standard ap-
proach to deal with the residual error is to define new esti-
mates of actual surface points by averaging samples from
overlapping scans. Often the specific technique used is cho-
sen to take advantage of the data structures used to integrate
the multiple views into one surface. Because of this, details
of the assumed error model and averaging method are often
lost or overlooked by authors. We believe that this problem is
important enough to deserve a separate discussion. In addi-
tion, line-of-sight error compensation, together with resam-
pling and outlier filtering, is a necessary preprocessing step
for interpolatory mesh integration methods.

Among the first to recognize the need for a mathemat-
ical model of scanner inaccuracies and noise were Hébert
et al. 38, in the context of data segmentation and polyno-
mial section fitting. Their error model incorporates the ef-
fects of viewing angle and distance, and is expressed as
an uncertainty ellipsoid defined by a Gaussian distribution.
Other sources of non-Gaussian error, such as shadows, sur-
face specularities and depth discontinuities, which generally

produce outliers, are not included in the model. For a typical
triangulation scanner the error in estimating the x;y position
of each sample is much smaller than the error in estimating
the depth z. Therefore the ellipsoid is narrow with its longer
axis aligned with the direction towards the sensor, see Fig. 6.
Building on the work of Hébert et al., Rutishauser et al. 37

define an optimal reconstruction of a surface from two sets of
estimates, in the sense of probability theory. However, they
have to resort to some approximations in their actual com-
putations. For a measured point on one scan, they find the
best matching point (again, in the probabilistic sense) on the
triangle defined by the three closest samples on the second
scan. The optimal estimation of point location is then com-
puted using the modified Kalman minimum-variance esti-
mator.

Soucy and Laurendeau 39 model error in a laser triangu-
lation system as proportional to the fraction of illuminance
received by the sensor, expressed by the cosine square of
the angle between the surface normal at the measured point
and the sensor viewing direction. Overlapping range data is
resampled on a common rectangular grid lying on a plane
perpendicular to the average of the viewing directions of
all contributing scans. Final depth values are computed as
weighted averages of the resampled values, where the weight
used is the same cosine square defined above. These points
are then connected into a triangle mesh.

Turk and Levoy 19 employ a similar method, but invert
the steps of creating a triangulated surface and finding better
surface position estimates. In their approach individual range
scans are first triangulated, then stitched together. In areas of
overlap, vertices of the resulting mesh are moved along the
surface normal to a position computed as the average of all
the intersection of a line through the point in the direction of
the normal and all the overlapping range scans.

Neugebauer 23 adjusts point positions along the scanner
line-of-sight. He uses a weighted average where each weight
is the product of three components: The first is the cosine
of the angle between surface normal and sensor viewing di-
rection (if the cosine is smaller than 0:1, the weight is set
to zero); the second contribution is a function that approx-
imates the square distance of a sample point to the scan
boundary, allowing a smooth transition between scans; the
third component is Tukey’s biweight function, used to filter
outliers. The weighting is applied iteratively.

In volumetric methods, individual aligned meshes are
used to compute a signed-distance function on a volume grid
encompassing the object. Estimated surface points are com-
puted as the points on the grid where the distance function is
zero. A mesh is then extracted using the marching cubes al-
gorithm 40. Several methods to estimate the signed distance
at each voxel have been discussed. Curless and Levoy 41

compute the signed distance from each scan by casting a ray
from the sensor through each voxel near the scan. The length
of the ray from the voxel to the point in which it intersects
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the range surface is computed and accumulated at the voxel
with values computed from other scans using weights depen-
dent, as usual, on surface normal and viewing direction. This
approach may lead to a biased estimate of surface location,
as noted in 42. Wheeler et al. 42 propose a solution that is less
sensitive to noise, outliers, and orientation ambiguities. They
assign to each voxel the signed distance to the closest point
on the consensus surface, a weighted average of nearby mea-
surements. Only measurements for which a user-specified
quorum of samples with similar position and orientation is
found are used. Hilton et al. 43 also blend signed distances
from individual scans, and add extra rules to handle correctly
the case of of different surfaces in close proximity, both with
the same and opposite orientation. Roth and Wibowo 44 sim-
ply average signed distances from samples contained in the
eight-voxel neighborhood of a grid point. They compute the
surface normals used in the signed distance computation by
first assigning outward-pointing normals to points visible
from six orthogonal directions, then propagating the orienta-
tion to neighboring, non-visible points, and finally smooth-
ing the field with a relaxation algorithm.

5. Scan Integration

For most applications, it is desirable to merge the aligned
multiple scans into a unified, non-redundant surface repre-
sentation. A significant amount of research in this direction
has been done in the past. In this section, we will try to clas-
sify this work based on the type of assumptions and approach
taken, and we will point to recent publications that are rep-
resentative of each category, without trying to exhaustively
cite the vast literature available on this subject. Previous re-
views of work in this field include 45; 46; 47.

The goal of scan integration is to reconstruct the geometry
and topology of the scanned object from the available data.
The problem is difficult because in general the data points
are noisy, they may contain outliers, parts of the surface may
not have been reached by the scanner, and in general there is
no guarantee that the sampling density is even sufficient for
a correct reconstruction.

Some progress is being made in characterizing the prob-
lem more rigorously, at least in restricted settings. A first
classification of methods can be made based on whether the
input data is assumed to be unorganized points (point cloud)
or a set of range scans. Techniques that deal with the first
kind of input are more general, but also usually less robust
in the presence of noise and outliers. The second category
uses information in addition to simple point position, such
as estimated surface normal, partial connectivity embedded
in the range scan, sensor position, to better estimate the ac-
tual surface.

A second classification groups techniques based on the
approach taken to reconstruct surface connectivity. A prac-
tical consequence of this choice is the size of the problem

that can be solved using given computing resources. We will
review selected work based on this second categorization.

5.1. Delaunay-Based Methods

The Delaunay complex D(S) associated with a set of points
S in R3 decomposes the convex hull of S and imposes a
connectivity structure. Delaunay-based methods reconstruct
a surface by extracting a subcomplex from D(S), a process
sometime called sculpting. This class of algorithms usually
assumes only a point cloud as input. A recent review and
unified treatment of these methods appears in 48.

One technique to select an interesting subcomplex, in fact
a parameterized family of subcomplexes, is based on alpha-
shapes 49. Bajaj et al. 50; 47 use a binary search on the pa-
rameter α to find a subcomplex that defines a closed surface
containing all the data points. Smaller concave features not
captured by the alpha-shape are found with the use of heuris-
tics. The surface is then used to define a signed distance. A
C1 implicit piecewise-polynomial function is then adaptively
fit to the signed distance field.

A commercial software product is based on a different
technique to extract the subcomplex, called the wrap com-
plex 51. The technique can handle non-uniform samplings,
but requires some interactive input.

Amenta et al. 52; 53; 54 introduce the concept of crust, the
subcomplex of the Delaunay complex of S[P, where P is
the set of poles of the Voronoi cells of S, formed by only
those simplices whose vertices belong to S. The poles of a
sample point s2 S are the two farthest vertices of its Voronoi
cell. The algorithm automatically handles non-uniform sam-
plings, and its correctness, under somewhat stringent sam-
pling density conditions, has been proven, both in the sense
of a topologically correct reconstruction and of convergence
to the actual surface for increasing sampling density. Ex-
perimental results prove that the algorithm performs well in
practice for much less dense samplings than the theoretical
bound.

In the context of these methods it is possible to study
the sampling conditions the guarantee a correct reconstruc-
tions. Attempts so far have been mostly restricted to the two-
dimensional case 55; 56; 57, with the exception of 54. The prac-
tical usefulness of such criteria is yet to be demonstrated.
The main shortcomings of Delaunay based methods are their
sensitivity to noise and outliers (these algorithms interpolate
the data points, so outliers must be removed in preprocess-
ing), and their computational complexity. Robustly comput-
ing and representing the connectivity of the 3D Delaunay
complex can be a costly task. Experimental results are usu-
ally limited to “clean” datasets with less than a few hundred
thousand points.
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5.2. Surface-Based Methods

Surface-based methods create the surface by locally parame-
terizing (or implicitly assuming a local parameterization of)
the surface and connecting each points to its neighbors by
local operations. Some methods make use of the partial con-
nectivity implicit in the range images.

The zippering approach of Turk and Levoy 19 works by
first individually triangulating all the range scans. The partial
meshes are then eroded to remove redundant, overlapping
triangles. The intersecting regions are then locally retrian-
gulated and trimmed to create one seamless surface. Vertex
positions are then readjusted to reduce error, as described in
Sec. 4.

Soucy and Laurendeau 39 use canonical Venn diagrams to
partition the data into regions that can be easily parameter-
ized. Points in each region are resampled and averaged (see
Sec. 4), and locally triangulated. Patches are then stitched
together with a constrained Delaunay algorithm.

A recent paper by Bernardini et al. 58 describes an algo-
rithm to interpolate a point cloud that is not based on sculpt-
ing a Delaunay triangulation. Their method follows a region
growing approach, based on a ball-pivoting operation. A ball
of fixed radius (approximately the spacing between two sam-
ple points) is placed in contact with three points, which form
a seed triangle. The three edges initialize a queue of edges
on the active boundary of the region. Iteratively, an edge is
extracted from the queue, and the ball pivots around the ex-
tracted edge until it touches a new point. A new triangle is
formed, the region boundary updated, and the process con-
tinues. The approach can easily be extended to restart with
a larger ball radius to triangulate regions with sparser data
points. This method was implemented to make efficient use
of memory by loading data on demand, and used to triangu-
late a large collection of scans with millions of samples.

Two new contributions appear in the proceedings of this
conference. The work of Gopi et al. 59 addresses the problem
of point cloud triangulation. Their method starts by estimat-
ing surface normals at the points and estabilishing consistent
surface orientation via normal propagation, with a technique
similar to 60. They then proceed to select a set of candidate
neighbors for each sample point. A sampling criterion is
presented that guides the selection of candidates. The algo-
rithm builds the triangulation incrementally, following a re-
gion growing approach. A point on the current region bound-
ary is selected, and its candidate neighbors mapped onto its
tangent plane. A local 2D Delaunay triangulation is com-
puted, the generated triangles added to the reconstruction,
and the algorithm continues by considering another bound-
ary point. The experimental results report execution times of
7.9 to 18.6 seconds on datasets containg 33K to 70K points.
Robustness in the presence of noise is not discussed. Kobbelt
and Botsch 61 present an interactive technique that exploits
the graphics hardware to efficiently sample various types of

surface primitives. Values read back from the z-buffer dur-
ing the interactive session are treated as a range map. Each
range map is triangulated and then stitched 19 to other views
to form a complete model.

Surface based methods can easily process large datasets,
and can handle (and compensate for) small-scale noise in
the data. Robustness issues arise when the noise makes it
difficult to locally detect the correct topology of the surface.

5.3. Volumetric Methods

Most volumetric methods 41; 42; 43 are based on computing
a signed distance field in a regular grid enclosing the data
(only in proximity of the surface), and then extracting the
zero-set of the trivariate function using the marching cube
algorithm 40. The various approaches differ on the details of
how the signed distance is estimated from the available data.
These differences have already been discussed in Sec. 4.

Volumetric methods are well suited for very large
datasets. Once the individual range scans have been pro-
cessed to accumulate signed distance values, storage and
time complexity are output sensitive: they mainly depend
on the chosen voxel size, or resolution of the output mesh.
Memory usage can be reduced by explicitly representing
only voxels in close proximity to the surface 41 and by pro-
cessing the data in slices. The choice of voxel size is usually
left to the user. Small voxels produce an unnecessarily large
number of output triangles and increase usage of time and
space. Large voxels lead to oversmoothing and loss of small
features. These problems can be alleviated by using an adap-
tive sampling (e.g.octree rather than regular grid 62) and/or
by postprocessing the initial mesh with a data fitting proce-
dure 63; 64; 65.

5.4. Deformable Surfaces

Another class of algorithms is based on the idea of deform-
ing an initial approximation of a shape, under the effect of
external forces and internal reactions and constraints.

Terzopoulos et al. 66 use an elastically-deformable model
with intrinsic forces that induce a preference for symmetric
shapes, and apply them to the reconstruction of shapes from
images. The algorithm is also capable of inferring non-rigid
motion of an object from a sequence of images.

Pentland and Sclaroff 67 adopted an approach based on the
finite element method and parametric surfaces. They start
with a simple solid model (like a sphere or cylinder) and
attach virtual “springs” between each data point and a point
on the surface. The equilibrium condition of this dynamic
system is the reconstructed shape. They also show how the
set of parameters that describe the recovered shape can be
used in object recognition.

c The Eurographics Association 2000.



Bernardini and Rushmeier / 3D Model Acquisition

6. Post-Processing

Post processing operations are often necessary to adapt the
model resulting from scan integration to the application at
hand. Very common is the use of mesh simplification tech-
nique to reduce mesh complexity 46.

To relate a texture map to the integrated mesh, the surface
must be parameterized with respect to a 2D coordinate sys-
tem. A simple parameterization is to treat each triangle sepa-
rately 30; 68 and to pack all of the individual texture maps into
a larger texture image. However, the use of mip-mapping in
this case is limited since adjacent pixels in the texture may
not correspond to adjacent points on the geometry. Another
approach is to find patches of geometry which are height
fields that can be parameterized by projecting the patch onto
a plane. Stitching methods 2 use this approach by simply
considering sections of the scanned height fields as patches.

Many parameterization methods have been developed for
the general problem of texture mapping. Several methods
seek to preserve the relative distance between 3D points in
their pairing to a 2D coordinate system 69; 70. Marschner 71

describes an example of applying a relative distance preserv-
ing parameterization in a scanning application. The surface
is subdivided into individual patches by starting with seed
triangles distributed over the object, and growing regions
around each seed. Harmonic maps are found to establish a
2D coordinate system for each patch, so individual patches
need not be height fields.

Sloan et al. 72 have observed that maintaining relative dis-
tances may not produce optimal parameterizations for tex-
ture mapping. They suggest that uniform texture informa-
tion, rather than distance preservation, should drive the pa-
rameterization. They applied this idea to synthetic textures
only, but it may prove to be an effective approach in some
scanning applications as well.

Another important step for applications that involve edit-
ing and animating the acquired model is the conversion of
the mesh to a parametric, higher-order surface representa-
tion, for example using NURBS or a subdivision scheme.

The technique of Hoppe et al. 73 starts with a triangle
mesh and produces a smooth surface based on Loop’s sub-
division scheme 74. Their method is based on minimizing an
energy function that trades off conciseness and accuracy-of-
fit to the data, and is capable of representing surfaces con-
taining sharp features, such as creases and corners.

More recently, Eck and Hoppe 75 proposed an alternative
surface fitting approach based on tensor-product B-spline
patches. They start by using a signed-distance zero-surface
extraction method 60. An initial parameterization is built by
projecting each data point onto the closest face. The method
continues with building from the initial mesh a base com-
plex (a quadrilateral-domain complex, with the same topol-
ogy of the initial mesh) and a continuous parameterization
from the base complex to the initial mesh, leveraging on the

work of Eck et al. 70 A tangent-plane continuous network
of tensor-product B-spline patches, having the base complex
as parametric domain, is then fit to the data points, based
on the scheme of Peters 76. The fitting process is cast as an
iterative minimization of a functional, which is a weighted
sum of the distance functional (the sum of square Euclidean
distances of the data points from the surface) and a fairness
functional (thin plate energy functional).

Another NURBS fitting technique is described by Krish-
namurthy and Levoy 77. The user interactively chooses how
to partition the mesh into quadrilateral patches. Each polyg-
onal patch is parametrized and resampled, using a spring
model and a relaxation algorithm. Finally, a B-spline sur-
face is fit to each quadrilateral patch. In addition, a displace-
ment map is computed that captures the fine geometric detail
present in the data.

Commercial packages that allow a semi-automated
parametrization and fitting are available.

7. Texture

In addition to the overall shape of an object, the rendering
of high quality images requires the fine scale surface ap-
pearance as well, which includes surface color and finish.
We will refer to such properties generically as the surface
texture. Beyond color and finish, texture may also include
descriptions of fine scale surface geometry, such as high
spatial-resolution maps of surface normals or bidirectional
textures.

Surface color and finish are informal terms. Color is ac-
tually a perceived quantity, depending on the illumination
of an object, human visual response, and the intrinsic spec-
tral reflectance of the object. Finish – such as smoothness
or gloss – is also not a directly acquired property, but is a
consequence of an object’s intrinsic reflectance properties.
The fundamental quantity that encodes the intrinsic proper-
ties of the surface is the bidirectional reflectance distribu-
tion function (BRDF.) To fully render an accurate image, the
BRDF must be known for all points on a surface. The BRDF
fr(λ;x;y;ωi;ωr ) at a surface point (x;y) is the ratio of ra-
diance reflected in a direction ωr to an incident energy flux
density from direction ωi for wavelength λ. The BRDF can
vary significantly with position, direction and wavelength.
Most scanning systems consider detailed positional varia-
tions only, with wavelength variations represented by an
RGB triplet, and Lambertian (i.e. uniform for all directions)
behavior assumed. Furthermore, most scanning systems ac-
quire relative estimates of reflectance, rather than attempting
to acquire absolute value.

Here we will consider how texture data is acquired, and
then how it is processed to provide various types of BRDF
estimates, and estimates of fine scale surface structure.
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7.1. Texture-Geometry Registration

It is possible to capture the spectral reflectance of an ob-
ject as points are acquired with a polychromatic laser scan-
ner 78. However, data for texture is typically acquired by
an electronic color camera or using conventional color pho-
tographs that are subsequently scanned into electronic form.
The texture images need to be registered with the acquired
3D points. The most straightforward system for doing this is
registration by calibration. That is, color images correspond-
ing to each range image are acquired at the same time, us-
ing a camera with a known, measured position and orienta-
tion relative to the sensor used for obtaining geometry. As
discussed in Sec. 3.3, an advantage of this approach is that
acquired texture can be used in the geometric registration
process.

When textures are acquired separately from geometry, the
texture-to-geometry registration is performed after the full
mesh integration phase. Finding the camera position and ori-
entation associated with a 2D image of a 3D object is the
well-known camera calibration problem. Numerous refer-
ences on solutions to this problem can be found in the Price’s
Computer Vision bibliography 79, Sec. 15.2, “Camera Cali-
bration Techniques.” Camera calibration involves estimating
both the extrinsic and intrinsic parameters. The extrinsic pa-
rameters are the translation and rotation to place the camera
viewpoint correctly in the object coordinate system. The in-
trinsic parameters include focal length and radial distortion.
For objects which have an adequate number of unique ge-
ometric features, it is possible to manually identify pairs of
corresponding points in the 2D images and on the numeri-
cal 3D object. Given such correspondences, classic methods
such as that described by Tsai 80, can be used to register the
captured color images to the 3D model 2.

For some objects it may not be possible for a user to find a
large number of accurate 2D to 3D correspondences. Neuge-
bauer and Klein 81 describe a method for refining the regis-
tration of a group of existing texture images to an existing
3D geometric model. The method begins with a rough es-
timate of the camera parameters for each image in the set,
based on correspondences that are not required to be highly
accurate. The parameters for all of the texture images are
improved simultaneously by assuming the intrinsic camera
parameters are the same for all images, and enforcing crite-
ria that attempt to match the object silhouettes in the image
with the silhouette of the 3D model, and to match the image
characteristics at locations in texture images that correspond
to the same 3D point.

Nishino et al. 82 apply an alternative technique that relies
on image intensities rather than identifying features or ex-
tracting contours. They employ the general approach devel-
oped by Viola 83 that formulates the alignment as the max-
imization of the mutual information between the 3D model
and the texture image.

Rather than using an ad hoc method for deciding the posi-

tions for capturing texture images, Matsushi and Kaneko 84

use the existing 3D geometric model to plan the views for
capturing texture. Methods to plan texture image capture can
draw on the numerous computer vision techniques for view
planning, e.g. see 79 Sec. 15.1.4.1, “Planning Sensor Posi-
tion”. Matsushi and Kaneko develop a table of a set of can-
didate views, and the object facets that are visible in each
view. Views are selected from the table to obtain the views
that image the largest number of yet to be imaged facets. Af-
ter the view set is selected, synthetic images form the views
are generated. For each synthetic image the real camera then
is guided around the object to find the view that approxi-
mates the synthetic image, and a texture image is captured.
The texture image to model registration is refined after cap-
ture using a variation of Besl and McKay’s ICP algorithm 12

that acts on points on the silhouettes of the real and synthetic
images.

7.2. Illumination Invariance

The goal of capturing texture is to obtain a surface descrip-
tion that is illumination invariant – that is that is intrinsic
to the surface and independent of specific lighting condi-
tions. The pixel values in an image acquired by an electronic
camera depend on the environmental lighting and the cam-
era transfer parameters as well as the object properties. Ap-
proximate illumination invariants can be obtained directly
by appropriate lighting and camera design. More complete
estimates require processing of the acquired images. The va-
riety of techniques can be understood by examining the spe-
cific relationships between the physical acquisition equip-
ment and the end numerical value stored in an image.

Fig. 7 shows a generic simplified system for obtaining a
texture image. A light source with radiance Ls(λ;ωs) in di-
rection ωs from the normal of the source surface is at dis-
tance rs from the object. Light incident from direction ωi is
reflected with radiance Lp(λ;ωr) into the direction of a pixel
p. The radiance Lp(λ) is related to the object BRDF by:

Lp(λ) =
Z

fr(λ;x;y;ωi;ωr) Ls(λ;ωs) no �ωi ns �ωs dAs=r2
s

(1)
The energy per unit area and time Ep(λ) incident on the pixel
from direction ωc for an exposure time of τ is :

Ep(λ) = τ
Z

Lp(λ)nc �ωcdΩ (2)

where Ω is the solid angle of the object area viewed by the
pixel, determined by the camera focal length and pixel size.
This is converted to a 0 to 255 value (for an 8-bit sensor) C
where C corresponds to the red (R), green (G) or blue (B)
channel by:

C = K(
Z

λ
Ep(λ)sC(λ)dλ)γ +Co (3)

where K is the system sensitivity, sC(λ) is the normalized
sensor spectral response for channel C, Co is the response
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Figure 7: Generic geometry of texture map acquisition.

for zero illumination, and γ is the system non-linearity. Even
cameras with sensors that have an essentially linear response
to light may produce images that have values adjusted with a
value of γ other than one for the efficient use of the 0 to 255
range.

7.3. Direct Use of Captured Images

Most inexpensive systems attempt to capture a relative esti-
mate of Lambertian reflectance, expressed directly in terms
of RGB. A Lambertian reflector reflects the same radiance
in all directions for any incident energy flux density. The
Lambertian reflectance ρd is the fraction of incident energy
reflected, and is related to the BRDF by:

fr(λ;x;y;ωi;ωr) = ρd(λ;x;y)=π (4)

The radiance reflected for a Lambertian surface then is:

Lp(λ) = ρd(λ;x;y)
Z

Ls(λ;ωs) no �ωi ns �ωs dAs=r2
s (5)

The reflected radiances measured at each pixel then are a
good estimate of the relative spatial variation for Lamber-
tian surfaces if no �ωi ns �ωs and r2

s are approximately the
same for all points on the surface imaged at any given time.
Maintaining constant rs is relatively straightforward for sys-
tems with a fixed scanner location and object placed on a
turntable. As long as the distance to the light source is large
relative to the size of the surface area being imaged, the ef-
fect of varying rs will be small. One approach to controlling
the variation due to the changing incident angle is to use a
large diffuse light source, so that each point on the surface
is illuminated by nearly the entire hemisphere above it. Re-
lying on indirect illumination in a room can achieve this ef-
fect. Alternatively, for systems that acquire texture simulta-
neously with range images, a camera flash can be used nearly
collocated with the camera sensor (the standard design for a
commodity camera). Surfaces obtained in each range image

(a) (b)

(c) (d)

Figure 8: An example of a texture-mapped model obtained
from an inexpensive scanner, (a) the captured geometry,
(b) texture displayed as-captured, (c) textured model relit
from above, and (d) textured model relit from the back.

are oriented so that the surface normal is nearly parallel in
the direction of the camera sensor. The captured points then
will all be illuminated with a value of no �ωi ns �ωs close in
value to 1:0. An additional advantage of using the flash built
into the camera is that it is designed to be compatible with
the spectral sensitivity of the camera sensor to produce good
color match.

Captured image data can represent rich appearance details
as can be seen by contrasting the model shown in Fig. 8b
with a texture map with geometry alone Fig. 8a. The details
of the fur can be seen in the texture, that would be essen-
tially impossible to capture as geometry. However, there are
clearly shadows on the bunny’s coat that are fixed in the tex-
ture. Figs. 8c and d show the model relit from novel direc-
tions. The texture looks flatter because the detail shadows do
not appear consistent with the overall lighting direction.

7.4. Correcting Captured Images

While they produce approximations of the relative re-
flectance, inexpensive camera systems leave the texture pix-
els in the form given by Eq. 3. If data from such systems
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are to be used in rendering systems that use true physical pa-
rameters, a grayscale card should be used to estimate the γ of
the color camera. A grayscale card image can also be used
to assess the effect of the light source and camera spectral
sensitivities on the RGB values. Absolute reflectance values
can be estimated by capturing a reference white card with
the object, or by obtaining separate spot measurements of
the spectral reflectance of the object.

High-end systems that capture very accurate, dense range
images, coupled with low noise high resolution color cam-
eras may also be used to capture texture images. In these sys-
tems, images can be corrected using the geometric informa-
tion to adjust for variations in angle and distance. Threshold-
ing can be used to eliminate low values for values in shadow,
and high values in specular highlights. Alternatively the ge-
ometry can be used to predict areas that will be in shadow
or potentially in narrow specular peaks. Levoy et al. 85 de-
scribe the use of CCD digital still camera with a laser stripe
laser scanner to acquire accurate estimates of Lambertian re-
flectance.

7.5. Spatially Uniform, Directionally Varying BRDF

An alternative to acquiring a spatially detailed map of BRDF
that has no directional variation, is to acquire details of a di-
rectionally varying BRDF on objects with no spatial varia-
tion of surface properties. Such methods have been described
by Ikeuchi and Sato 86 for a range and intensity image pair,
and Baribeau et al. 78 for polychromatic laser data. These
methods use systems in which the angle between sensor and
light source position is fixed. However, because the scan-
ner sees a uniform BRDF surface with a variety of surface
orientations, data are obtained for Lr(λ;ωi;ωr) for a vari-
ety of values of (ωi;ωr). The methods compensate for not
sampling the entire range of angles over the hemisphere by
using the observed data to fit a parametric reflectance model.
Each paper uses a version of the Torrance-Sparrow model 87.
Torrance-Sparrow-inspired models of BRDF are expressed
generically as:

fr(λ;ωi;ωr) = ρd(λ)=π+ρs(λ)g(σ;ωi;ωr) (6)

where ρd is the fraction of incident light reflected diffusely
(i.e. as a Lambertian reflector), ρs is the fraction of light re-
flected near the specular direction in excess of the diffusely
reflected light in that direction, and gis a function that de-
pends on a parameter σ characterizing surface roughness as
well as the angles of incidence and reflection. Methods at-
tempt to estimate the three parameters ρd , ρs and σ to give
the shape of the reflectance function diagrammed in Fig. 9.

For example, Ikeuchi and Sato begin by assuming all pix-
els reflected diffusely, and estimate values of ρd and the light
source direction (assumed uniform across the surface). This
value is then refined by thresholding pixels which have val-
ues well above that predicted by the product of ρd and no �ωi

c

a

b

Figure 9: Torrance-Sparrow inspired reflectance models at-
tempt to model the magnitude of Lambertian reflected light a
with a parameter ρd, the magnitude of directionally reflected
light b with a parameter ρs and the width of the directional
lobe c with a parameter σ.

(which result either from specular reflections or surface in-
terreflections) and well below the predicted value (which re-
sult from either attached or cast shadows.) After the esti-
mates of ρd and ωi are made, an iterative process over non-
Lambertian pixels distinguishes specular vs. interreflection
pixels based on observed angle relative to the angle of reflec-
tion. From the values of radiance recorded for specular pixel,
values of the specular reflectance and surface roughness pa-
rameter are estimated. Alternatively Baribeau et al.capture
samples of BRDF for a variety of incident/reflected angle
pairs using the polychromatic range sensor. These data are
then fit to the parametric model using a non-linear least-
squares algorithm.

These spatially uniform techniques of course do not re-
quire objects that are completely uniform, but objects with
surfaces that can be segmented into reasonably large uni-
form areas.

7.6. Spatially and Directionally Varying BRDF

To capture both spatially and directionally varying BRDF,
methods based on photometric stereo are used. Photometric
stereo, introduced by Woodham 88 uses N images of an ob-
ject from a single viewpoint under N different lighting condi-
tions. Initially, photometric stereo was used to estimate sur-
face normals, and from the normals surface shape. Assum-
ing a uniform Lambertian surface, and small light sources
of uniform strength an equation for the surface normal no

visible through each pixel p in each image m for each light
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source in direction ωm;i is given by:

ωm;i �no = ξGm;p (7)

where Gi;p is the image grayscale value after correction for
non-linear γ values, and ξ is a scaling constant that includes
the light source radiance and subtended solid angle. Since
no has unit length and thus represents only two independent
variables, we can solve three equations for no and ξ.

Kay and Caelli 89 couple the idea of images from a photo-
metric stereo system with a range image obtained from the
same viewpoint to expand on the idea introduced by Ikeuchi
and Sato. Rather than sampling a variety of directions by
viewing many orientations across the surface, multiple inci-
dent light directions are observed for each surface point from
the set of photometric images. Kay and Caelli used high dy-
namic range images to be able to capture specular objects
by taking pairs a of images for each lighting condition with
and without a grayscale filter. Because the directional sam-
pling is still sparse, the data are fit to a Torrance-Sparrow-
inspired reflectance model. The fitting process proceeds in
four passes. First, weights are estimated to account for noise
in the surface and image data. Next, pixels are classified as to
whether there is enough data to estimate the model param-
eters. In the third pass the parameters are estimated where
data is adequate. In the final pass parameters are estimated
for the areas in which there was insufficient data from the
intensity maps. The only restriction on the technique is that
interreflections are not accounted for, so strictly the method
applies only to convex objects.

Sato et al. 90 presented a method for obtaining an esti-
mate of BRDF for a full object. Range and color images
are obtained for an object, with the object, sensor and light
source positions registered by calibration by moving the ob-
ject with a robot arm manipulator. After the full object is
reconstructed, the color images – showing the object from a
variety of views and illumination directions – are used to
fit a Torrance-Sparrow-inspired model. The parameter fit-
ting problem is simplified by separating diffusely and specu-
larly reflected light in each image by examining the color of
each point on the surface in various images. Assuming non-
white, dielectric materials, the diffuse component will be the
color of the object (i.e. the result of body reflection), while
the specular component will be the color of the light source
(i.e. the result of surface reflection.) 91. Because the specular
component is sampled sparsely along the surface (there is no
way to guarantee that a specular highlight will be obtained
for each point even with a large number of images) the esti-
mate of specular reflectance parameters are interpolated over
larger areas of the object.

7.7. Capturing Reflectance and Small Scale Structure

Methods for obtaining texture may not just estimate re-
flectance, but may also capture small scale details at a res-
olution finer than the underlying range image. Rushmeier et

(a) (b)

Figure 10: An example of a normals map used to enhance
the display of geometric detail. (a) shows the underlying 2
mm resolution geometry. (b) shows the geometry displayed
with a 0.5 mm resolution normals map. The illumination is
from a novel direction – i.e. not the direction of any of the
illumination in any of the captured images.

al. 92 developed a photometric stereo system attached to a
range imaging system. The photometric system allowed the
calculation of normals maps on the surface at a higher spatial
resolution than the underlying range image. They developed
a method 93 to use the normals of the underlying low spa-
tial resolution range image to adjust the images acquired by
the photometric system to insure that the fine detail normals
that are computed are consistent with the underlying mesh.
Given the range images and detailed normals, the acquired
color images were then adjusted to produce estimates of the
Lambertian reflectance of the surface. Fig. 10 shows an ex-
ample of an underlying low resolution geometry sampled at
approximately every 2 mm, and the same geometry with a
normals map added to show detailed features every 0.5 mm.

Dana et al. 94 observed that even full BRDF and normals
maps are not adequate for capturing the change in detail sur-
face appearance with lighting and view for surfaces with fine
scale geometric complexity such as bread and velvet. They
developed the concept of bidirectional textures, which are
sets of images (rather than individual values) of surfaces for
varying light and viewpoint.

No scanning method has been developed to truly capture
bidirectional textures for complete objects. However, there
have been a number of techniques that use the concept of
view dependent texture maps – that is textures that change
depending on view. View dependent texture maps were in-
troduced by Debevec et al. 95 in the context of building mod-
els from photogrammetry and generic parameterized mod-
els. A different texture map, obtained from points closest to
the current view, is used for each view of a model. View de-
pendent texture maps can portray the variation of surface ap-
pearance due to changes in self-occlusion as well as BRDF.
View dependent texture maps as described in 95 are not var-
ied for different lighting conditions. Pulli et al. 96 applied
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the idea to texturing range images. In an interactive viewer,
only the range and color images that would be visible from
the current view are used. Texture is synthesized on the fly
using a combination of the three acquired textures closest to
the current view. The effect is to render the effects of BRDF,
occlusion and shadowing for the lighting conditions that ex-
isting during acquisition. Since the textures were acquired
with both lighting and view changing, the effect is approxi-
mately the same as observing the object with a headlight at
the viewer position.

Nishino et al. 97 developed the idea of Eigen-Textures to
compactly represent view dependent texture maps. In their
method, a light is fixed to the object coordinate system, and
M views of an object are obtained using a turntable. The
result is M small texture maps for each triangle on a simpli-
fied version of the geometry obtained from the range images.
The series of M small texture maps are compressed by per-
forming an eigenstructure analysis on the series and finding a
small number of textures that can be used as an approximate
basis set to form textures in the view space encompassed
by the originally M textures. The textures then represent the
effects of BRDF, self-shadowing, and self-occlusion effects
for the single lighting condition. Eigen-Textures obtained for
many different lighting conditions can be combined linearly
to generate textures for novel lighting conditions.

8. Texture Map Reconstruction

Texture map reconstruction involves combining all the tex-
ture maps acquired for an object into a single non-redundant
map over the entire object. Texture map reconstruction may
start with meshes that store a color for each vertex point,
and form images. Other methods begin with acquired (and
possibly processed) images. Methods for texture map recon-
struction starting with images may either select one piece
from one acquired image to texture each surface area or they
may combine multiple maps that cover each surface area.

Soucy et al. 68 developed a method for generating a tex-
ture map from color per vertex models. The dense triangle
mesh is simplified to reduce the triangle count. Barycentric
coordinates are saved for each color triplet for which the ver-
tex has been removed. Separate texture maps are created for
each triangle in the simplified mesh. The texture image for
each triangle is required to be a half-square triangle. Appro-
priate colors are assigned to texture pixels using the original
vertex colors and their barycentric coordinates. Continuity
between the texture maps is insured by requiring vertices to
coincide with pixel centers in the texture map, and by re-
quiring the number of pixels along the edges of maps for
adjacent texture maps to be integer multiples of one another.
With this constraint, pixels representing the same location
on two different texture maps can be forced to have identical
values. All of the individual texture maps are then packed
into a single texture image.

Methods for reconstructing texture from sets of images
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Figure 11: In determining which parts of a captured texture
image Ai can be used in a texture map A for a surface P,
occlusion effects must be accounted for. Here the captured
texture pixel a1

i should not appear in the final texture map
pixel ai because the point pi is occluded from the point of
view of camera Ci.

have in common that for each texture image, the triangles
visible in that image are identified. As shown in Fig. 11,
simply checking that a surface is contained within the im-
age view frustum and is oriented toward the camera position
is not adequate. A full rendering of the model is required
to detect whether another surface occludes the surface being
mapped

Methods for reconstructing non-redundant texture for in-
expensive scanner systems that use captured images directly
for building maps generally select a piece of a single im-
age for each triangle in the mesh. An example of this sort
of method is described by Matsumoto et al. 98. There are
two desirable properties in selecting the image that con-
tributes the texture for a given triangle – it should be from the
viewpoint in which the triangle projects to the largest area,
and it should be from the same image as adjacent triangles.
Matsumoto et al.cast this as an energy minimization prob-
lem, where the energy is defined as the difference between a
penalty function expressing the distance between the images
used for adjacent triangles and the scaled projected area of a
triangle on an an image.

An example of a texture map produced by an inexpensive
scanning system that selects image segments as large as pos-
sible and then packs them into a single texture map is shown
in Fig. 12 for the model that was shown in Fig. 8.

Individual textures may be selected for regions of the sur-
face encompassing multiple triangles. Rocchini et al. 2 de-
scribe a method for selecting one source texture per region,
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Figure 12: An example of the texture image used to display
the model in Fig. 8

with regions covered by a single source map made as large
as possible. First, a list of images containing each vertex is
found. Then in an iterative procedure, regions are grown so
that large regions of the surface are mapped to the same im-
age. The problem remains then of adjusting the boundaries
between regions so seams are not visible. For the triangles
on boundaries between different source images, a detailed
local registration is performed so that details from the two
source texture images match.

Methods that use zippering for mesh integration use the
original texture map for each section of range image used
in the final mesh. Just as overlapping meshes are used to
adjust point positions to reduce line-of-sight errors, overlap-
ping textures are used to adjust texture values to eliminate
abrupt color changes in the texture. Texture in the overlap re-
gion is the weighted average of the two overlapping textures,
with the weight of each texture decreasing with distance to
the edge of the corresponding range image. Figs. 13(a) and
(b) show two overlapping scans to be merged. Fig. 13(c)
shows the result after the geometries have been zippered (or
stitched) together, with the original texture maps. Fig. 13(d)
shows the final result after the texture in the overlap region
has been adjusted.

Rather than just use multiple textures pair wise, other
methods use data from multiple textures that contain each
triangle. Such methods are successful and avoid ghosting
and blurring artifacts if they are preceded by registration
techniques that make use of texture image data. Johnson
and Kang 30 use all textures containing each triangle, with
a weighted average that uses the angle of the surface nor-
mal to the direction to camera for each image as the weight.

(a) (b)

(c) (d)

Figure 13: An example of the zippering approach to com-
bining texture maps. Figs. (a) and (b) show two input scans
to be merged. Fig. (c) shows the merged textures without ad-
justment, Fig. (d) shows the final texture after adjustment.

In Pulli et al.’s 96 view-dependent texturing combines three
types of weights in combining three source textures. First
a weight representing the angle between the current view
and each source view is computed. Then, similar to John-
son and Kang, the surface normal to view angle is used.
Finally, similar to the zippering methods, these weights are
combined with a weight that decreases with distance to the
texture edge. Neugebauer and Klein 81 combine multiple tex-
tures using weights that account for the angle of the surface
normal and view direction, and the distance to the edge of
the region of a texture image that will be used in the final
model. Because they use images that may still contain arti-
facts such as specular highlights, Neugebauer and Klein use
a third weight that eliminates outliers.

Bernardini et al. 99 describe a method that uses all avail-
able maps representing reflectance and normals at each tri-
angle obtained using the system described in 92. To minimize
color variations, before the maps representing reflectance are
combined, a global color balance is performed 93. A set of
points are randomly sampled on the integrated surface mesh.
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All of the maps representing reflectance are projected onto
the integrated mesh, and for each point all of the maps that
contain the point are identified. A set of linear equations is
formed for a scalar correction factor for each channel for
each image that sets the colors in each map representing a
common point equal. A least squares solution is performed
to compute the correction factors for this over determined
system. The normals maps were previously made consistent
with one another by the process used to make them consis-
tent with the underlying integrated mesh. The map values
are then combined using three weights. Similar to the other
methods, one is based on the area of the triangle in the image
using the dot product of normal to view direction, combined
with the distance from the camera sensor to the triangle. An-
other is a weight which diminishes with distance to the edge
of the texture. Finally a third weight is used that indicates
whether it was possible to compute a normal from the pho-
tometric images, or if the normal from the underlying inte-
grated mesh was used.

9. Scanning Systems and Projects

By combining different features from the various methods
for each step outlined in Fig. 1, it is possible to compose
many different systems for producing a 3D model of an ex-
isting object suitable for computer graphics modeling and
rendering. The design of the particular processing pipeline
depends on the requirements of the end application, con-
strained by the budgetary limitations for acquiring the data.

A number of scanning applications with emphasis on
graphic display as the end product have been documented.
Major application areas include scanning historical objects
for scholarly study and virtual museums, scanning of hu-
mans and e-commerce.

The National Research Council of Canada has conducted
a series of projects over the past 15 years scanning histori-
cal artifacts ranging from 3D representations of oil paintings
to archeological sites. Their experiences acquiring and dis-
playing geometry and color reflectance of a variety of ob-
jects are described in various publications 100. In particular
Beraldin et al. 101 present a detailed practical discussion of
using a portable scanner (i.e. suitcase-sized) to scan a num-
ber of sculptural and architectural features on site in Italy.
As an example of current capabilities, they describe the scan-
ning of Pisano’s Madonna col Bambino in the Cappella degli
Scrovegni in Padova. The were able to acquire 150 scans at
1 mm resolution of the approximately 1 meter tall statue in
a 7 hour period. The range images were registered and inte-
grated using Polyworks(TM) software.

Many other cultural heritage projects are ongoing or re-
cently completed. Zheng, of the Kyushu Institute of Technol-
ogy in collaboration with the Museum of Qin Shihuang Terra
Cotta Warriors and Horses is conducting an extensive scan-
ning project to build models of relics found at the site 102. A

Figure 14: (left) A photograph of Michelangelo’s Florentine
Pietà. (right) A synthetic picture from the three-dimensional
computer model.

custom portable laser scanner coupled with a digital video
camera was designed for the project. Besides presenting the
models as they are, the project seeks to facilitate piecing to-
gether damaged relics, and digitally restoring full color to
figures using pigment fragments that have been found.

Ikeuchi et al.have developed many techniques for the
steps in the model acquisition pipeline. These techniques are
now being applied to building a model of the 13 m tall Ka-
makura Buddha from color images and time-of-flight range
scanning data 82.

Levoy et al.recently used a combination of laser trian-
gulation range scanning and high-resolution digital color
imaging to acquire models of many of the major works of
Michelangelo 85. The high-end equipment employed pro-
duced large quantities of data. To make the results usable,
they developed a novel rendering system that generates im-
ages directly from points rather than from triangle primi-
tives 103.

Bernardini et al. 104 used a lower resolution structured
light system coupled with a photometric lighting system
for higher resolution reflectance and normals maps to scan
Michelangelo’s Florentine Pietà. A rendering of the model
is shown next to a photograph of the statue in Fig. 14.

Several projects are addressing the scanning of human
shape, e.g 105. Many of these applications address purely ge-
ometric issues such as fit and ergonomic design, rather than
preparing models for computer graphics display. For anima-
tion systems however, there has been great deal of interest in
the scanning of human faces. Building a realistic face model
is one of the most demanding applications, because of hu-
man familiarity with the smallest details of the face. Yau 106
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described a system for building a face model from a range
scan that used light striping and a color image for texture
mapping. Nahas et al. 107 describe obtaining a realistic face
model from a laser range scanner that captures reflectance
information as well. Marschner et al. 108 described a method
to obtain skin BRDF for realistic faces using color images
and a detailed model from a range scanner, in a method sim-
ilar to that used by Ikeuchi and Sato 86. This work was ex-
tended to spatially varying skin reflectance 109.

The cultural heritage and human face applications have
emphasized using relatively high-end systems. An emerging
application for acquired 3D models is e-commerce – using
3D models to allow shoppers to examine and/or customize
items for purchase over the Internet. This new application re-
quires both inexpensive equipment, and a much higher level
of “ease-of-use.” Companies targeting this application area
are offering systems at relatively low (< $ 10,000) price for
scanning small objects.

10. Conclusions

The current state of the art allows the acquisition of a large
class of objects, but requires expert operators and time con-
suming procedures for all but the simplest cases. Research
is needed to improve the acquisition pipeline in several key
aspects:

� Reliable capture and robust processing of data for a larger
class of objects, including large size objects, environ-
ments, and objects with challenging surface properties.

� Automation of all the steps, to minimize user input.
� Real-time feedback of the acquired surface.
� Improved capture and representation of surface appear-

ance.

Scanning and reconstruction technology will enable a more
widespread use of 3D computer graphics in a wide range of
applications.
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