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Abstract
Shape similarity is an acute issue in Computer Vision and Computer Graphics that involves many aspects of human
perception of the real world, including judged and perceived similarity concepts, deterministic and probabilistic
decisions and their formalization. 3D models carry multiple information with them (e.g., geometry, topology, tex-
ture, time evolution, appearance), which can be thought as the filter that drives the recognition process. Assessing
and quantifying the similarity between 3D shapes is necessary to explore large dataset of shapes, and tune the
analysis framework to the user’s needs. Many efforts have been done in this sense, including several attempts to
formalize suitable notions of similarity and distance among 3D objects and their shapes.
In the last years, 3D shape analysis knew a rapidly growing interest in a number of challenging issues, ranging
from deformable shape similarity to partial matching and view-point selection. In this panorama, we focus on
methods which quantify shape similarity (between two objects and sets of models) and compare these shapes in
terms of their properties (i.e., global and local, geometric, differential and topological) conveyed by (sets of) maps.
After presenting in detail the theoretical foundations underlying these methods, we review their usage in a number
of 3D shape application domains, ranging from matching and retrieval to annotation and segmentation. Particular
emphasis will be given to analyse the suitability of the different methods for specific classes of shapes (e.g. rigid or
isometric shapes), as well as the flexibility of the various methods at the different stages of the shape comparison
process. Finally, the most promising directions for future research developments are discussed.

Categories and Subject Descriptors(according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Computer Graphics [I.3.6]: Methodology and Techniques—

1. Introduction

The technological advances in data acquisition and storage
have been inducing an exponential growth of the volume of
available data, also deeply modifying the approach we ac-
cess to them. Indeed, such data are often stored using dif-
ferent formats and have to be analysed, interpreted and cat-
alogued with significant computational efforts and experts’
commitment. When dealing with large sets of data, storage
is only one of the aspects to be solved: developing anauto-
maticway to definesimilarity distances so that the database
is indexed and efficiently queried is also a necessity.

For many decades, psychologists have studied how hu-
mans perceive a shape and how this perception affects the
everyone’ decisions and understandings. The literature con-
cerning the psychological background of similarity assesses

that the association between the perception and the concep-
tual model is in the mind of the observer [SJ99,Tve77,AP88,
Ash92,Koe90]. Indeed, similarity involves many aspects of
human perception of the real world, including judged and
perceived resemblance, deterministic and probabilistic per-
ceptions and decisions, and so on [SB11]. In summary, the
formalization of the concept of shape similarity is a complex
interaction process that depends on the observer, the visual
content and the context.

From the computational point of view, the need of meth-
ods and algorithms able to quantify how much and where
two or more shapes differ calls for a formal definition of the
notion of shape (dis)similarity. Capturing the information
contained in shape data typically takes the form of comput-

c© The Eurographics Association 2014.

DOI: 10.2312/egst.20141039

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egst.20141039


S. Biasotti et. al. / Quantifying 3D shape similarity using maps

ing meaningful properties, turning them into invariants, and
defining opportune distances in the shape description space.

1.1. STAR focus and contribution

In this paper we focus on similarity assessment, by specifi-
cally targeting the 3D shape digital world. By shape similar-
ity we meanquantifyingthrough some measure how a shape
resembles to another.

Assessing shape similarity is definitively not an easy task:
first of all, there is neither a singlebestshape characteriza-
tion nor a singlebestsimilarity measure, and shape compari-
son largely depends on the type of shapes to be analysed and
on the properties that are considered relevant in the compar-
ison process. An intuition of this is given by Figure1, show-
ing some models from the SHREC’08 classification bench-
mark [GM08]. Three categorization levels are proposed, re-
flecting as many different ways to conceive shape similarity.
Indeed, models are classified with respect to functional (se-
mantic), structural and geometric criteria.

In the rapidly growing field of the evaluation of 3D
shape similarity, a number of strategies have been proposed,
spanning from the direct definition of metrics between two
objects to the approximation of a transformation between
shapes and the evaluation of its distortion. While at the be-
ginning the main efforts were mainly devoted to the trans-
position of well-known metrics into application domains
[VH01, TV04, BKS∗05,FKMS05,YLZ07, DP06, BKSS07,
TV08], during last years the focus is moving to new tech-
niques and more complex frameworks that allow a larger
flexibility in the definition of similarity [SOG09,BBK∗10,
OBCS∗12, DF04,DF07]. A number of interesting solu-
tions comes from advances in pure and applied mathematics
[BCF∗08,CZ09,CFF∗13,EH10,SOG09], as well as from the
re-reading of classical mathematical theories and their adap-
tation to the discrete setting [BBK∗10,OBCS∗12,RBB∗11].

In this scenario, we aim at providing a reasoned overview
of the most recent advances in Computer Graphics, driven
by the following guidelines:

• Methods that extract the shape structure throughfunctions
or distances. On the one hand, real- and vector-valued
functions may be used to measure specific shape prop-
erties, such as the distance from a point or the Gaus-
sian curvature. On the other hand, distances defined on
the model representations provide insights on the corre-
sponding shape distributions, such as geodesic and diffu-
sion distances;

• Among the above methods, special emphasis is given to
those techniques that quantify similarity in terms ofmaps
between spaces. Many of these approaches fall in well-
established mathematical frameworks, thus taking advan-
tage of theoretical results on stability, robustness and in-
variance to shape transformations;

• Finally, we restrict our attention on methods published
from 2008 on.

We will analyse the properties of the different approaches,
possibly collocate them within the appropriate theoretical
frameworks and discuss the extent of their applicability. In
particular, we will analyse the properties of the methods with
respect to the specific shape invariants they consider (e.g.
rigid and non-rigid transformations), as well as the type of
output they provide (e.g. full or partial similarity, sparse or
dense correspondence),

1.2. Comparison to other surveys

If analysed through the lens of similarity assessment, shape
retrieval, correspondence, alignment, symmetry detection,
etc. are all different aspects of a more general problem: for
instance, the knowledge of the punctual correspondences be-
tween two shapes might drive the definition of a distance in
terms of distortion, and viceversa.

In general, shape retrieval methods target the evaluation
of the distance of a query model from the objects in a
database: most of existing surveys on 3D content based
retrieval [VH01,TV04, BKS∗05,FKMS05,YLZ07, DP06,
BKSS07,TV08] mainly focus on the classification and dis-
cussion of methods, which target the conversion of statisti-
cal and geometric shape analysis into feature vectors or his-
tograms. A common aspect of the methods reviewed in these
papers is that, generally, they do not refer to any mathemat-
ical framework for similarity quantification, and there are
no formal proofs of the stability/robustness of the distances
adopted. Differently from these surveys, we focus on recent
methods (since 2008) that follow a mathematical framework
for the definition of the similarity distance.

More recent surveys have targeted specific aspects of sim-
ilarity, such as shape registration [TCL∗13], shape corre-
spondence [vKZHCO11], symmetry detection [MPWC13],
partial matching [LBZ∗13], non-metric distances [SB11]
and non-rigid shape retrieval [LGB∗13]. For instance, Lian
et al. [LGB∗13] extend the analogous SHREC’2011 track
[LGB∗11]; using the same evaluation criteria the compari-
son is done in terms of performance of the retrieval over a
common benchmark. In this review, we focus on approaches
that explicitly use functions and/or distances to model the
shape properties and invariants. We also consider deforma-
tions that are non-isometric; due to the closeness of the top-
ics, there are some overlaps on the methods reviewed in pre-
vious works but our focus is different and mainly targeted on
the mathematical aspects of similarity measurement.

The focus of recent surveys and tutorial works delivered
by the authors in related fields, see for instance [BDF∗08,
BBK08,BFGS12,BCB12], is mainly on shape analysis and
description, while the current review focuses on the problem
of similarity quantification. This paper extends the EG tu-
torial [BFF∗07] and illustrates three theoretical frameworks
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Figure 1: Representative models of the humanoid class, SHREC’08 classification benchmark [GM08]. Models (a-d) have same
pose but (d) differs by scale, (e) is a human model in a different pose and (f-h) are isometric deformations of the same template,
(i-j) are two scans of the same model with a significant change of topology while (k-m) represent three virtual characters.

that have been recently introduced in Computer Graphics
[MS05,DF04,OBCS∗12].

1.3. Organization

To drive the reader through the bunch of approaches and
frameworks revised here, we firstly introduce the basic no-
tions of mathematical concepts such as space, manifold,
metric, shape transformation, diffusion geometry and alge-
braic topology, see Section2. Depending on his/her back-
ground, the reader may skip this section or some of its parts.

Then, Section3 is about the problem of similarity assess-
ment and its mathematical modelling. We will discuss the
properties of a number of similarity measures and introduce
three formal frameworks for similarity assessment. Also, we
describe some representative methods involved in the algo-
rithmic evaluation of similarity.

Section4 presents a taxonomy of the methods highlight-
ing the emerging shape structure, the distances concretely
used for similarity evaluation, and the invariance properties
captured in the process. The proposed taxonomy also takes
into account the type of input for each method, as well as the
typology of output. The aim is to give a multi-faceted clas-
sification that might help the reader to compare methods not
only on the basis on their algorithmic aspects, but also drive
him/her in the choice of the method that better fulfils his/her
requirements.

A more detailed analysis on the specific application do-
main for which methods have been proposed in then carried
out in Section5. Also, in Section6 we review the recent de-
velopment of shape benchmarks, which are becoming a cru-
cial aspect for the quantitatively evaluate the performance of
the methods.

Finally, Section7 is devoted to the discussion of the po-
tential of the methods proposed, also including perspectives,
open issues, and future developments.

We believe that organizing the comparison of the various
methods in this way may facilitate their analysis, possibly
suggesting interesting research directions for the develop-
ment of new approaches. In our opinion, the generality and
flexibility of these methods may be of interest for a wide re-
search community involved in visualization and topological
modelling, beyond people working in shape matching and
retrieval.

2. Mathematical Background

In this section we summarize the theoretical concepts which
are necessary to model the shape similarity problem as pre-
sented in the rest of the paper.

2.1. Topological spaces and maps

A topological spaceis a set of points, along with a set of
neighbourhoods for each point, that satisfy some axioms re-
lating points and neighbourhoods. The definition of a topo-
logical space can be considered the most general notion of a
mathematical space, and allows for the introduction of con-
cepts such as continuity, connectedness, and closeness. Be-
ing so general, topological spaces are a central notion in
mathematics. As for the digital 3D world, they are key in-
gredient to model the shape of the objects under study, as
well as to reason about concepts like robustness and stabil-
ity of shape analysis methods.

Topological spaces. A topological space(X,τ) is a setX
on which atopologyτ has been defined, that is, a collection
of subsets ofX calledopen setsand satisfying the following
axioms:

• BothX and the empty set are open sets;
• Intersecting a finite number of open sets gives an open set;
• Any union of open sets is still an open set.
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A Hausdorff spaceis a topological space in which distinct
points admit disjoint neighbourhoods.

In what follows, we will refer to a topological space(X,τ)
by simply mentioning the setX, omitting any reference toτ.

Maps. A map f between topological spaces is said to be
continuousif the inverse image of every open set is an open
set. Ahomeomorphismis a continuous bijection whose in-
verse is also continuous. Two topological spacesX, Y are
said to behomeomorphicif there exists a homeomorphism
f : X → Y. From the viewpoint of topology, homeomor-
phic spaces are essentially identical. Properties of topolog-
ical space which are preserved up to homeomorphisms are
said to betopological invariants.

An important property of maps, which will be useful in
the sequel, issmoothness. Roughly, a continuous mapf is
smooth if it has continuous partial derivative of all orders.
Note, however, that this definition depends on the notion of
partial derivative, which is usually well-defined only if the
domain of f is an open set. Therefore, for an arbitrary subset
X ⊆ R

n we need to adapt the above definition, stating that a
continuous functionf : X →R

m is smooth if it can be locally
extended to a smooth map on open sets; that is, around each
point x∈ X we can find an open setU ⊆ R

n and a function
F :U →R

m such thatF equalsf onX∩U , and whose partial
derivative of all orders are continuous.

ForX ⊆R
n, Y ⊆R

m, a smooth mapf : X →Y is adiffeo-
morphismif it is bijective ant its inverse is smooth as well.
In this case,X andY are said to bediffeomorphic.

The notion of map plays a central role in shape analy-
sis and comparison. On the one hand, they can by used to
model spatial relations between two (or more) shapes rep-
resented by suitable topological spaces. On the other hand,
real- or vector-valued maps can be adopted to encode mea-
surements which are relevant to characterize the shapes un-
der study. Throughout the paper, we will talk aboutfunctions
rather than maps whenever referring to real- or vector-valued
maps, in accordance with a quite common habit. Note, how-
ever, that the two concepts are completely equivalent from
the mathematical viewpoint.

2.2. Metric spaces and transformations

Metric spaces can be seen as specifications of topological
spaces. Their definition relies on the concept ofmetric (or
distance), which describes a way to quantify the relative
closeness between different entities, such as points, spaces
or physical objects.

Metric spaces. A metric space(X,d) is a setX equipped
with a metric, that is, a functiond : X ×X → R satisfying
the following properties for allx,y,z∈ X:

• d(x,y)≥ 0 (non-negativity);

• d(x,y) = 0 iff x= y (reflexivity);
• d(x,y) = d(y,x) (symmetry);
• d(x,y)+d(y,z)≥ d(x,z) (triangle inequality).

Every metric space is a topological space in a natural way,
by considering as open sets the open balls induced byd.

The Euclidean 3D space is an example of a metric space,
where the metric is given by the well knownEuclidean dis-
tance, that is, the distance between two points is the length of
the straight line that joins them. Thegeodesic distancegen-
eralizes the concept of “straight line” to an arbitrary metric
space(X,d): for two points inX, their geodesic distance is
the length, measured with respect tod, of the shortest path
between them, which is in turn referred to asa geodetic.
More formally, a geodetic is a curveγ : [a,b]→ X which
is locally a distance minimizer: everyt ∈ [a,b] has a neigh-
bourhoodJ ⊆ [a,b] such that, for anyt1, t2 ∈ J, the equality
d(γ(t1),γ(t2)) = |t1− t2| holds.

Transformations. By the term transformation, we refer
here tostructure-preservingmaps between spaces. As we
will see later, relevant transformations from the viewpoint
of shape similarity are isometries, affine transformations and
homeomorphisms.

Isometriesare distance-preserving maps, taking elements
of a metric space to another metric space such that the dis-
tance between the elements in the new metric space is equal
to the distance between the elements in the original metric
space. Formally, given two metric spaces(X,dX), (Y,dY),
a transformationφ : X → Y is called an isometry if for any
x,y ∈ X, dY (φ(x),φ(y)) = dX(x,y). Examples of isometries
in the usual Euclidean space arerigid motions, that is, com-
binations of translations and rotations; shape properties that
are invariant to rigid motions are also calledextrinsic be-
cause they are related on how the surface is laid out in the
Euclidean space.

Affine transformations, or simply affinities, preserve
straight lines (i.e., all points lying on a line initially still lie
on a line after transformation) and ratios of distances be-
tween points lying on a straight line (e.g., the midpoint of
a line segment remains the midpoint after transformation).
They do not necessarily preserve angles or lengths, but do
have the property that sets of parallel lines will remain par-
allel to each other after being affinely transformed. In partic-
ular, a mapφ : X →Y is an affine transformation if and only
if for every family {(ai , λi)}i∈I of weighted pointsai ∈ X
such that∑i∈I λi = 1, we havef (∑i∈I λiai) = ∑i∈I λi f (ai).
Examples of affine transformations include translation, ge-
ometric contraction, expansion, homothety, reflection, rota-
tion, scale and compositions of them.

A larger class of transformations, also including isome-
tries and affinities, is that of homeomorphisms, which pre-
serve topological properties of spaces such as compactness,
connectedness and Hausdorffness (the property of being
Hausdorff). However, from the shape comparison point of
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view, topological invariance is not in general a reasonable
requirement, admitting, e.g., that a horse surface model is
topologically equivalent to a sphere and to a human surface
model. This fact opened the way to the development of the-
oretical frameworks to improve the topological analysis of
spaces by taking into account the additional information pro-
vided by real functions defined on the spaces themselves,
such as Morse theory [Mil63] and other related frameworks
[FM99,ELZ02].

2.3. Manifolds

To ease the analysis of a shape and look at it as if we lo-
cally were in “our” traditional Euclidean space, it is neces-
sary to consider the notion of manifold. A Hausdorff spaceX
is an-dimensional manifoldif it is locally homeomorphic to
R

n; that is, each pointx∈ X admits a neighbourhoodV ⊆ X
homeomorphic to an open set ofR

n. Such local homomor-
phism, is calleda coordinate system on V, and allows for
identifying any pointv ∈ V with a n-tuple ofRn. X is a
n-dimensional manifold with boundaryif every point has a
neighbourhood homeomorphic to an open set of eitherR

n

or the half-spaceHn = {u= (u1, . . . ,un) ∈ R
n|un ≥ 0}. The

boundary ofX, namely∂X, consists of those points ofX
which only have neighbourhoods locally homeomorphic to
Hn. Note that, according the above definitions, any manifold
is also a manifold with (possibly empty) boundary, while the
converse does not hold in general.

A manifold X is smoothif it is equipped with a notion
of differentiability. We prefer here to skip the technicalities
needed to formally define such a notion, referring the reader
to [Hir97] for further details. We rather point out that, having
a notion of differentiability at a hand, we can do differential
calculus onX and talk about concepts like tangent vector,
vector field and inner product. All of these are functional to
introduceRiemannian manifolds.

Riemannian manifold. If X is a smooth manifold of di-
mensionn, at each pointx∈ X we can consider thetangent
space Tx(X), a vector space that intuitively contains all pos-
sible vectors passing tangentially throughx, see Figure2 for
an intuition. If we glue together all tangent spacesTx(X),
thus considering

⋃
x∈X Tx(X), we get thetangent bundle

T(X). A vector fieldon X is then a section ofT(M), that is,
a smooth map fromF : X → T(M) which assign each point
x∈ X to a tangent vectorF(x) = v∈ Tx(X). On each tangent
spaceTx(X) we can define an inner product (i.e. a symmet-
ric, positive definite bilinear form)gx : Tx(X)×Tx(X)→ R.
A Riemannian metric gis a collection of inner products
{gx}x∈X that smoothly vary point by point, in the sense that
if F andG are vector fields onX, thenx 7→ gx(F(x),G(x))
is a smooth map.

Note that, in practice, a Riemannian metric is a symmet-
ric tensor that is positive definite. Indeed, once a local system

Figure 2: Tangent plane Tx(X) in x. The vector v∈ Tx(X) is
a tangent vector.

of coordinates is fixed for a pointx, we can completely de-
fine eachgx by the inner productsgi j (x) = gx(vi ,vj ), with
{v1,v2, . . . ,vn} a basis inRn. The collection{gi j (x)} is thus
made of real symmetric and positive-definiten×n matrices,
smoothly varying inx: It is calleda metric tensor gi j .

A Riemannian manifoldis an-dimensional differentiable
manifoldX equipped with a Riemannian metricg of metric
tensorgi j . Endowing a manifold with a Riemannian metric
makes it possible to define various geometric notions on the
manifold, such as angles, lengths of curves, curvature and
gradients. The Riemannian metric on the surface does not
depend on the particular embedding of the surface; proper-
ties that preserves this metric structure are calledintrinsic
propertiesof the surface.

2.4. Basics on diffusion geometry

In [CL06], Coifman and Lafon proposed the framework of
diffusion geometry as a method for data parametrization,
embedding, and dimensionality reduction. We summarize
here some key ingredients of this framework, with particular
reference to theheat kernel signature[SOG09], also known
as the autodiffusion function [GBAL09], and thediffusion
distance. Informally, diffusion geometry is related to the heat
diffusion on the data (hence the name), which is turn closely
connected with the notion ofLaplace operator.

2.4.1. Laplace operator

The Laplace operator, briefly Laplacian, is a differential op-
erator given by the divergence of the gradient of a real-
valued functionf defined on the Euclidean spaceEn:

∆ f (p) := div(gradf (p)) =∇·∇ f (p) =∑
i

∂2 f

∂x2
i

(p),

where grad and div are the gradient and divergence on the
space and the pointp ∈ E

n is represented by the Carte-
sian coordinatesp = (x1, . . . ,xn). Therefore, the Laplacian
requires that the functionf is at least twice-differentiable.

Intuitively, the Laplace operator generalizes the second
order derivative to higher dimensions, and is a characteris-
tic of the irregularity of a function, indeed∆ f (p) measures
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the difference betweenf (p)and its average in a small neigh-
bourhood ofp∈ E

n.

The generalization of the Laplace operator to manifolds
equipped with a Riemannian metric is called theLaplace-
Beltrami operatorof f and its computation requires complex
calculations, that can be greatly simplified by the so-called
exterior calculus (EC)[GDP∗05].

The Laplace-Beltrami operator admits an eigendecompo-
sition with non-negative eigenvaluesλi and corresponding
orthonormal eigenfunctionsφi satisfying∆φi =−λiφi . Here
orthonormality is meant in the sense of the inner product
〈 f ,g〉= ∫

X f · g dµ, induced on a Riemannian manifoldX
by the associated Riemannian metric. Moreover, if we fur-
ther assume thatX is compact†, we have that the spectrum
is discrete, 0≤ λ1 ≤ λ2 ≤ . . . . In general, the eigenbasis of
the Laplace-Beltrami operator is referred to as the harmonic
basis of the manifold, and the functionsφi as manifold har-
monics [LV08,WZL∗10]. The use of Laplacian eigenbasis
has been shown to be fruitful in many computer graphics
applications and several techniques in shape analysis, syn-
thesis, and correspondence rely on the harmonic bases that
allow for using classical tools from harmonic analysis on
manifolds. For a detailed discussion on the main proper-
ties of the Laplace-Beltrami operator, we refer the reader
to [Reu06,Ros97,WMKG07].

Several discrete Laplace-Beltrami operators exist [LV08],
allowing for practical computation on a manifold discretiza-
tion. For example, suppose to have a triangulationT with
verticesV := {pi , i = 1, . . . ,n}. A function f onT is defined
by linearly interpolating the valuesf (pi) of f at the vertices
of T. This is done by choosing a base of piecewise-linear
hat-functionsϕi , with value 1 at vertexpi and 0 at all the
other vertices. Thenf is given asf = ∑n

i=1 f (pi)ϕi . Discrete
Laplace-Beltrami operators are usually represented as:

∆ f (pi) :=
1
di

∑
j∈N(i)

wi j
[

f (pi)− f (pj )
]

,

whereN(i) denotes the index set of the 1-ringof the ver-
tex pi , i.e. the indices of all neighbors connected topi by an
edge. The massesdi are associated topi and thewi j are the
symmetric edge weights. IfV = diag(v1, . . . ,vn) is the diag-
onal matrix whose elements arevi = ∑ j∈N(i) wi j , W = (wi j )
andD = diag(d1, . . . ,dn), then we can setA := V −W and
finally represent the discrete Laplacian-Beltrami operator on
T as then× n matrix given byL := D−1A (generally not
symmetric).

Depending on the different choices of the edge weights
and masses, discrete Laplacian operators are distinguished

† A compact manifold is a manifold that is compact as a topological
space. A topological spaceX is compact if, from any union of open
sets givingX, it is possible to extract a finite subfamily whose union
is still X.

betweengeometric operatorsand finite-element operators
[RBG∗09]. A deep analysis of different discretizations of
the Laplace-Beltrami operator in terms of the correctness
of their eigenfunctions with respect to the continuous case
is shown in [RBG∗09]. Unless some special cases (see,
for example, [BSW08,BS07,Sin06,HAvL05]), the discrete
Laplace-Beltrami operator would not converge to the con-
tinuous one. In addition, when dealing with intrinsic shape
properties, it should be independent or at least minimally
dependent on the triangular mesh and thus the discrete ap-
proximation has to preserve the geometric properties of the
Laplace-Beltrami operator. Unfortunately, Wardetzky et al.
in [WMKG07] showed that for a general mesh, it is theo-
retically impossible to satisfy all properties of the Laplace-
Beltrami operator at the same time, and thus the ideal dis-
cretization does not exist. This result also explains why there
exists such a large diversity of discrete Laplacians, each hav-
ing a subset of the properties that make it suitable for certain
applications and unsuitable for others [BBK08].

2.4.2. Heat kernel and diffusion distance

Formally, the heat kernel signature and the diffusion distance
can be expressed in terms of theheat equation. For a com-
pact Riemannian manifoldX, the diffusion process onX is
described by the partial differential equation:

(

∂
∂t

+∆
)

u(t,x) = 0, (1)

where∆ denotes the Laplace-Beltrami operator associated
with the Riemannian metric ofX. The heat equation gov-
erns the distribution of heatu from a source pointx∈ X. The
initial condition of the equation is some initial heat distribu-
tion u(0,x) at timet = 0; if X has a boundary, appropriate
boundary conditions must be added.

Theheat kernel ht(x,y) is a fundamental solution of equa-
tion (1), with point heat source atx, and heat value aty after
time t: it represents the amount of heat transferred fromx to
y in time t due to the diffusion process (Figure3). By the
eigendecomposition of∆, the heat kernel can be written as

ht(x,y) = ∑
i≥0

exp−λi t φi(x)φi(y).

Since coefficientsλi rapidly decay, the heat kernel is gener-
ally approximated by the truncated sum:

ht(x,y) =
N

∑
i=1

exp−λi t ψi(x)ψi(y).

The heat kernel has many nice properties, among which in-
variance to isometries; being related to the Riemannian met-
ric of X, this means that the heat kernel is an intrinsic prop-
erty of the manifold. Also, the heat kernel is multi-scale: for
small vales oft, ht(x, ·) only reflects local properties of the
manifold around the base pointx, while for large values oft
it captures the global structure ofX from the point of view
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Figure 3: The heat kernel represents the amount of heat
transferred from a source point in time t.

of x. Finally, the heat kernel is stable under small perturba-
tions of the underlying manifold. All these properties make
the heat kernel an optimal candidate for the definition of in-
formative functions and distances to be used for shape de-
scription, such as the heat kernel signature (HKS) [SOG09]
and the diffusion function. The HKS at a timet, denoted by
HKSt , is defined as

HKSt(x) = ht(x,x),

for anyx ∈ X; the diffusion distancedt between two points
x,y∈ X at timet is given by

d2
t (x,y) = ht(x,x)+ht(y,y)−2ht(x,y).

The computation of the spectrum of the discrete Laplacian
is the main computational bottleneck for the evaluation of
the heat kernel, and hence ofHKSt anddt ; in fact, it takes
from O(n) to O(n3) operations, according to the sparsity of
the Laplacian matrix. Recently, a discrete and spectrum-free
computation of the diffusion kernel on a 3D shape (either
represented as a triangulation or a point cloud) has been pro-
posed in [PS13], based on the computation of the full spec-
trum via the Chebyshev approximation [CMV69,ML03] of
the weighted heat kernel matrix.

2.5. Basics on algebraic and differential topology

A fundamental issue in Shape Analysis is the study of basic
models and methods for representing and generating. Since
discretization strategies play a fundamental role in the way
the results stated in a smooth context can be achieved in
discrete ones, in this Section we briefly review some ba-
sic concepts that are at the bases of 3D shape representa-
tions [Req80,Man88].

2.5.1. Simplicial complexes

In order to construct topological spaces, one can take a col-
lection of simple elements and glue them together in a struc-
tured way. Probably the most relevant example of this con-
struction is given by simplicial complexes, whose building-
blocks are called simplices. A detailed dissertation on sim-
plicial complexes can be found in [Mun00].

A k-simplex∆k in R
n, 0≤ k≤ n, is the convex hull ofk+

Figure 4: Examples of 0-, 1-, 2- and 3-simplices.

1 affinely independent pointsA0,A1, . . . ,Ak, calledvertices.
Figure4 shows the simplest examples of simplices:∆0 is a
point,∆1 an interval,∆2 a triangle (including its interior),∆3

a tetrahedron (including its interior), see Figure4.

A f aceof a k-simplex∆k is a simplex whose set of ver-
tices is a non-empty subset of the set of vertices of∆k. A
finite simplicial complexis defined as a finite collection of
simplices that meet only along a common face, together with
their faces of any dimension. Triangulations are examples
of simplicial complexes: the vertices, edges and faces corre-
spond to 0-, 1- and 2-simplices, respectively. Thedimension
of a simplicial complex is the maximum dimension of its
simplices.

2.5.2. Homology groups

The approach adopted by algebraic topology is the transla-
tion of topological problems into an algebraic language, in
order to solve them more easily. A typical case is the con-
struction of algebraic structures to describe topological prop-
erties, which is the core of homology theory, one of the main
tools of algebraic topology.

The homology of a space is an algebraic object which re-
flects the topology of the space. Thehomologyof a spaceX
is denoted byH∗(X), and is defined as a sequence of groups
{Hq(X) : q = 0,1,2, . . .}, whereHq(X) is called theq-th
homology groupof X. The homologyH∗(X) is a topolog-
ical invariant ofX. The rank ofHq(X), called theq-th Betti
number of Xand denoted byβq, is roughly a measurement
of the number of different holes in the spaceX. For three-
dimensional data the Betti numbersβ0, β1 andβ2 count the
number of connected components, tunnels and voids, respec-
tively.

In the literature there are various types of homologies
[Spa66]. One of the most popular is (integer)simplicial ho-
mology, which relies on the concept of simplicial complex.

2.5.3. Basic concepts on Morse theory

Morse theory can be seen as the investigation of the rela-
tion between functions defined on a manifold and the shape
of the manifold itself. The key feature in Morse theory is
that information on the topology of the manifold is derived
from the information about the critical points of real func-
tions defined on the manifold. In particular, Morse theory
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Figure 5: (a) The graph of f(x,y) = x2 − y2. The point(0,0) is a non-degenerate critical point. (b) and (c) The graphs of
f (x,y) = x3−3xy2 (a “monkey saddle”) and f(x,y) = x3−y2. In both cases the point(0,0) is a degenerate critical point.

provides the mathematical background underlying several
descriptors, such as Reeb graphs, size theory, persistent ho-
mology and Morse shape descriptors. A basic reference for
Morse theory is [Mil63], while details about notions of ge-
ometry and topology can be found, for example, in [Hir97].

Let X be a smooth, compactn-dimensional manifold
without boundary, andf : X → R a smooth function defined
on it. Then, a pointx of X is a critical point of f if all the
first order partial derivatives vanish atx, that is,

∂ f
∂x1

(x) = 0, . . . ,
∂ f
∂xn

(x) = 0,

with respect to a local coordinate system(x1, . . . ,xn) at x. A
real number is acritical value of f if it is the image of a
critical point. Points (values) which are not critical are said
to beregular. A critical pointp is non-degenerateif the de-
terminant of theHessianmatrix of f at x,

Hf (p) =

(

∂2 f
∂xi∂xj

(p)

)

is not zero; otherwise the critical point isdegenerate. Fig-
ure5 shows some examples of non-degenerate and degener-
ate critical points. For a non-degenerate critical pointp, the
number of negative eigenvalues of the HessianHf (p) of f
at p is referred to as theindexof p. Then, f : M → R is a
Morse functionif all its critical points are non-degenerate.

An important property is that a Morse function defined on
a compact manifold admits only finitely many critical points,
each of which is isolated. This means that, for each critical
point x, it is always possible to find a neighbourhood ofx
not containing other critical points. Moreover, Morse the-
ory asserts that changes in the topology of a manifold en-
dowed with a Morse function occur in the presence of criti-
cal points, and according to their index; these changes in the
topology can be interpreted in terms of homology.

On the basis of these results, it is possible to choose regu-
lar valuest0 < t1 < · · · < tm bracketing them critical values
for f , and consider thesublevel sets Xi = {x∈ X| f (x)≤ ti}.

Moreover, if λ is the index of thei-th critical point, when
sweeping fromXi−1 to Xi there are two possibilities for
how homology can change: eitherβλ(Xi) = βλ(Xi−1) + 1
or βλ−1(Xi) = βλ−1(Xi−1)−1. The analogous approach to
study the changes in the level sets{x∈ X| f (x) = t}, t ∈ R,
is proposed in [Mil65].

3. Assessing similarity between spaces

Assessing the similarity between shapes can be posed as the
problem of defining a suitable functiond : X ×X :→ R,
taking a pair of input objects from a universeX to a real
number that represents a similarity score for the two ob-
jects [SB11]. Such a functiond is called apairwise similar-
ity function. Often the inverse concept is required, namely a
dissimilarity function δ, where a higher dissimilarity score
stands for a lower similarity score, and vice versa. Hence,
a dissimilarity δ equivalent to a similarityd must fulfill
d(X,Y)≥ d(X,Z) ⇐⇒ δ(X,Y)≤ δ(X,Z), ∀ X,Y,Z ∈ X .

The choice between similarity and dissimilarity function
mainly depends on the application domain; however there
exist many situations where the formula/algorithm defining
the function is available in just one of the two forms, while
its manual transformation into the inverse is not straightfor-
ward [SB11]. The application scenario is also strongly re-
lated to the properties that the chosen (dis)similarity func-
tions is required to satisfy, such as being a metric or not. Be-
ing a metric means to fulfill all the postulates listed in Sec-
tion 2.2. Assuming, e.g, that a dissimilarity functionδ has
been fixed,reflexivitypermits zero dissimilarity just for iden-
tical objects whilenon-negativityguarantees that every two
distinct objects are somehow positively dissimilar. In addi-
tion, the triangle inequality is a kind of transitivity property
that is really useful for indexing a database [ZADB06]: if
(X,Y) and(X,Z) are close with respect toδ (that is, small
dissimilarity), also(X,Z) are.

A number of (dis)similarity functions exist in the liter-
ature, which do not fulfil one or more of the metric ax-
ioms. Such functions are generally referred to asnon-metrics
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[SB11], presenting more specific names according to the
particular metric axiom they miss. In case reflexivity is not
guaranteed, then we have apseudometric; aquasi-metricif
symmetry is not satisfied, asemi-metricif triangle inequality
is missing. The paradigm here is that, being not constrained
by metric postulates, non-metrics offers a larger freedom of
problem modelling. Indeed, several psychological theories
suggest the metric axioms could substantially limit the ex-
pressive power of (dis)similarity functions [SJ99,Tve77]. In
particular, reflexivity and non-negativity have been refuted
by claiming that different objects could be differently self-
similar [Kru78, Tve77]. The triangle inequality is the most
attacked property. Some theories point out that similarity
does not have to be transitive [AP88,TG82], as shown by
a well-known example: a man is similar to a centaur, the
centaur is similar to a horse, but the man is completely dis-
similar to the horse.

Beyond (a subset of) metric axioms, a notion of continu-
ity is often required for a (dis)similarity function, such as
robustness with respect to different discretizations of spaces
and small perturbations in the input measurements. Last but
not least, invariance to some classes (groups) of transfor-
mations may be required, thus allowing the similarity as-
sessment to be independent, e.g, to orientation, scaling or
rigid movements of the considered objects. Formally, a sim-
ilarity function d (a dissimilarity functionδ, respectively)
is invariant under a chosen group of transformationsG if
for all transformationsg ∈ G and all X,Y ∈ X , we have
d(g(X),Y)) = d(X,Y) (resp.δ(g(X),Y)) = δ(X,Y)).

In the last decade, new emphasis has been given to assess
the dissimilarity between two shapes by modelling them as
suitable spaces and to formally quantify similarity in terms
of the distortion needed to deform one space into the other.
Besides the classical approaches for similarity assessment,
in what follows we summarize three different theoretical ap-
proaches that have been recently and successfully introduced
in Computer Graphics. For a detailed review of other exist-
ing distances, and related application fields, we refer to the
Encyclopedia of Distances[DD09].

3.1. A standard approach

The use of concise descriptions, which are usually referred
to asshape descriptors, instead of the whole model repre-
sentation is a common strategy in shape comparison. There-
fore, the first challenge is to identify the shape properties
that better characterize the object under study and are highly
discriminative; in our settings, this translates in the selec-
tion of the functions used to detect the main shape features
[BDF∗08]. A good shape descriptor should be robust and en-
dowed with adequate invariance properties. Indeed, robust-
ness guarantees that small changes in the input data, such
as noise or non-relevant details, do not result in substantial
changes in the associated shape descriptors. Invariance prop-

Figure 6: The dissimilarity d between two objects is com-
puted as the distanceδ between their descriptors.

erties are related to the application domain; for instance, in
case shape alignment rotations and translations.

Having a good shape descriptor at hand, the problem of
assessing the similarity between two shapes can be recast
into the comparison of the associated descriptors, according
to a suitable (dis)similarity measure taking into account the
remarks discussed above in this section, see Figure6.

The use of shape descriptors is largely acknowledged
in the literature and a variety of methods has been pro-
posed [BKS∗05,TV04,DP06,TV08,BDF∗08,vKZHCO11,
WZL∗10,TCL∗13]. During years, the situation has evolved
from 3D descriptors heuristically introduced [BKS∗05], mo-
tivated by techniques and practices inherited from vision
(projection-based descriptions), geometry (statistics of sur-
face curvature or geodesic distances), or signal processing
(object samples in the frequency domains), to more sophis-
ticated and mathematically sound frameworks leading to de-
tect salient shape’s feature yet showing robustness to noise
and different group of transformations.

3.1.1. Examples

Among the variety of methods proposed in the literature, we
have selected some representative ones that extract shape in-
formation in the form of functions, and use that information
to derive shape descriptors.

The method proposed by Mademlis et al [MDTS09]
adopts the potential of a Newtonian field defined in the space
outside the shape. The 3D descriptor is the combination
of independent histograms (36 in the paper) related to sur-
face proximity, field intensity and curvature. Histograms that
come from the Newtonian field are compared with the nor-

malized distanced(H1,H2) = ∑k
i=1

2(H1(i)−H2(i))
2

H1(i)+H2(i)
wherek is

the number of bins of the histogramsH1,H2, while the dif-
fusion distance is used to compare the curvature-based his-
tograms. The robustness of the method to small shape vari-
ations derives from the preprocessing step (voxels simplify
small shape details) and from the stability of the volumetric
function. In addition to rotation and translation invariance,
scale-invariance is achieved through a pre-processing step in
which all shapes are normalized and voxelized.

The approach proposed by Smeets et al. in [SHVS12]
achieves intrinsic invariance through the computation of the
geodesic distances between surface samples. These values
are stored in a matrix (GDM) that is unique up to vertex
permutations. A first shape description consists of two his-
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tograms: the first one stores all upper triangular values of the
GDM, the second one contains an histogram of the average
of the geodesic distances. A second descriptor is provided by
the singular value decomposition (SVD) of the GDM. Sev-
eral possible feature vector distances are proposed (e.g.χ2

andLp) but the authors mainly refer to the Jensen-Shannon
divergence. The method is shown to be robust under near iso-
metric deformations (articulated object and faces) but the use
of geodesics make it sensitive to topological changes (e.g.,
open/close mouth, two fingers that touch themselves, etc.).

The scale invariant heat kernel signature (SI-HKS) was
proposed by Bronstein et al. [BK10c] to overcome the scale
dependence of the Heat kernel signature. Once the HKS is
computed, the scale dependence is avoided locally normal-
izing the heat kernel. Roughly speaking, the local normal-
ization is done in terms of scaling and shift in time: scale
is obtained from the logarithm ofh and its discrete deriva-
tive with respect to time, while the shift is seen as a differ-
ent phase that it is discarded through a complex representa-
tion of the discrete Fourier transform. The SI-HKS at each
point of the shape is approximated through soft quantiza-
tion by the closest geometric words in a precomputed vo-
cabulary of 48 elements. The resulting shape description is
a 48-dimensional bag of features that is compared using the
L1 distance. The SI-HKS fully satisfies intrinsic invariance
and scale independence. Moreover, the choice of the dis-
cretization scheme for the Laplace-Beltrami operator (e.g.
point wise or mesh-based) makes this signature available for
many different inputs (e.g., point clouds or meshes).

Besides the use of histograms, graph-based signatures are
well suited when structure and shape parts are relevant for
the application. As a representative example we describe the
technique for finding corresponding parts in structurally dif-
ferent objects proposed by Shapira et al. [SSS∗10]. First, a
hierarchical shape partition is obtained using the shape di-
ameter function (SDF) [SSCO08]. Second, each part is de-
scribed by a local signature made of: i) a normalized his-
togram of the SDF values and the size of that part as a
percentage of the whole model, ii) a set of shape distribu-
tion signatures from [OFCD02], iii) the curvature-based his-
togram proposed in [BCG08], also known as the conformal
geometry signature. Then, the comparison is done with a bi-
partite graph matching approach that is based on a flow al-
gorithm able to take into account both local geometrical fea-
tures and the part hierarchies. The robustness of the method
with respect to small deformations depends on the robust-
ness of the partition technique. Being based on a hierarchi-
cal representation, this method tackles the problem of com-
paring parts from very different shapes, even with different
topology; however, the use of the SDF makes it particularly
suitable for articulated shapes.

Finally, we summarize the method proposed in [ZBVH09,
ZBH12] for comparing and matching textured 3D shapes.
Such a method builds upon a scale-space derived from differ-

ent normalized Gaussian derivatives through the Difference-
of-Gaussians (DoG) operator [Low04], and incorporates in
a unique paradigm geometry and photometric information.
The operator is computed on a scalar function defined on
the manifold, which in the original paper is either the mean
curvature, the Gaussian curvature or the photometric appear-
ance of a vertex (the mean of the RGB channels). The com-
putation of the scale-space does not alter the surface geome-
try (differently from the similar approach in [CCFM08]). A
local descriptor, called MeshHOG, is obtained as a two-level
histogram of the projections of the gradient vectors onto the
three planes associated with the local coordinate systems of
the maxima and minima of the scale space representation.
The final descriptor is obtained by concatenating the his-
togram values for each of the 3 orthonormal planes. Last, in
order to have invariance to the mesh sampling (i.e. the selec-
tion of the feature points), the concatenated histograms are
normalized through theL2 norm, that is also used to compare
two meshHOGs. Depending on the choice of the function
(mean curvature, Gaussian, etc.) isometry invariance is satis-
fied, while the scale-space description guarantees robustness
to noise [ZBH12].

3.2. Gromov-Hausdorff distance

The Hausdorff distanceis probably one of the most imme-
diate ways to assess the dissimilarity for two subsets of a
metric space. Informally, it is the maximum distance of a set
to the nearest point in the other set [HKR93]. Therefore, two
sets are close in the Hausdorff distance if every point of one
set is close to some point of the other set.

The Hausdorff metricdH(X,Y) between two non-empty
subsetsX andY of a metric space(Z,d) is defined as:

dH(X,Y) = max

{

sup
x∈X

inf
y∈Y

d(x,y), sup
y∈Y

inf
x∈X

d(x,y)

}

,

where sup represents the supremum and inf the infimum. An
extension of this concept is provided by theLp-Hausdorff
distance [Bad92] of which the Hausdorff metric represents
the particular casep = ∞. Due to its relatively easy evalu-
ation, Hausdorff distance and modifications are often used
to measure similarity between rigid surfaces inR

3, which
give rise to a family of algorithms known in the literature
as ICP [Zha94]. Also, the Hausdorff distance is very popu-
lar for shape comparison, ranging from images and digital
terrain surfaces to 3D objects [HKR93,NSCE02]. However,
while being a good match to compare extrinsic geometries,
the Hausdorff distance is not invariant to isometries.

In order to face this problem, an isometry-invariant exten-
sion of the Hausdorff distance was introduced by Gromov
[Gro99]. TheGromov-Hausdorff distancecasts the compar-
ison (and therefore the quantification of the similarity) of
two shapes as a problem of comparing pairwise distances on
metric spaces used to model the shapes themselves. Equiv-
alently, the computation of the Gromov-Hausdorff distance
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Figure 7: Iconic representation of an isometric mapφXY be-
tween two metric spaces(X,dX) and(Y,dY).

can be posed as the evaluation of how much the metric struc-
ture is preserved while mapping a space into the other.

The idea is to represent the comparison of two shapes as
that between two metric spaces(X,dX) and (Y,dY). For a
map φXY : X → Y, we measure thedistortion induced by
φXY on the metricdX as

dis(φXY) = sup
x,y∈X

|dX(x,y)−dY(φXY(x),φXY(y))|. (2)

Obviously, if dis(φXY) = 0 there is no distortion fordX , and
in fact we have thatφXY is an isometry, see Figure7. As
for mappingsφXY : Y → X, we can define dis(φYX) in the
same way as in Eq. (2), by exchanging the roles ofX andY.
Additionally, we consider thejoint distortiondis(φXY,φYX)
given by

dis(φXY,φYX) = sup
x∈X,y∈Y

|dX(x,φYX(y))−dY(φXY(x),y)|,

which roughly measures how farφXY andφYX are from be-
ing one the inverse of the other. The Gromov-HausdorffdGH
distance betweenX andY is then defined as:

dGH(X,Y) = inf
φXY,φYX

max{dis(φXY),dis(φYX),dis(φXY,φYX)}.

The combination of the metric approach with the Gromov-
Hausdorff framework does not require any particular met-
ric to be defined on spaces. Indeed, by choosing different
metrics between points, we get different notions of distances
between spaces [Gro99,M1́2,M1́1]. However, two possible
choices appear quite natural here. The first one is to setd as
thegeodesic metric, thus defining the intrinsic geometry of
X: In this case,d measures the length of the shortest path
on X between two of its points. The second choice ford is
theEuclidean metric, which relates to the extrinsic geometry
of X: For two points inX, their distance is measured as the
length of their connecting segment.

Extrinsic geometry is invariant to rigid transformations of
the shape (rotation, translation, and reflection), which pre-
serve Euclidean distances. However, nonrigid deformations
may change the extrinsic geometry. As a result, the Eu-
clidean metric is not suitable for the comparison of non-
rigid shapes. On the other hand, intrinsic geometry is invari-
ant to inelastic shape deformations, which indeed are metric
preserving. Therefore, the geodesic metric is a good choice

for comparing non-rigid shapes, as has been confirmed by
several contributions. However, other invariance classes can
be relevant in applications, for example topological defor-
mations or scaling. To this aim, more sophisticated choices
are possible, such as the diffusion or the commute-time dis-
tance [WBBP12].

The Gromov-Hausdorff distance was first proposed for
deformable shape analysis by Mémoli and Sapiro [MS05],
together with an approximation scheme for discrte spaces.
Given two samplings of(X,dX) and(Y,dY) with the same
numberN of points, say(XN,dX) and(YN,dY) respectively,
by restricting the attention to bijective mappings betweenXN
andYN, it is possible to approximate the Gromov-Hausdorff
distancedGH by a permutation distance:

d∼GH(XN,YN) = min
σ∈P(N)

max
0≤i, j≤N

|dX(xi ,xj )−dY(xσi ,xσ j )|,

with σ varying in the setP(N) of all permutation ofN num-
bers, andσi = σ(xi). As shown in [MS05], d∼GH approxi-
matesdGH for randomized samplings.

3.3. Functional maps

The Gromov-Hausdorff framework allows for studying
shape similarity through the comparison of pairwise dis-
tances defined on suitable spaces representing shapes. In
practice, this problem is often approached by considering
correspondence between points on the two shapes. For ex-
ample, isometric matching techniques try to find correspon-
dences between landmark points that preserve geodesic dis-
tances as well as possible. However, unless a small number
of landmarks is considered, moving in this direction is in
general computationally intractable, since the space of pos-
sible point correspondences is exponential in size.

Motivated by this problem, Ovsjanikov et al. [OBCS∗12]
proposed a novel representation of maps between shapes,
based on looking for correspondences between real-valued
functions defined on shapes, rather then between points on
shapes. Formally, suppose thatT : M →N is a bijective map-
ping between manifoldsM andN representing two shapes,
and f : M → R is a real-valued function. The function on
N corresponding tof is given by the relationg = f ◦T−1.
The induced transformationTF : F(M,R)→F(N,R), with
F(M,R) andF(N,R) two generic spaces of the real-valued
functions defined onM andN, respectively, is said to be the
functional map representationof T.

Functional maps generalize the standard point-to-point
map since every pointwise correspondence induces a map-
ping between function spaces, while the opposite is, in gen-
eral, not true. Also, the knowledge ofT can be recovered
from the one ofTF by replacing f with suitable indicator
functions [OBCS∗12]. However, whileT can be in princi-
ple very complicated,TF is a linear map between function
spaces. This has the main advantage that, after fixing a basis
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for the function space on each shape, a functional map rep-
resents the corresponding mapping as a change of basis ma-
trix. More precisely, ifF(M,R) is assumed to be equipped
with a basis{φM

i }, then any functionf ∈ F(M,R) can be
expressed as∑i aiφM

i , with ai real coefficients. Moreover, if
alsoF(N,R) is associated with a basis, say{φN

j }, thenTF
can be completely determined by these bases:

TF ( f ) = TF

(

∑
i

aiφM
i

)

= ∑
i

aiTF

(

φM
i

)

= ∑
j
∑
i

aici j φN
j ,

with TF (φM
i ) = ∑ j ci j φ

j
N and ci j is the generic element of

the change of basis matrix. Remarkably, such a matrix is
particularly simple to represent when the basis functions are
orthonormal with respect to some inner product, as in the
case of the eigenfunctions of the Laplace-Beltrami opera-
tor (see Section2.4.1). Furthermore, being based on a lin-
ear algebraic formulation, the framework of functional maps
opens the way to the practical usage of many common linear
algebra tools, ranging from matrix multiplications to study
map composition, matrix inversion to move from a bijection
T : M →N to T−1 : N→M, to principal component analysis
(PCA) and singular value decomposition.

Figure 8 shows an example of a bijective map between
two nearly isometric dog shapes, and the corresponding
functional representation in the form of a matrixC20×20.
To getC, the first 20 Laplace Beltrami eigenfunctions were
used as a the function basis for the function space in each
shape. As shown by the picture, functional representations
of nearly isometric maps are close to being sparse and di-
agonally dominant. In [ROA∗13], functional maps are used

Figure 8: Two shapes and the isometric mapping between
them in the form its functional representation.

to explore shape differences within a dataset of shapes. The
main idea is to formalize the shape difference under a map
by mimicking the Riemannian approach. Indeed, in that case
local map distortions are expressed in terms of variations
in the Riemannian metric. Inspired by this, the authors de-
fine theconformaland thearea preserving inner producton
the functions spaces of the considered shapes, and track the
changes of tangent vectors before and after these vectors are
mapped from one shape to the other. Such changes can be
encoded in the form of linear operators (matrices) which are
referred to asconformalandarea preserving shape differ-
ences, respectively. With such a notion in a hand, a collection

of shapes is then represented as a collection of shape differ-
ences from a base shape. In particular, matrices representing
shape differences are vectorized and, after PCA has been ap-
plied, the associated coefficients are plotted along principal
directions. In this new formulation, the database collection
can be analyzed, e.g, to find the “average” shape, explore
variability in shapes and defining shapes analogies.

Other possible applications of functional maps include
isometric shape matching in the presence of symmetries
[OMPG13] and attribute transfer [OBCS∗12]. Also, in
[SNB∗12] soft mapsare presented, providing a probabilistic
relaxation of point-to-point shape correspondence. Similarly
to functional maps, soft maps can be represented as proba-
bilistic matrices, thus allowing for the usage of linear algebra
tools in their analysis and manipulation.

3.4. The natural pseudo-distance

If we push further the idea of measuring the distortion of
properties while transforming a shape into another, i.e. con-
sidering topological spaces instead of metric spaces, we
get the concept behind thenatural pseudo-distance[DF04,
DF07, FM99]. The starting point is to model a shape as a
pair (X, f ), whereX is a topological space equipped with a
continuous real-valued functionf : X →R encoding a shape
property of interest. To compare two pairs(X, f ) and(Y, f ),
with X andY homeomorphic, we can imagine to transform
one space into the other trough a homomorphismh : X →Y,
and check how much the properties of the original shape
have been preserved/distorted byh; this problem amounts
to measure the difference between the functionsf andg◦h.
In other words, shapes are considered similar if there exists
a homeomorphism that preserves the properties conveyed by
the functions.

Note that to represent a given shape it is possible to choose
the topological space that best fits with the problem at hand.
For example, we might want to fixX = S, with S a 2-
dimensional manifold modelling the shape surface, but also
the Cartesian productS×S in case the functionf to be stud-
ied is a metric defined onS. Other possible choices could be
the tangent space ofS, or a projection ofSonto a line, or the
boundary ofS, or the skeleton ofS, and so on. Such a choice
is driven by the set of properties that one wishes to capture.

More formally, thenatural pseudo-distancebetween two
pairs(X, f ) and(Y,g) is defined by setting

dnp((X, f ) , (Y, f )) = inf
h∈H

sup
x∈X

| f (x)−g◦h(x)|,

with h varying in the set H of homoeomorphisms fromX to
Y. If X andY are not homeomorphic the pseudo-distance is
set equal to∞. Note however that the existence of a home-
omorphism is not required for the shapes under study, but
rather for the associated spacesX andY. In this way, two ob-
jects are considered as having the same shape if and only if
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they share the same shape properties, i.e. the natural pseudo-
distance between the associated size pairs vanishes.

The natural pseudo-distance offers a framework in
which different shape properties can be plugged-in in the
form of different real functions, so as to measure shape
(dis)similarity up to different notions of invariance. Such
a modular setting fostered the development of a topology-
based approach to shape description and comparison based
on the use of different classes of functions, describing both
extrinsic and intrinsic properties of shapes. Some of them
have been singled out as better suited than others to deal with
specific problems, such as obtaining invariance under groups
of transformations [DFP04,DLL∗10], or working with par-
ticular classes of objects [CFG06,FS10,CCSG∗09]. Never-
theless, the choice of the most appropriate functions for a
particular application is not fixed a priori and, as observed
for the Gromov-Hausdorff framework, has to be carefully
carried out up to the specific application/problem at hand.

3.4.1. Examples

The computational issues related to the practical evaluation
of the natural pseudo-distance are still an algorithmic bot-
tleneck: for this reason many efforts focused on the defi-
nition of computationally efficient approximations. In addi-
tion, the existence of a proper notion of distance between
spaces has led to the definition of descriptors that are stable
under shape’s perturbations.

These research issues led to the introduction ofsize func-
tions, shape descriptors that are proven to be stable under
the natural pseudo-distance, and provide a lower bound for
it [dFL10]. They were afterwards included in the frame-
work of Topological Persistence(hereafter simplypersis-
tence) [ELZ02,EH10], whose family of theoretical and com-
putational tools, with particular reference topersistence di-
agrams [CSEH07], can be used to derive lower bounds
for the natural pseudo-distance [CSEH07,CFF∗13] and the
Gromov-Hausdorff distance [CCSG∗09]; in the latter case,
topological spaces are replaced by metric spaces. All these
signatures are able to naturally combine the classifying
power of topology with the descriptive power of geometry.

Having modeled a given shape as a pair(X, f ), with
f : X →R, according to persistence we can consider the sub-
level sets off to define a collection of subspacesXu = {x∈
X| f (x) ≤ u}, u ∈ R, nested by inclusion, i.e.a filtration of
X. Homology may then be applied to derive some topologi-
cal information about the filtration ofX. More precisely, the
idea is to track how topological features vary in passing from
a set of the filtration into a larger one, in much the same way
as suggested by Morse theory (see Section2.5.3). From the
homological viewpoint, this can be done in terms of the evo-
lution of the Betti numbers along the filtration, which gives
insights, e.g., on thebirth and thedeathof connected com-
ponents, tunnels or voids.

The topological evolution of the sublevel sets off is fi-
nally encoded in a persistence diagram dgm(f ). This is a
collection of points in the half-plane{(u,v) ∈ R

2 : u < v}.
For each point, theu-coordinate represents the birth, in terms
of the values of the functionf , of a topological feature,
whereas thev-coordinate represents its death. A persistence
diagram provides a multi-scale description of the shape un-
der study. Indeed, points far from the diagonalu = v repre-
sent long-lived features, while points close to the diagonal –
they are characterized by a shorter life – stand for noise and
details. The paradigm is that long-lived features are more
meaningful or coarse for shape description, while short-lived
ones stand for noise and details. Examples of persistence di-
agrams, describing the evolution of connected components
along different filtrations, are shown in Figure9. The (red)
vertical line in the four diagrams can be seen as a point at
infinity, and represents a topological feature thatwill never
die.

Thanks to their modularity, persistence diagrams provides
different shape descriptions simply by changing the consid-
ered function. Interestingly, they inherit the invariance prop-
erties directly form the considered functions. Perhaps more
importantly, they are stable under the Hausdorff andbottle-
neck distance, which in turn provide lower bounds for the
natural pseudo-distance. In particular, small changes in the
input function f produces only small changes in the associ-
ated persistence diagram dgm(f ) [CSEH07,dFL10].

Most of the persistence applications fall in the field of
shape matching and retrieval: persistence diagrams play
the role of shape descriptors, while similarity is derived
from a stable distance between them. For example, diameter
function, eccentricity function and higher-order eccentricity
functions are used in [CCSG∗09] to build persistence dia-
grams on Rips filtrations of finite metric spaces, so to derive
stable signatures providing a lower bound for the Gromov-
Haussdorf distance, while [BGSF08b] uses size functions,
which are roughly the persistence diagrams studying the
evolution of connected components, to compare attributed
skeletal graphs derived from functions that code extrinsic
and intrinsic shape properties.

Similarly to persistence, alsoReeb graphs[Ree46] root
in Morse theory, but track the evolution of the level-set of a
function f instead of its sub-level sets [BGSF08a,DW11].
From the mathematical point of view the Reeb graphs can
be defined as the quotient space induced by the equivalence
relation that identifies the points belonging to the same con-
nected component of level sets off [Ree46]. Reeb graphs
have been introduced in Computer Graphics in the 90’s by
Shinagawa et al. [SK91,SKK91] while their use for shape
matching dates back to 2001 [HSKK01] with the defini-
tion of the Multiresolution Reeb graph (MRG). Since then,
several variations of the Reeb graph have been introduced
to couple the topological information stored in the graph
with geometric attributes of the shape parts corresponding to
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Figure 9: Persistence diagrams(b− c) and Reeb graphs(e− f ) related to different choices of the function f (color coded,
increasing values from blue to red).

nodes and arcs, the most popular being the augmented Mul-
tiresolution Reeb graph [TS04,TS05], the Extended Reeb
graph [BMM∗03] and the Discrete Reeb graph [XSW03]).

Also, several graph matching methods have been intro-
duced, ranging from global similarity measures [HSKK01,
LMM13] to approximated sub-graph matching techniques
[BMSF06] and graph kernel approaches [BB13a]. Recently,
a stability result for Reeb graphs under thefunctional dis-
tortion distancehas been proposed [BGW14], leading to a
lower bound for the natural pseudo-distance.

The parametric nature of Reeb graphs with respect to the
function f is shown in the last two rows of Figure9, where
the Reeb graphs of a closed surface with respect to two dif-
ferent functions are depicted. Notice how different functions
can give insights on the shape from a different perspective.

Recent advances in the field of topological methods for
shape analysis include the extension of the persistence-
based descriptions to the use of vector-valued functions
[BCF∗08,CZ09,CSZ10,CL13,BCGS13], the introduction
of statistics in combination with topology [MMH11], and
the possible use for shape analysis [GH10], the comparison
of set of shapes [PBF07], the use of collections of graphs
[BB13a,BEGB13] and learning techniques [BB13b] to au-
tomatically infer the most promising shape properties and
select the salient features.

4. Taxonomy of the methods

In what follows, we propose a “practical” classifications of
the surveyed methods, according to key characteristics that
are important in applications:

• Input Type:what kind of shape representations is used;
• Structure type:what kind of shape structure is captured

from the chosen description method;
• Distance:the criterion used to assess the (dis)similarity

between shape structures;
• Invariance:the class(es) of transformations to which the

method is invariant;
• Output type:the result of the method: either a similarity

value, or a shape correspondence, or both.

Obviously, these criteria are inter-related: for example, the
input type may put limitations on the kind of the structures
that can be computed, and, in turn, the choice of the structure

would usually determine the invariance (e.g. if one uses dif-
fusion geometric structures to find correspondence between
shapes, such a correspondence would be invariant to isomet-
ric deformations).

We discuss different methods from these viewpoints in the
following and summarize our taxonomy in Table1. Have in
mind that, in line with the “practical” perspective we have
chosen for the proposed taxonomy, and as a convention in
this survey, we will stick to the information related to the
specific application setting described in the respective paper,
though in some cases generalizations might be straightfor-
ward.‡

4.1. Type of input

The input type is related both to the application from which
shapes come and the mathematical model of the shape sim-
ilarity or correspondence [Req80,BDF∗08]. In the com-
puter graphics community, shapes are traditionally modeled
assurfacemodels (two-dimensional manifolds representing
boundaries of physical 3D objects) or asvolumemodels
[Man88,Mor86]. The most common discretizations of such
structures are simplicial meshes (e.g. triangular or tetrahe-
dral meshes) [BDF∗08,BBK09,RBBK10b,Rus10,BLC∗11,
DP13, LB14] or 2D/3D regular grids [LTN06,BCF∗08,
MDTS09]. 3D grids (voxel) representations are mainly used
in medical applications.

On the other hand, in the computer vision community it
is common to seepoint cloudrepresentations for 3D data
obtained in shape-from-X problems. The recent emergence
of 3D acquisition hardware has made these representations
popular in rigid matching problems [TV08,TCL∗13], which
play an essential role in multi-view fusion. In the analysis
of deformable shapes, such representations are less common
[MHK ∗08,MS09,NBPF11].

In many situations, additional information can be avail-
able in additional to the geometric structure of the shape.
A typical example we report here istexture [ZBVH09,
KBBK11,ZBH12,KBB∗12,GL12,KRB∗13,BCGS13].

‡ For example, methods based on diffusion geometry are easily ap-
plicable to different types of input data, but if the paper shows results
on triangular meshes only, we say that the method is applicable to
meshes.
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4.2. Type of structure

A useful classification of the geometric structures may be
done according to their invariance. Structures invariant to
rigid transformations are referred to asextrinsic (geome-
try). Simple rotation- and translation invariant-structures in-
clude Euclidean distances (e.g. from the object barycen-
ter, lines, planes [BK10a,BCF∗08] or shape boundaries
[MDTS09,LH13]). Extrinsic structures can be extended to
cope with global scale or affine transformations.

Structures invariant to transformations preserving the lo-
cal metric of the manifold are referred to asintrinsic (ge-
ometry); this type of invariance is sought in applications in-
volving deformable shapes. In the proposed classification
we distinguish betweenconformal structures by referring
to those based on Gaussian curvature and geodesic dis-
tances;diffusionstructures for those based on diffusion dis-
tances and spectral properties of the Laplace-Beltrami oper-
ator [RWP06,Rus07,WZL∗10]; autodiffusionstructures for
those built on various types of local spectral descriptors such
as the heat and wave kernel signatures [SOG09, GBAL09,
ASC11]. Intrinsic structures can be further made invariant to
global scale and affine transformations [BK10b,RBB∗11].

If one wishes invariance to topological changes, the de-
scription must be able to deal withtopology. Examples of
structures able to code topological information are curve
skeletons [LH13], Reeb graphs [HSKK01,BGSF08a] and
persistence-based representations [EH07,CZ09,DLL∗10,
BCF∗08,BCFG11,DL12].

Structures can be also classified aslocal or global. Local
structures reflect the properties of the shape in the vicinity of
a point of interest and are usually unaffected by the geometry
or the topology outside that neighborhood. For that reason,
local structures are typically used for partial shape matching.
Global structures, on the other hand, capture the properties
of the entire shape.

Local structure is usually captured in the form of local
descriptors. Recent works proposed a plethora of descrip-
tors such those based as mean and Gaussian curvatures,
integral volume descriptors [GMGP05], conformal factor
[BCG08], autodiffusion [GBAL09] or the heat kernel sig-
nature [SOG09] and its scale- [BK10b] and affine-invariant
versions [RBB∗11], and the wave kernel signature [ASC11].

Global structure can be obtained by integrating local
structure over the entire shape, typically in the form of a
single- or multi-dimensional histogram [OBGB09, BB13a].
This is a standard approach in retrieval applications where
a holistic description of the entire shape is required. Other
inherently global structures include distance functions (e.g.,
Euclidean, geodesic, or diffusion distances) and their distri-
butions [HSKK01], as well as global spectral properties such
as the Laplace-Beltrami spectrum [RWP06] and eigenfunc-
tions.

Some methods combine both local and global proper-

ties of the shape producingsemi-localstructures such as
the maximally stable extremal regions (MSERs) [LBB11].
These structures arise in the form of hierarchies of stable
regions, and are guided both by the behaviour of a local
descriptor (e.g., heat kernel signature) and the coarse-scale
properties of the shape. Similarly, bilateral maps [vKZH13]
provide a medium scale description that depends on the
closeness of the base points: the shape portions to be
matched must cover at least the 20% or 30% of the overall
shape.

Other methods allows for dealing with shape information
at different scales, thus providing a unifying interpretation
of local and global shape description. We will refer to the
related structures asmulti-scalestructures.

In shapes endowed with additionalphotometricinforma-
tion (texture), more complicated approaches such as multi-
dimensional size functions [BCF∗08,BCFG11] and com-
bined geometric/photometric descriptors [ZBVH09,ZBH12,
GL12,KRB∗13,BCGS13] can be used.

4.3. Type of distance

The criteria used to compare shapes depend on both the
information enclosed in the emerging structures, and how
this information is coded (e.g. histograms, graphs, point-
correspondences, etc.). As discussed in Section3, sev-
eral frameworks have been introduced for comparing shape
structures.

The Gromov-Hausdorff distance provides a general
framework for comparing shapes in terms of the metric dis-
tortion between two metric spaces when transforming one
into the other. The framework is flexible to the choice of the
metric, and therefore can be used to compare different metric
structures, such as diffusion geometry [BBK∗10].

Functional mapsextend the similarity problem to the
comparison of functions defined on the shapes. The main ad-
vantage of this problem formulation is that a correspondence
is a linear map in the space of functions: hence, a number of
tools and techniques from linear algebra can be applied to
couple shapes. Soft maps relax the usual point-to-point cor-
respondence through a probabilistic formulation. Since soft
maps can be represented in the form of matrices, also in this
case their manipulation may be accomplished via the stan-
dard linear-algebraic toolkit.

Methods related to thenatural-pseudo distancemay take
advantage of a mathematically sound notion of stability.
Also, the intrinsic modularity of the framework allows for
comparing shapes according to different invariance proper-
ties, which are directly inherited from the functions used to
describe the considered shape properties.

Beyond the above frameworks, a number of methods con-
sidered here represent different interpretations of a standard
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approach for similarity assessment, based on the computa-
tion of suitable distances between shape descriptors.

For instance, a simple, yet effective way of globally de-
scribing a shape is to use abag of features. Such a descrip-
tion is the projection in ak-dimensional vector of the feature
detected. Feature vector distances are a well-known issue in
shape retrieval [BKS∗05,TV08]. Traditionally, solutions to
this item are provided by theMinkowski Lp family of dis-
tances. Examples include the Manhattan distance (p = 1);
the usual Euclidean distance (p= 2); the maximum distance
(p=∞), also called Chebyshev or chessboard metric. Other
distances provided by statistics and information theory are
χ2-statistics, theHamming distance, theJeffrey divergence,
the Jensen-Shannon (J-S) divergence, theWassersteindis-
tance also known as theEarth Mover’s distance (EMD)in
the discrete settings [LO07].

In case the structure is coded in a graph, many dis-
tances have been introduced, each one depending on the
type of information stored in the graph and its hierarchi-
cal nature. Examples are theapproximation of the maxi-
mum common subgraph[BMSF06,TVD09,BK10a,AK11],
path matching[SSS∗10,MBH12,RPSS10,LH13], Hungar-
ian distance [SPT11,STP12,GDZ10] and graph kernels
[BB13a,BB13b,LMS13].

Many other distances may be listed, which in some cases
have been proposed asad-hocsimilarity measures between
shape descriptors, see [DD09] for more details.

4.4. Invariance

The type of invariance is strictly interlinked to the structure
the method captures. For instance, extrinsic geometric struc-
tures are invariant torigid transformations (rotations, trans-
lations, and reflections) [MDTS09,GDZ10,BK10a,DP13].

Intrinsic structures (such as geodesic and diffusion dis-
tances, heat kernels signatures, etc.) are invariant toisomet-
ric shape deformations, which are in general non-rigid but
preserve the Riemannian structure of the shape [BBK09,
SSS∗10,WZL∗10,LD11,BLC∗11,BB11,BBK∗10,RBB∗11,
BBGO11,LPD13] or its volume [RBBK10b,Rus10].

Other classes of deformations which are relevant for ap-
plications include, e.g, scaling and affine transformations
[RBB∗11].

Besides invariance, methods may exhibit robustness with
respect to small perturbations and variations, such as
model sampling [HH09], shot noise [BCF∗08, BBB∗12,
BBC∗10,BBB∗10] and shortcuts [Rus10,BBC∗10,BBB∗10,
SHCB11, vKZH13]. Topological changes (possibly result-
ing, e.g., from acquisition artifacts or meshing) can greatly
alter global intrinsic structures such as geodesic dis-
tances [TVD09,DLM09, APP∗10,BCFG11, DL12, GL12,
BCGS13]. Multi-scale intrinsic structures such as heat ker-
nels are typically less sensitive to changes in topology,

and so are extrinsic geometric structures [BB11,BBK∗10,
LGB∗13,BBC∗10,BBB∗10].

4.5. Type of output

The process of comparing two shapes may result in either
a numerical assessment of theirsimilarity, or acorrespon-
dencebetween the two shapes, or both.

Algorithms aiming at the computation of correspondence
usually produce a quantitative measure of similarity as a
byproduct (e.g., metric distortion in [BBK∗10]). On the
other hand, numerous shape retrieval approaches based on
holistic descriptors produce similarity only. The measure of
similarity itself can be eitherfull or partial.

Methods computing correspondence can be further sub-
divided into those finding full or partial correspondence.
Both cases can be classified assparse(correspondence is
computed only between a small subset of feature points de-
tected on the shapes being matched), ordense(typically rep-
resented by providing for each vertex or each triangle on
one shape its image under the correspondence on the other).
Dense correspondences can be alternatively represented by a
smooth approximation of the continuous map in some basis
using the functional correspondence formalism. Such corre-
spondences are usually referred to assoft. Methods comput-
ing fuzzy correspondence abandon the representation of the
latter as a function, allowing a single point on one shape to
be mapped to a distribution on the other [KLM∗12]. Despite
the superficial similarity to the functional representation, the
underlying details differ substantially.

5. Applications

Application domains of shape similarity and correspondence
problems range from mechanical CAD to entertainment,
forensic security, and molecular biology. In the literature,
it is common to refer to the following (partially overlap-
ping and sometimes used synonymously) classes of appli-
cations [FKMS05].

Shape matchingis often considered as a synonym of ge-
ometric similarity and correspondence. Among the meth-
ods that evaluate similarity, we distinguish between those
that generically refer to the generic field of matching
[RBB∗11, ASC11,LBB11, ZBVH09] or aim at quantify-
ing similarity [BLC∗11, LD11, LPD13, RBBK10a,BB11,
BBK∗10,BCF∗08] and those that have more specific tar-
gets. Often, similarity can be inferred from correspondence
methods based on structure distortion minimization [KLF11,
LD11, KBB∗13,PBB∗13, ROA∗13, LB14] or for a suffi-
ciently large set of shape correspondences [vKZHCO11].

An extension of the matching problem to the setting where
one seeks similarity [OMMG10,SSS∗10,DLL∗10,AK11,
TVD09,DLM09, WZL∗10,DL12,BWDP13a, vKZH13] or
correspondence [MGP06,GCO06,FS06,DL11, TDVC11,
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SHCB11] between parts of shapes is referred to aspartial
matching (see, for instance [LBZ∗13] for a recent survey).
However, the peculiarity of similarity measures for partial
matching is that generally they do not satisfy the triangle in-
equality because parts may match well even if the whole ob-
jects significantly differ (consider, for example, the human,
centaur and horse shapes [TV04]).

A particular setting of the shape matching problem is
matching the shape to itself for the detection of self-
similarity or symmetry [RBBK10a,LH13]; symmetry detec-
tion, in turn, can be intrinsic or extrinsic, partial or full.

Registrationrefers to the alignment of the components of
two or more shapes [TCL∗13]. The problem originated from
the need of rigidly aligning point clouds acquired by multi-
view 3D scanners. More recent works considered finding
differences between shapes [DP13] and non-rigid registra-
tion of deformable shapes [LZSCO09].

Shape retrievalrefers to the problem of finding the models
in a database that best match a given query. Therefore, all
method whose output is a similarity score between couples
of shapes, can be adopted for 3D content based retrieval, see
Table1.

Shape classificationaims at finding the class the query
model belongs to [LJ07,CCSG∗09,Rus10,Bia10]. A good
criterion of similarity between shapes allows performing
shape classification if one has examples of shapes belong-
ing to the given classes [BGM∗06]; however, the trend is
to use machine learning approaches for this task [BB13b,
BEGB13].

Recognitionis a particular case of retrieval; given a query
and a database the problem is to determine if the query is
in that dataset or not, and in case the answer is affirma-
tive, to identify the query. A popular application is face
recognition [tHV10, BDP10,SHVS12,BWDP13a] for se-
curity purposes [GAP∗09, BDP13b]. Since facial deforma-
tions are almost isometric and some landmarks may be eas-
ily identified (for instance, the tip of the nose), methods
for face recognition take advantage of the use of intrinsic
structures such as geodesic distances from feature points
[SHVS12,tHV10,BBK09,RBB∗11] or curvature [BK10a].
The improvement in terms of performance of 3D face recog-
nition has led to application of 3D methods to the identi-
fication of facial expressions [MAD∗11,BDP13a], also in
presence of partial occlusions [BDP13a].

Finally, we can identify additional applications that
are indirectly related to shape similarity and cor-
respondence, such asexploration of shape collec-
tions [HZG∗12, ROA∗13, LGPC13], component detec-
tion [LBB11, LZSCO09], segmentation [LZSCO09],
simultaneousshape editing [KBB∗13], attribute trans-
fer [KBB∗13], 3D animation tracking [SHCB11] and
semantic annotation[ARSF09,LMS13].

6. Datasets and benchmarks

The explosive growth of the number of shape matching
techniques has made acute the need for a widely-accepted
performance evaluation protocol. Among the firsts of such
benchmarks is SHREC [VRS∗06] that started as a shape
retrieval contest and grew over the years into additional
tracks covering correspondence and feature detection tasks.
Another popular benchmark is the Princeton Shape bench-
mark [SMKF04], which includes retrieval and, recently,
correspondence and segmentation tasks. However, existing
benchmarks are far from capturing the challenges arising
in real applications. Such challenges include, for example,
truly large scales involving millions of shapes, noisy, clut-
tered, and partially occluded data coming from real range
sensors, the great variety of shape representations, and the
need for domain-specific evaluation criteria. While the re-
cent editions of the SHREC [BBC∗10,BBB∗10,BBB∗12,
CBA∗13] have tried to address some of these issues by
proposing a multi-track structure of the benchmark, a com-
prehensive benchmark relevant to real-world problems is
still acutely needed.

7. Discussions and Future Trends

In this review we have presented methods for 3D simi-
larity, emphasizing the properties of shape descriptors and
related distances, yet discussing their theoretical aspects
and possible applications. Among the whole literature on
the topic, we have restricted our attention to approaches
that abstract shape properties through the use of functions
and/or distances, and quantify shape similarity in terms
of maps between spaces. Most of these techniques fall in
well-known mathematical theories (e.g. diffusion geome-
try, Morse theory, differential topology) and frameworks
(Gromov-Hausdorff, functional maps and natural pseudo-
distance); thus they borrow from the theory results on in-
variance, robustness and stability. A first contribution of the
survey is the summary proposed in Section3 of the most
recent trends for similarity assessments.

The ensemble of the approaches highlights that defin-
ing a suitable similarity distance becomes more complicated
as the shape descriptions increase their complexity and the
variety of the deformations evolve from rigid to intrinsic
or generic deformations. In these cases, the classic metric
paradigm becomes less effective and non metric distances
come into the play.

On the basis of the taxonomy proposed in Section4 and
Table 1, it is now possible to answer to questions that are
crucial when selecting a technique for shape similarity as-
sessment: e.g. is that method mainly targeted for global or
partial matching? Which kind of input does it need? Is it
suitable for non-rigid shape comparison? Is it possible to find
sparse or dense shape correspondences?

The survey highlights that in the last years (since 2008),
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rigid-invariant comparison is considered a quite well estab-
lished problem; the few methods tackling this problem are
mainly devoted to the improvement of the accuracy and
the computational efficiency of existing methods. At the
same time, also point clouds have decreased their popular-
ity because strictly related to rigid registration and alignment
problems. On the contrary, defining a meaningful measure of
the similarity under non-rigid deformations is still an acute
issue.

On the one hand, research in the last five years has mainly
focused on isometric deformations: the Gromov-Hausdorff
and the functional maps frameworks have been success-
fully applied and are becoming the standardde facto for
intrinsic similarity. On the other hand, the problem is still
open when dealing with generic deformations that includes
non-isometric changes or topological variations. In addi-
tion, there is the feeling that dealing with some classes of
shapes and deformations is inherently more difficult than
other ones; for instance, it has been shown there is a link
between the stability of any shape matching technique and
shape symmetries [OHG11].

The natural pseudo-distance has been introduced to over-
come the limitation of the traditional methods which rely
on assumptions of rigidity, isometry, or sufficient geometric
similarity between corresponding parts; however, the direct
evaluation of the natural pseudo-distance is still a compu-
tational bottleneck, although some methods may be used to
get computable lower bounds.

7.1. Research trends and challenges

Finally, we list a series of topics deserving further research
and efforts:

• The increasing complexity of the deformations consid-
ered in the applications calls for the development of new
formal theories. Indeed, there is no a theoretically well-
established framework when comparing two shapes with
different structure or topology but same functionality. In
our opinion, it is necessary to develop a theory for ‘geo-
metric filtration’ similar to the Fourier analysis so that is
possible to have a progressive representation of the shape
properties under continuous functions.

• Moreover, it is necessary to specifically investigate the
role of invariancewith respect to larger families of trans-
formation groups (i.e., shape deformations) and how to
balance the use of geometrical and topological informa-
tion for accurate shape descriptions.

• Beside the current theoretical limitations, there are also
computational bottlenecks. In the framework proposed in
the survey, the role of maps is crucial to convey the shape
properties that one wishes take into account; however,
while results and algorithms are well-established for sin-
gle valued functions, it not always the same for the use
of multi-variate functions. This is due to the fact that a

complete understanding of the overall structure of the de-
scription space is still missing, resulting in the lack of ef-
ficient algorithms, such as in the case of persistence for
dimension higher than two [BCFG11,BCGS13].

• To effectively quantifying similarity it is also necessary
to consider the context in which the object is embedded
(i.e. its semantics or functionality). A major issue is how
to model such a knowledge and effectively embed it in
the similarity evaluation pipeline. From our perspective,
a possible solution is either to include a-priori knowledge
or to co-analyse shapes in the same class or database.

• To automatically infer knowledge, we foresee the intro-
duction in the framework of statistical methods such as
learning techniques. Indeed, experiments for image classi-
fication using multicolumn neural networks reached near-
human performance [CMS12]. These techniques repre-
sent a possible solution to automatically determine the
weights of the different shape features on the basis of con-
text (e.g., the shape classes of a database) [Lag10,LMS13,
BSF13,TDVC13,BB13b].

• Another critical point to be tackled in the near future is
scalability: indeed we expect that methods for similarity
quantification will handle very large volumes of data, in
the form of parallel approaches or on-line application. For
example, a difficulty we foresee in this step is that meth-
ods that are able to capture the shape topology and deal
with generic shape deformations are often time consum-
ing, refer to quite complex distances and depend on the
overall structure of the shape.
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Table 1: Classification with respect to the type of structure, distance, input, invariance, output (similarity and/or correspondence) charac-
terizing each method. G-H and NPs abbreviate Gromov-Hausdorff and natural pseudo-distance, respectively.

Method (refs.) Structure Distance
Input Invariance Similarity Correspondence

point surface volume texture rigid isometry other full part. sparse dense soft
Blended Intrinsic Maps [KLF11] Conformal Wasserstein-based

√ √ √
non-isometric

√ √

Conformal Wasserstein [LD11,LPD13] Conformal Wasserstein-based
√ √ √ √ √

Geometric similarity [BLC∗11] Conformal Wasserstein
√ √ √ √ √

Diffusion distance distr. [MS09] Diffusion L1, L2, χ2, J-S divergence
√ √ √ √ √

Volume GPS [Rus10] Diffusion χ2 √ √ √
scale

√

Heat Kernel Signature [SOG09] Multi-scale autodiffusion L1 √ √ √ √ √

Scale Invariant HKS [BK10c] Multi-scale autodiffusion WeightedL1 √ √ √
scale

√ √

Shape Google [OBGB09,BBGO11] Multi-scale autodiffusion Hamming distance
√ √ √

scale
√ √

Bag of Feature Graphs [HHZQ12] Multi-scale autodiffusion L2-based
√ √ √

scale
√ √

Topology-Invariant Geometry [BBK09] Diffusion Pareto distance
√ √ √

scale
√ √

G-H framework & diffusion [BBK∗10] Diffusion G-H framework
√ √ √

scale
√ √

Spectral Distances [BB11] Diffusion NormalizedL1
,L2

,χ2, EMD
√ √ √

scale
√ √

Min. Distortion Corr. [WBBP12] Multi-scale autodiffusion G-H framework
√ √ √

scale
√ √

Soft Maps [SNB∗12] Local geometry Generalized EMD
√ √ √

non-isometric
√ √ √ √

Appr. joint corr. [KBB∗13,PBB∗13] Diffusion Functional map
√ √ √

scale
√ √ √ √

Equi-affine inv. geometry [RBB∗11] Diffusion G-H distance
√ √ √ √

scale, affinity
√ √

One-point isometry match. [OMMG10] Multi-scale autodiffusion L2-type
√ √ √ √ √ √

Topologically-robust matching [SHCB11] Multi-scale autodiffusion L2, L∞ type
√ √ √ √ √ √

Volumetric HKS [RBBK10b] Multi-scale autodiffusion L1 √ √ √
scale

√ √

Contextual part analogies [SSS∗10] Semilocal conformal Bipartite graph matching
√ √ √

scale
√ √ √

Isometric deformation inv. [SHVS12] Conformal χ2 √ √ √
scale

√

Intrinsic Diff. [OBCS∗12,ROA∗13] Conformal Functional map
√ √ √ √ √ √ √

MDM [Bia10] Diffusion EMD
√ √ √ √

Wavelet Kernel Signature [ASC11] Multi-scale autodiffusion L1 √ √ √ √ √

3D MSERs [LBB11] Semi-local autodiffusion Local point & region distance
√ √ √ √ √ √

Spectral descriptors [LB14] Multi-scale autodiffusion Metric learning
√ √ √

scale, affinity
√ √

Spectral graph wavelets [LBH13] Diffusion Intrinsic spatial pyramid match.
√ √ √

scale
√

Part-aware metric [LZSCO09] Conformal χ2 √ √ √ √ √ √

3D shape impact [MDTS09] Semi-local extrinsic NormalizedL2 and diffusion distance
√ √ √

scale
√

Spatial circular descriptor [GDZ10] Extrinsic Hungarian distance
√ √

scale
√

meshSIFT [MFK∗10,SKVS13] Multi-scale geometry Angle distance
√ √ √ √ √

Salient Points [CCFM08] Multi-scale geometry Distance on Hidden Markov Models
√ √ √

scale
√ √

Salient spectral features [HH09] Diffusion Ad-hoc distance
√ √ √

scale
√

Bag of words [Lav11,Lav12] Local diffusion L1-based
√ √ √

scale
√ √ √

Intrinsic spin images [WLZ10] Multi-scale geometry EMD
√ √ √ √ √

LB eigendecomposition [DK10] Diffusion Min. of L1 & geodesic dist.
√ √ √ √ √ √

Spectral isometry match. [RPSS10] Diffusion Bipartite graph matching,L1-type
√ √ √

scale
√ √

Semantic best view selection [Lag10] Conformal Ad hoc distance
√ √ √ √

Interest points histograms [BWDP13b] Multi-scale conformal χ2, RANSAC
√ √ √

scale
√ √

Sparse Matching [BDP13b] Multi-scale geometry Ad-hoc distance, RANSAC
√ √ √

scale
√ √

Facial expression recogn. [BDP13a] Multi-scale geometry Distance on Hidden Markov Models
√ √ √ √

Isogeodesic stripes [BDP10] Conformal Weighted graph distance
√ √ √

scale
√ √

Bilateral maps [vKZH13] Semi-local conformal L1-based
√ √ √

scale
√ √ √

Persistence [CCSG∗09] Multi-scale topology G-H framework
√ √ √

scale
√ √

Persistence [DLL∗10] Multi-scale autodiffusion & topology L1-based
√ √ √ √ √

Size functions [BCF∗08,BCFG11] Multi-scale geometry & topology (NPs) framework
√ √ √ √

scale
√ √

Persistence [DL12] Extrinsic & multi-scale topology (NPs) framework
√ √ √ √ √

Extended Reeb graph [BB13a,BB13b] Semi-local geometry & topology Kernel aggregation & learning
√ √ √

scale
√

LB eigenfunction match [MHK∗08] Diffusion Hungarian distance
√ √

Skeleton path [LH13] Extrinsic & topology Endpoint distance
√ √ √ √

scale
√ √

Point cloud graph [NBPF11] Semi-local geometry & topology Spectral graph distance
√ √ √

scale
√ √

Extended Reeb graph [BEGB13,EHB13] Semi-local geometry & topology Spectral graph distance
√ √ √

scale
√ √

Topo-geometric model [BK10a] Extrinsic & topology Max sub-graph approx.
√ √

scale
√ √ √

Skeletal Reeb graphs [MBH12] Extrinsic & topology Shortest path graph matching
√ √

scale
√ √ √

Reeb graph [AK11] Conformal & topology Max sub-graph approx.
√ √ √ √ √

Reeb graph [TVD09] Semi-local conformal & topology Max sub-graph approx.
√ √ √

scale
√ √ √

ComTopo [SPT11,STP12] Semi-local conformal & topology Hungarian distance
√ √ √ √ √

Graph based match. [APP∗09,APP∗10] Semi-local conformal EMD
√ √ √ √ √

Reeb graph & view [LMM13] Conformal & multi-scale topology EMD
√ √ √ √ √

MeshHOG [ZBVH09,ZBH12] Multi-scale conformal & photometry L2 √ √ √ √ √ √

Photometric HKS [KBBK11,KBB∗12,KRB∗13] Multi-scale autodiffusion & photometry L1 √ √ √ √
scale, affinity

√ √

Multi-scale projection transf. [GL12] Photometry & multi-scale geometry Jeffrey divergence
√ √ √

scale
√

PHOG [BCGS13] Conformal & photometry, multi-scale topology L1, (NPs) framework
√ √ √ √

scale
√ √
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