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Abstract
Virtual humans are employed in many interactive applications using 3D virtual environments, including (serious)
games. The motion of such virtual humans should look realistic (or ’natural’) and allow interaction with the
surroundings and other (virtual) humans. Current animation techniques differ in the trade-off they offer between
their motion naturalness and the amount of control that can be exerted over the motion. We give an overview of
these techniques, focusing on the exact trade-offs made. We show how to parameterize, combine (on different body
parts) and concatenate motions to gain control. We discuss several aspects of motion naturalness and show how
it can be evaluated. We conclude by showing the promise of combinations of different animation paradigms to
enhance both naturalness and control.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1. Introduction

Virtual environments inhabited by virtual humans (VHs) are
now commonplace in many applications, particularly in (se-
rious) games. Animation of such VHs should operate in real-
time to allow interaction with the surroundings and other
(virtual) humans. For such interactions, detailed control over
motion is crucial. Furthermore, the motion of VHs should
look realistic. We use the term naturalness for such observed
realism.

Many techniques exist that achieve real-time animation.
These techniques differ in the trade-off they offer between
the amount of control over the motion of the body, the natu-
ralness of the resulting motion and required calculation time.
Choosing the right technique depends on the needs of the ap-
plication. This STAR aims to help the reader in this choice,
by providing an overview of real-time animation techniques.
We give a short summary of each technique, and focus on
the trade-offs made.

First we discus models of the VHs body that are steered
by animation. Then we give a short overview of technolo-
gies from robotics and film/cartoon making that are used
in computer animation. In section 4 we classify animation
techniques that are used to generate short animation seg-

ments with a consistent function and discus their strengths
and weaknesses. In section 5 we show how to parameterize,
combine (on different body parts) and concatenate motion
generate by these techniques to gain control. We discus sev-
eral aspects of naturalness and show how it can be evaluated.
We conclude by discussing the power of combinations of an-
imation paradigms to enhance both naturalness and control.

2. Modeling the VH

Animation steers the body of a VH. Here we show how the
body is modeled as a skeleton, articulated set of rigid bodies
and biological system.

2.1. Skeletal Model of the VH

VHs are mostly represented by polyhedral models or
meshes. Animating all these polygons individually can be
very tedious, therefore it is very common to work with
the underlying skeleton instead of the mesh itself. A skele-
ton is an articulated structure: its segments are connected
by means of joints in a hierarchical structure. The joints
and segments (also called bones) define the structure of the
skeleton. A pose of a VH is set by rotating the joints. The
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world location of a joint is determined by the joints above it
in the hierarchy. For example, a rotation in the shoulder will
not only affect the position of the elbow joint, but also that
of the wrist joint. How the skeleton deforms the mesh is be-
yond the scope of this article, we refer the interested reader
to [MTSC04].

Every joint has several degrees of freedom or DoFs. The
DoFs are the parameters that define a configuration of a joint.
For example, the elbow joint has only one DoF, while a
shoulder joint has three. The global translation of the skele-
ton is represented by a translation of the root joint (hence, a
root joint has 6 DoFs). The pose of a skeleton with n rota-
tional DoFs can be described by an n+3 dimensional vector
q = [rx,ry,rz,θ1, . . . ,θn]T where r = [rx,ry,rz]T is the root
translation.

Standardizing the skeleton topology improves reusability
of motions. Motions created for one VH can be transfered
to another VH more easily. The H-anim [Hum05] standard
provides a complete set of standardized joint names and their
topology, that specifies their resting position and how they
are connected.

2.1.1. Representations of Joint Rotation

One of the most common representation of rotations is a
3× 3 rotation matrix. A rotation matrix can only represent
a rotation if its determinant is 1 and its columns are of unit
length and mutually orthogonal. The set of all such matrices
form the group SO(3) under the operation of matrix multi-
plication.

Euler angles represent rotation by three rotations around
the unit axes. Sometimes these angles are called yaw, pitch
and roll, but mostly these three terms are used to define three
rotations around the principal axis of the body itself. A dis-
advantage of Euler angles is that the order in which the three
rotations are applied is crucial. A different order results in
a different rotation since rotations do not commute. So, the
angles are not independent. Another problem with Euler An-
gles are Gimbal locks. In case of Gimbal locks, one DoF is
lost. A Gimbal lock occurs when a series of rotations at 90
degrees are performed. Due to the alignment of the axes,
these rotations might cancel each other out.

A quaternion p consists of a scalar value w, and a vector
in the imaginary i jk space.

p = w+ xi+ y j + zk (1)

So, a quaternion can be interpreted as the sum of a scalar
part and a vector part. The quaternion space is denoted as H.
We define unit quaternions as quaternions with norm 1.

‖p‖=
√

w2 + x2 + y2 + z2 = 1 (2)

The unit quaternion space, denoted as S3, is a 4D unit hyper-
sphere. When considering a rotation θ around an axis n, the

corresponding unit quaternion will be

p = (cos
θ

2
,sin(

θ

2
)n) (3)

In the exponential map representation [Gra98], rotations
are represented in a linear domain. Using the exponential
map representation, we are also able to employ techniques
that only operate in linear domains, such as principal compo-
nent analysis [EMMT04]. In this representation, a rotation θ

around a unit axis n is represented by a vector r ∈ R3 where
| r |= θ and r

|r| = n. There are some limitations of the ex-
ponential map. First, a rotation in SO(3) maps to an infinite
number of vectors in R3. Second, there is no simple opera-
tion to combine rotations as there is when using quaternions.

2.2. Physical Model of the VH

In physical simulation, the body of the VH is typically mod-
elled as a system of rigid bodies, connected by joints. Each
of these rigid bodies has its own mass and inertia tensor.
Movement is generated by manipulating joints torques.

Most physical animation systems [HWBO95, WH95,
Woo98, ZH99, YLS04, ZvdP05] assume a uniform density
for each rigid body. The density of the rigid bodies can
be measured directly from cadavers, or using scanning sys-
tems that produce the cross-sectional image at many inter-
vals across the segments [Win04]. The mass, center of mass
and inertia tensor can then be calculated via the volume of
the mesh that corresponds to the rigid body [Mir96].

To allow for collision detection and collision response, a
geometric representation of the rigid bodies is needed. The
mesh of the VH can be used for this representation. How-
ever, collision detection between arbitrary polygonal shapes
is time consuming. Computational efficiency can be gained
at the cost of some accuracy by approximating the collision
shape of rigid bodies by basic shapes such as capsules, boxes
or cylinders.

2.3. Biomechanical/Neurophysical Models of the VH

The central nervous system (CNS) is used to control our
muscles, on the basis of sensor input. Here we describe some
sensors used in biomechanical movement controllers, the
employed muscle model and some models and invariants for
motor control.

2.3.1. Sensors

Motor control needs information on the state of the VH. This
information can be calculated from the DoFs, their velocities
and the physical representation of the VH’s body. It is con-
vienent to compute intuitive higher level sensors that can be
shared among different motion controllers [FvdPT01b]. Ex-
amples of such sensors are the center of mass (CoM) of the
VH, the velocity of the CoM, contact information (are the

c© The Eurographics Association 2009.

46



H. van Welbergen B. J. H. van Basten A. Egges Zs. Ruttkay M. H. Overmars / Real Time Animation of Virtual Humans

feet or other body parts in contact with the ground?), the lo-
cation of the support polygon (the convex hull of the feet),
and the zero moment point (ZMP). The ZMP is the point on
the ground plane where the moment of the ground reaction
forces is zero. If the ZMP is outside the support polygon, the
VH is unbalanced and should fall over.

2.3.2. Modeling Muscles

Over 600 muscles can apply forces to our bones by contract-
ing. One muscle can cover multiple joints (e.g. in the ham-
string and muscles in the fingers). In real-time physical sim-
ulation methods, muscles are typically modeled as torque-
motors at joints. Such a model provides control in real-
time and has a biomechanical basis: it is hypotized that the
CNS excerts control over joints at a joint or similar higher
level [Win04]. To determine the torque applied by these
motors, muscles are often modeled as a system of springs
(representing elastic tendons) and dampers that cause vis-
cous friction [Win04]. Joint rotation limits and maximum
joint strength can be obtained from the human factors litera-
ture [WTT92, BPW93].

2.3.3. Motor Control

Motor control deals with steering the muscles in such a way
that desired movement results. Robotic systems rely mostly
on feedback control using very short feedback delays. In
biological movement, feedback delays are large (150-250
ms for visual feedback on arm movement), so precise con-
trol of fast movement (as exhibited by humans) cannot be
achieved using solely feedback control [Kaw99]. Accord-
ing to Schmidt [Sch75] people construct parameterized Gen-
eral Motor Programs (GMPs) that govern specific classes
of movement. Different movements within each class are
produced by varying the parameter values. The relation be-
tween parameter values and movement ’outcome’ is learned
by practicing a task in a great variety of situations. Accord-
ing to the equilibrium point hypothesis, control is not explic-
itly programmed, but emerges from the dynamic properties
of the biomechanical system. In this model, the spring-like
properties of muscles in, for example the arm, are used to au-
tomaticly guide the hand to an equilibrium point. Movement
is achieved by a succession of equilibrium points along a
trajectory. Feedback control (see 4.2.1.1), GMPs (explicitly
in [Zel82,KW02], implicitly in 4.2.2, 4.1.3) and equilibrium
point control (see 4.2.1.1.2) have been used in computer an-
imation.

The GMP theory is supported by invariant features that
are observed in motion. Gibet et al. [GKP04] give an
overview of some of such invariant features, including Fitts’
law, the two-third power law and the general smoothness
of arm movement. Fitts’ law states that the movement time
for rapid aimed movement is a logarithmic function of the
target size and movement distance [PM54]. The two-third
power law [VT82] models the relation between the angular

velocity and the curvature of a hand trajectory. Movement
smoothness has been modeled as a minimization of the mean
square of hand jerk (derivative of acceleration) [FH85] or the
minimization of the change of torque on the joints execut-
ing the motion [UKS89]. Harris and Wolpert [HW98] pro-
vide a generalized principle that explains these invariants by
considering noise in neural control. The motor neurons that
control muscles are noisy. This noise is signal dependent: the
variability in muscle output increases with the strength of the
command. For maximum accuracy it is therefore desirable
to keep the control signals low during the whole movement
trajectory, thus producing smooth movement. Faster move-
ment requires higher control signals, thus higher variability
which leads to reduced precision. In computer animation,
movement invariants have been used both in animation tech-
niques [GLM01, KW02] and as evaluation criteria for the
naturalness of animation (see 6.5.2). The notion of signal de-
pendent noise has been exploited in the generation of motion
variability (see 6.4.3).

3. Technologies From Related Fields

Several technologies from the fields of biomechanics, car-
toon/film making and robotics are currently used in com-
puter animation. Here we give a brief overview on such tech-
nologies, and show how they can be used in animation kine-
matics and physics. Most of these technologies are currently
available in software libraries or toolkits. It is advisable to
have some knowledge on how these technologies work, both
to select the right software for your application and to apply
them in a robust and efficient manner.

3.1. Kinematics

Kinematic technologies can be used to control or analyze
information of a kinematic nature, such as joint angles, joint
angle velocity or joint angle acceleration.

3.1.1. Keyframe animation

Keyframe animation is a technique borrowed from tradi-
tional cartoon animation, where a senior artist draws the key
animation frames and his assistants draw the ’inbetweens’.
Burtnyk and Wein [BW76] first proposed using keyfram-
ing for skeletal animation. In keyframe skeletal animation,
an animator specifies the rotation of joints at certain mo-
ments, producing the so-called keyframes. The rotation of
the joints in inbetweens is obtained by interpolating between
those keyframes.

3.1.2. Motion Capture

Using motion capture, very detailed motions can be created.
Motion capture tracks the movement of markers on a human
performer at a high frequency. The recorded marker move-
ment is used to reconstruct the rotations of the joints on a
skeleton with similar proportions as the actor. This provides
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animation keyframes. Since the VH to be animated typically
has different body properties as the performer, the animation
has to be retargetted [Gle98] to the body of the VH.

3.1.3. Interpolation

In order to determine the inbetweens one needs to interpo-
late the translational and rotational DoFs of the VH. Trans-
lational DoFs can be linearly interpolated, which results in
C0-continuity, or one can use piecewise, higher-order poly-
nomials (splines) to enforce a higher order of continuity. For
a more thorough explanation on splines, we refer the reader
to a graphics textbook [WP00].

Unlike rotation matrices and Euler angles, quaternions are
very well suited for rotation interpolation and some well-
defined interpolation methods exist [Gra98]. The most com-
mon is the spherical linear interpolation (slerp) [Sho85]. A
slerp will result in the shortest possible path on the surface
of the 4D hypersphere. Shoemake [Sho85] explains how to
construct spherical Bézier curves over the hyper sphere so
one can blend a series of rotations smoothly. Applying this
gives a higher order of continuity of the path on the Quater-
nion sphere. One can also use Spherical Cubic Interpola-
tion (squad) [Boe82] that will also result into C1 continuous
paths on the hypersphere.

A straight line in between exponential maps in R3 is not
the same as a slerp in S3. But, when the rotation axis of the
two rotations do not differ too much and the right log map
is used, the interpolations are visually indistinguishable. A
log map maps an orientation in SO(3) to an infinite number
of points in R3, corresponding to rotations of 2nπ +θ about
axis n and 2nπ− θ about axis −n. The log map should se-
lect the rotation in R3 that minimizes the Euclidean distance
to the mapping of the previous rotation. Note that due to
the linearity of the exponential map, one can also use other
interpolation techniques, such as splines, for a higher order
continuity.

3.1.4. Forward Kinematics

The generalized location of an end effector (the joint at the
end of a chain of joints) s is a function of the rotations and
translations q of all joints in the chain.

s = f(q) (4)

f is defined by the topology of the skeleton. Besides the de-
sired world position of the end effector, s can also contain its
world rotation. Forward Kinematics finds s, given f and q.

3.1.5. Inverse Kinematics

Inverse kinematics (IK) specifies the inverse problem: find-
ing q, given s.

q = f−1(s) (5)

Often this problem of finding joint rotations is overspeci-
fied, that is, there are multiple combinations of joint DoF

values that put the end effector in the right location. Sev-
eral techniques exist to solve this problem. The IKAN toolkit
[TGB00] solves anthropomorphic limbs analytically. It finds
all joint configurations that solve the IK problem for an arm
or leg. For larger chains numerical solutions are necessary. If
these numerical techniques start out in a natural starting pose
(denoted by q) in which the end effector is already close to
the goal, a natural pose will often be achieved. Several nu-
merical techniques are outlined below.

3.1.5.1. Jacobian inverse method The Jacobian inverse
method linearizes the problem about the current joint con-
figuration [Wel93]. The relation between the joint velocities
and the velocity of the end effector is

ṡ = Jq̇ with J =
∂f
∂q

(6)

J is an m×n matrix, with m the dimension of the end effector
(3 for just position, 6 for position+rotation) and n the number
of joint variables. Inverting equation 6 this gives the joint
velocities:

q̇ = J−1ṡ (7)

The following iterative approach is then used to find q:

1. Find the derivative of s: ṡ = s− f(q)
2. Calculate J
3. Invert J
4. Using equation 7, calculate q̇
5. Integrate q̇ to obtain q
6. Repeat until f(q) is close enough to s

Typically J is non-square. J−1 then has to be replaced by a
pseudo-inverse of J, J†. Using the Moore-Penrose pseudo-
inverse ensures that joints rotate as little as possible to match
the desired end effector position [BBZ91].

Redundancy can be exploited by defining additional tasks,
subject to satisfying the primary positioning task. This can
be done by modifying equation 7 to:

q̇ = J†ṡ+(I−J†J)∆qsec (8)

Where ∆qsec defines a secondary task by specifying a de-
sired joint variation and (I− J†J) is a projection operator
which selects those components of ∆qsec that do not change
the end effector location, the so-called null space of the Ja-
cobian.

The main drawbacks of the Jacobian inverse method are
that no stable solutions can be found near singularities of
the Jacobian [Wel93] and that calculating the inverse Jaco-
bian is computationally expensive. If the end effector loca-
tion is specified using just positional constraints, rather than
positional and rotational constraints, a solution for q can be
found almost 2.5 times faster. Many IK-problems, including
walking, can adapted so that just positional constraints are
required to position the end effector [MM04]. The damped
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least squares technique [Mac90] can be used to provide sta-
ble solutions near singularities. It trades convergence speed
for solution stability.

3.1.5.2. Cyclic-Coordinate Descent method Cyclic-
Coordinate Descent (CCD) [Lue84], introduced as IK solv-
ing mechanism by Wang and Chen [WC91] iterates through
the joints, typically starting with the one the closest to the
end effector, and varies one joint variable at a time based on
a heuristic. An example of such a heuristic is to minimize the
angle between the vector originating from the current joint
toward s and the vector from the current joint towards f(q).
Unlike the Jacobian inverse method, which distributes joint
rotation changes equally along the chain, CCD has a pref-
erence of moving distal links first [Wel93]. The calculation
costs per iteration are low, but this method can exhibit a poor
convergence rate [Wel93]. The CCD method is completely
immune to difficulties near singularities.

Because CCD typically results in unnatural poses, its di-
rect application is not very suitable for VH animation. Kulpa
and Multon [KM05c] propose an adaption of the CCD-
algorithm to address this shortcoming. In every iteration,
first a group of joints near an end effector (typically an arm
or leg), are analytically positioned in such a way that the
angle between the vector originating from the root joint of
the group toward q and the vector from the root joint of the
group toward s is minimized. Then the remaining joints in
the kinematic chain are rotated using the CCD algorithm de-
scribed above. This results in an algorithm that is computa-
tionally very cheap and that produces natural poses.

3.1.5.3. Optimization based methods Optimization-
based methods cast the IK problem into a minimization
problem. The distance between f(q) and s serves as an er-
ror measurement.

serr = (f(q)− s)T (f(q)− s) (9)

The goal is then to find the DoF vector q that minimizes the
error. Upper and lower bounds qLi and qUi can be specified
for each DoF i in the chain. The minimization of serr, given
qLi ≤ qi ≤ qUi , i = 1..n is a classic non-linear constraint opti-
mization problem [Wel93], which can be solved by a number
of standard numerical methods [GMW82], for which several
toolkits are available [BDV, The, Sta].

3.2. Physical Simulation

Kinematic based systems are intuitive, but do not explic-
itly model physical integrity. As a result kinematic anima-
tion does not always seem to respond to gravity or iner-
tia [MTT96]. Physical simulation models the body of the
VH as a system of rigid bodies, connected by joints. Each
of these rigid bodies has its own mass, inertia and possibly
other physical properties. Movement is generated by manip-
ulating torques on the joints. Several formulations of the dy-
namics formulations of such a system exist.

3.2.1. The Physical Equations of Motion

The equations of motion of a system of connected rigid bod-
ies describe the relation between joint-torques and the linear
and angular acceleration of the rigid bodies. The system has
to be constrained so that it moves only in ways that the DoF
of the joints of the body allow. The constraint force approach
applies constraint forces on all rigid bodies to satisfy move-
ment constraints. The reduced coordinate approach reshapes
the equations of motion in such a way that only torques and
accelerations on the DoF are allowed.

The constraint force approach is simple to understand and
easy to design as a modular system in software [Bar96]. Fur-
thermore, the constraint force approach can be used to spec-
ify non-holonomic constraints, or constraints that are hard
to parameterize (for instance those in deformable rather than
rigid bodies). However, because the constraints have to be
enforced by forces, numerical errors can cause ’drifting’:
two rigid bodies connected by a joint have the tendency
to drift apart. Constraint stabilization techniques have to be
used to prevent this.

3.2.2. Forward Dynamics

Forward dynamics(FD), pioneered for skeletal animation by
Armstrong and Green [AG85], is the animation process that
moves a VH when torques on joints are provided. Efficient
O(n) algorithms, with n the number of DoF, exist to solve
FD for systems of rigid bodies without loops, both by using
constraint force methods [Bar96] and by using reduced coor-
dinate methods [Fea07]. At the cost of computational speed,
these methods can be extended to solve for loops.

3.2.3. Inverse Dynamics

Inverse dynamics (ID) is the process of finding the torques
and forces on the joints in a body given the movement of its
segments. It can be used to predict torques needed for kine-
matically specified movement and to check if joint torques
exceed comfort or strength limits.

3.2.4. Friction and Impact

Collision Detection deals with finding the time of collision
and the collision contact points, lines or surfaces between
rigid bodies in a simulation. Several algorithms exist to de-
tect collision between meshes. A simple representation of
the bounds of the geometrical representation of a rigid body
(for example: a bounding box, bounding sphere or bounding
capsule) can be used to determine for what bodies the bound-
ing shape overlaps and thus where a more extensive collision
check is needed. The temporal or spatial coherency between
rigid bodies in the simulation can be exploited to reduce cal-
culation time. We refer the interested reader to [BW97] for a
more thorough explanation of collision detection algorithms
and an overview of specialized literature on this subject.

In rigid body simulation, no inter-penetration of bodies is
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allowed. There are two types of contact that need to be dealt
with. A colliding contact is defined as a contact between two
bodies that have a velocity towards each other. Resolving
these contacts requires an instantaneous change in the ve-
locity of the bodies involved in the contact. The coefficient
of restitution ε of the collision determines the amount of ki-
netic energy lost in the collision. If ε = 0, the collision is
inelastic, which effectively stops the colliding objects at the
collision point. If ε = 1, the collision is elastic, no kinetic
energy is lost.

If two frictionless rigid bodies are in resting contact, they
are resting at each other (with 0 velocity). In this case, a con-
tact force has to be exerted on one or both bodies to prevent
inter-penetration.

The Coulomb friction model (or an approximation of this
model) is typically used in rigid body simulation to model
the friction between contacts. In this model, the friction force
FT is linearly related to the contact force that acts in the
direction of the normal of the friction surface FN.

|FT | ≤ µ|FN | (10)

where µ is the friction coefficient. At a contact point with
static friction, the relative tangential velocity between bodies
is 0. If the relative tangential velocity is nonzero, dynamic
friction occurs and |FT |= µ|FN |.

Resolving these contact and friction forces is a complex
numerical problem, we refer the interested reader to the vast
literature on this subject (among many other publications:
[BW97, Bar94, Ste00]).

3.2.5. Physical Simulation Software and Hardware

Several software toolkits can be used for FD and/or impact
and friction handling, including the open source software
such as the Open Dynamics Engine [Smi08] and the Bul-
let Open Source Physics Library [Cou08], and commercial
packages like SD/Fast [SR01] and Havok Physics [Hav08b].
Dedicated physics hardware is becoming available to han-
dle physical calculations, including rigid body dynamics:
Nvidia’s PhysX Physics Processing Unit (PPU) [Nvi08],
which uses either dedicated hardware or the graphical pro-
cessing unit on their videocards, and Sony’s Playstation 3
cell processor [Son08]. Boeing and Bräunl [BB07] provide
a recent comparison of physics engines. Their benchmark
software is available online and kept up to date with the lat-
est physics engines. For real-time VH simulation, the accu-
racy and stability of the constraints and the calculation time
is important, but depending on the application the VH is used
in, other simulation aspects, such as the accuracy of collision
detection and friction handling could also play an important
role.

4. Animation Techniques

We define animation techniques as techniques to construct
motion spaces. Each motion space has a certain function

(for example: the motion space of walk cycles, beat ges-
tures, left hand uppercuts). They can define motion for the
full body of a VH or on a subset of the joints of the VH. An
instance of the motion space is a motion primitive. A motion
primitive is selected from the motion space using a set of
parameters. Exactly what parameters can be used to select
the motion primitive differs per motion technique. Motion
primitives can be split up in phases. For example, a running
motion might contain phases for flight, left foot heel con-
tact, left foot heel and toe contact, etc. We classify animation
techniques by the information they use to construct a motion
space (see Figure 1 and 2).

4.1. Motion Editing

Motion editing techniques aim to generalize motion spaces
from recorded motion primitives. Motion modification
methods construct the motion space by applying modifica-
tions to a single recorded motion primitive. Combination
techniques, first proposed by Lamouret and van de Panne
[LvdP96], make use of multiple motion primitives in a mo-
tion capture database to construct a motion space.

Motion Editing

CombinationModification

ConstraintSignal editing

mocap

database

StatisticalBlending

Figure 1: Classification of motion editing techniques.

4.1.1. Signal Editing

A motion primitive can be considered a continuous function
that maps time to the DoF of a skeleton. So, the value of a
DoF over time can be considered a signal. Therefore many
techniques from the field of signal processing can be applied
to create a motion space. Bruderlin and Williams [BW95]
are the first that consider some motion editing problems as
signal processing problems. One of the signal processing
techniques they use is displacement mapping. With this tech-
nique it is possible to change the shape of a signal while
maintaining continuity and preserving the global shape of
the signal. To change the motion primitive, the animator just
needs to set some additional keyframes (or have them deter-
mined by IK). From these keyframes, a displacement map
can be calculated that encapsulates the desired displacement
(offset) of the signal. Splines can be used to calculate the in-
betweens. The displacement map then yields a displacement
for every frame, which can be added to the original signal.
Other techniques include motion waveshaping that makes it
possible to limit joint ranges and introduce stylistic elements
in the joint angles. The signal is directed through a shape
function that alters the signal.

Witkin and Popovic [WP95] present motion warping,
which is a combination of a displacement mapping and time
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warping (see 4.1.3.2). Lee and Shin [LS99] present hierar-
chical displacement mapping. At each iteration, a finer dis-
placement map (using splines with a higher knot density)
is added to the motion until the error is small enough. This
avoids using overdefined splines and hence, high computa-
tion times.

4.1.2. Constraint Based Motion Editing

Constraint based techniques create the motion space by edit-
ing or preserving (typically geometric) features in recorded
motion primitives by explicitly stating them as constraints
[Gle01]. Note that some signal editing techniques described
above are also constraint based, such as [WP95, BW95].

The desired joint rotation changes can be calculated from
geometric constraints, using IK. These constraints can then
be enforced at keyframes [CPK99]. This does not guarantee
constraint enforcement at the inbetweens. Alternatively, con-
straints can be enforced at every frame, as is done in [LS99].
To make sure the resulting motion in the motion space is
smooth and propagated through non-constrained frames, the
IK solution is ’filtered’ using B-splines. Gleicher [Gle01]
calls the family of solutions that uses such an approach ’Per
Frame Inverse Kinematic + Filtering’ (PFIK+F). To demon-
strate the generality of PFIK+F, they implement it with a dif-
ferent IK solver and a convolution based linear filter. Boulic
et al [BLCHB03] provide a PFIK+F framework that can han-
dle multiple constraints. It resolves possible conflicts in con-
straints by satisfying those with the highest priority first. It
uses inverse Jacobian IK solvers (see 3.1.5.1), using the null
space of the Jacobian of the solver for the high priority con-
straints to restrict the domain of the Jacobian of lower pri-
ority solvers. An ease-in ease-out curve is used as a filter to
smoothly activate and deactivate the constraints.

An alternative approach by Gleicher [Gle97] is to pose the
constraint specification as a numerical constrained optimiza-
tion problem:

minimize R(q) subject to C(q) = c (11)

Where R(q) is the objective function, c is a vector of de-
sired constraint values and C is a vector function of the con-
straints. The objective is to minimize the distance between
the motion capture data and the constrained motion. To al-
low real-time execution of this optimization, an objective
function is chosen that evaluates the distance between the
motion capture data and new motion efficiently and the con-
straints are only enforced at key frames. The optimization
approach allows for the specification of any constraint that
can be specified as a function of q and is thus more flex-
ible than PFIK+F [Gle01]. The geometric constraints that
can be solved with PFIK+F are a subset of those that can be
solved using the optimization approach. Optimization can
add (among many others) constraints for a region an end ef-
fector must stay in, fixed distances between end-effectors or
inter frame constraints (for example: have the hand in the

same position at different frames without having a specific
location in mind). This flexibility comes at a cost: it is not
ensured that the constraints are met at the inbetweens and
the solution time of the optimization process is less pre-
dictable than that of a PFIK+F approach. We refer the reader
to [Gle01] for a more thorough comparison of the two meth-
ods.

4.1.3. Blending

Blending methods, pioneered in [WH97a] construct the mo-
tion space using an interpolating of recorded motion prim-
itives. Such an interpolation can be done using one of the
techniques discussed in 3.1.3, or using specialized tech-
niques to blend in, for instance, the PCA [IST02] or Fourier
[UAT95] domain.

In order to correctly interpolate motion primitives, one
needs to preprocess them such that they correspond in time
(especially at key events such as foot plants) and space. Ko-
var and Gleicher present registration curves that automat-
ically determine the time, space and constraint correspon-
dences between a set of motion primitives.

4.1.3.1. Spatial aligning Before blending, motion primi-
tives should be aligned in space. For example, when blend-
ing two walk cycles, the root translation must globally be in
the same direction. One can obviously align the root orienta-
tion and position, but several other strategies exist. Kovar et
al. [KGP02, KG03] present a technique that determines the
2D transformation by registering point clouds corresponding
to the poses over a window of frames.

4.1.3.2. Time warping To align corresponding phases in
motion primitives, one can apply time warping. This en-
forces the temporal correspondence and reduces unnatural
motion artifacts. Specific key events, such as heel strikes,
need to be time aligned. Several time warping algorithms
exist. Some algorithms require the user to manually annotate
these key events [RCB98, PSS02] after which they linearly
interpolate the corresponding key times to do time warp-
ing. The timewarp technique of [BW95] aligns two motion
primitives uses dynamic programming to minimize a global
difference function. Kovar and Gleicher [KG03] extend this
work by creating a time warp curve which applies for more
than two motions primitives and is strictly increasing.

4.1.3.3. Constraint matching Motion primitives are of-
ten annotated with additional constraints that can be used
for various postprocessing techniques. An example is the
moments of heel strikes. These constraints can be set by
the animator or be determined automatically [IAF06,BB98].
When two motion primitives are blended, the resulting mo-
tion primitive must also contain correct annotations. Kovar
and Gleicher [KG03] present a technique to automatically
find the corresponding constraints between two annotated
motions.

c© The Eurographics Association 2009.

51



H. van Welbergen B. J. H. van Basten A. Egges Zs. Ruttkay M. H. Overmars / Real Time Animation of Virtual Humans

4.1.3.4. Pose Distance Metrics In general, one can only
interpolate between poses that “resemble” each other. When
this is not the case, visual artifacts such as foot skating
may appear. A distance metric quantifies the resemblance
between poses. Van Basten and Egges [vBE09] present an
overview and comparison of various distance metrics.

4.1.4. Statistical models

Statistical methods construct the motion space from statisti-
cal models learned from the statistical variation of recorded
motion primitives. Several statistical models can be used,
including Hidden Markov Models (HMM) [BH00], Linear
Dynamic Systems [LWS02], Scaled Gaussian Process La-
tent Variable Models (SGPLMVM) [GMHP04], Principle
Component Analysis (PCA) [EMMT04], or variogram func-
tions [MK05].

4.2. Simulation

Simulation methods use parameterized physical or procedu-
ral models to construct the motion space (see Figure 2).
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Figure 2: Classification of simulation techniques. Con-
straint based physical animation is currently not a real-time
technique.

4.2.1. Physical Simulation

In physical simulation the motion space is constructed using
a physical simulation model that applies torques on the joints
of the VH.
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Figure 3: A physical control system

4.2.1.1. Physical Simulation using Controllers In this
unconstrained control method, a dynamic controller applies
the torques on the joints of the VH. Such a controller and
the dynamic system it controls (the physical body of a VH)

together form a control system [KMB96] (figure 3). The in-
put to controller is the desired value of the system’s vari-
ables. The output is a set of joint torques that, when applied
to the system, should guide the system’s variables closer to
the desired system variables. The controller can make use of
static physical properties (like mass, or inertia) of the physi-
cal body it controls to do this. Such a control system can, to
a certain extend, cope with external perturbation, in the form
of forces or torques exerted on the body, like those of a hit
in a boxing match. The goal of the system is to minimize the
discrepancy between the actual and desired system values.
Forces and torques from the controller, forces from grav-
ity and ground contacts, and, optionally, forces and torques
caused by external perturbation are applied to the physical
body. The body is then moved using FD. The new state of
the body is fed back into the controller.

4.2.1.1.1. Proportional Derivative Control A simple
to implement and often used [HWBO95, WH95, Woo98,
ZH99,FvdPT01b,YLS04,ACSF07] controller is the Propor-
tional Derivative (PD) controller. The output torque of the
PD-controller is proportional to the difference in position
and velocity between the desired state and the actual state:

τ = kp(xd− x)+ kd(ẋd− ẋ) (12)

in which xd is the desired state, x is the actual state and
kp and kd are the proportional and derivative gains. Note
that the system reacts similarly as a springer-damper sys-
tem, with spring gain kp and damper gain kd . Typically xd
is a desired DoF value, but other state variables are used in
more complex PD-controllers (such as CoM position in bal-
ancing [Woo98]). Finding appropriate values for kp and kd
is a manual trial-and-error process. They depend on charac-
teristics of both the system and the motion.

4.2.1.1.2. Antagonist Control Neff and Fiume [NF02]
use a slightly different formulation of the PD-control equa-
tion, that has more intuitive control parameters, but the same
error response. It is based on agonist and antagonist muscle
groups around joints, that are modeled as springs:

τ = kpL(θL−θ)+ kpH (θH −θ)− kd θ̇ (13)

in which θL and θH are the spring set points, which serve
respectively as desired lower and upper limit for the joint ro-
tation θ. τ is the output torque. kpL and kpH are the spring
gains. The animator can specify the desired amount of stiff-
ness, defined as kpL + kpH . Equilibrium point control (see
2.3.3) is used to calculate kpL and kpH , given the desired
stiffness and external forces (typically gravity). Movement
is achieved by gradually moving the equilibrium position.

4.2.1.1.3. End Effector Control Rather than directly
controlling joint torques, a virtual force is applied on an end
effector. The relation between joint torques τ and the virtual
force f is given by

τ = JT f (14)

c© The Eurographics Association 2009.

52



H. van Welbergen B. J. H. van Basten A. Egges Zs. Ruttkay M. H. Overmars / Real Time Animation of Virtual Humans

[Cra89]. Rather than setting up torques for all joints in the
chain, only f needs to be set using a control technique. Re-
dundancy (that is, multiple values of τ can realize f) can be
exploited for secondary tasks, by using the null space of the
Jacobian [SK05].

4.2.1.1.4. Automatic Controller Generation Search-
ing techniques or evolution-based machine learning tech-
niques have been employed to automatically generate con-
trollers that map sensor inputs (joint angles, ground touch)
to joint torques, in such a way that a certain measure (dis-
tance traveled, energy expended, distance from stylized ref-
erence pose) is optimized [vdP93,vdPKF94,Sim94,AFP∗95,
SvdP05]. Using such techniques, locomotion controllers for
simple creatures with few DoFs can be created. However,
so far automatic controller generation techniques have not
proven to scale up to provide natural motion primitives for
full-sized VHs.

4.2.1.1.5. Physical Controllers Toolkits The Dynamic
Animation and Control Environment [Sha07] provides re-
searchers with an open, common platform to test out and
design physical controllers using scripting. Naturalmotion’s
Endorphin [Nata] is a commercial animation system that
provides authors a predefined set of controllers. It offers an-
imation authoring through controller parameterization, con-
troller combination, physical constraint handling (e.g. lock
hands to a bar for a ’hang on bar’ motion) and several ways
to integrate motion capture with physical simulation. Natu-
ralmotion offers the Euphoria [Natb] toolkit to handle such
functionality in real-time so that it integrates with a game
engine. Details on how Naturalmotion software handles this
functionality (as far as disclosed) are discussed in the appro-
priate sections.

4.2.1.2. Constraint Control Methods Constraint based
methods calculate those torques on joints that satisfy cer-
tain animation constraints (pose at key time, ground contact,
etc). In general, the problem of solving for these torques
is overspecified. That it, there are many possible muscle
torque paths that lead to the desired constraints. An objec-
tive function R(q) (with q a vector containing joint rotations
and applied torques) can be introduced to specify a certain
preference for solutions. Typically, the objective functions
are biomechanically based. Examples are the minimization
of expended energy, used for relaxed swinging motion like
walking, or the minimization of jerk of an effector, used in
coordinated goal-directed motion or a weighted combina-
tion of those two [BBZ91]. The constraint control problem
can be stated as a non-linear optimization problem (com-
pare with 3.1.5.3): minimize R(q) subject to n constraints
Ci(q) = 0, i = 1..n, in which Ci(q) is the constraint func-
tion for constraint i. Spacetime optimization is introduced
by Witkin and Kass [WK88], using this principle.

Several techniques have been proposed to speed up the

calculation process of the optimization [Coh92, GTH98,
LP02, FP03], typically at the cost of some physical realism.
Even with those speedups, constrained based control meth-
ods are currently not a feasible option for real-time anima-
tion.

4.2.2. Procedural

Procedural simulation defines parameterized mathematical
formulas to construct the motion space. Such formulas
can describe joint rotation directly [Per95], or describe the
movement path of end effectors (such as hands) through
space. The latter is typically used to mathematically con-
struct gesture motion spaces [CCZB00, KW02, HHL∗05,
NKAS08].

4.3. Strengths and Weaknesses of Different Motion
Techniques

Motion editing techniques retain the naturalness and detail
of recorded motion primitives or motion primitives gener-
ated by skilled artists. However, motion editing techniques
produce natural motion only when the modifications to the
recorded motion primitives are small. Techniques that make
use of multiple recorded motion primitives to generate the
motion space retain naturalness over larger modifications
than techniques that adapt a single recorded motion prim-
itive [Gra00]. However, both blending and statistical tech-
niques suffer from the curse of dimensionality: the num-
ber of required recorded motion primitives grows exponen-
tially with the number of control parameters [Gle08]. Fur-
thermore, motion editing techniques do not provide physi-
cal interaction with the environment and motion editing can
invalidate the physical correctness of motion (see 6.1). Mo-
tion editing is useful for creating animation in advance for
non-interactive applications (like films), or for applications
in which large modifications are not needed such as free
dance [SNI06, hKPS03]. For other domains like games, nat-
uralness can only be assured by using a huge database of
recorded motion primitives.

Physically simulation provides physically realistic mo-
tion and (physical) interaction with the environment. Physi-
cal controllers can robustly retain or achieve parameters un-
der the influence of external perturbation. This robustness
comes with a disadvantage: precise timing and limb posi-
tioning using physical controllers is an open problem. While
physical simulation provides physically correct motion, this
alone is often not enough for motion to be natural. Therefore,
physical simulation is mainly used to generate human mo-
tion that is physically constrained and in which interaction
with the environment is important, such as motion by ath-
letes [HWBO95,WJM06], stunts by stunt men [FvdPT01b],
or falling motions [WH00, SPF03, Man04].

Procedural animation offers precise timing and limb po-
sitioning and can easily make use of a large number of
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parameters. However, it is hard to incorporate movement
details such as those found in recorded motion primitives
into the mathematical formulas that steer procedural mo-
tion. Furthermore, to maintain physical naturalness, it has to
be explicitly authored in the procedural model for all possi-
ble parameter instances. Expressive motion, as used in talk-
ing and gesturing VHs, requires many control parameters
and precise timing to other modalities, such as speech. It is
therefore typically the domain of procedural motion tech-
niques [Per95,PG96,CCZB00,KW02,HHL∗05,vWNRZ06,
NKAS08].

The qualities of motion editing and motion simulation
techniques can potentially be combined by taking into ac-
count which of the qualities is needed in a certain situation,
or by determining what quality is needed on what body part.
For example, a VH can be steered by motion editing until a
physical interaction with the environment is needed, which
then will be handled by physical simulation. The flexibility
and precision of procedural motion can be used to generate
arm gestures on a VH which retains balance using physi-
cal simulation on the lower body. Throughout the remain-
ing sections, we will show several examples of such combi-
nations that enhance naturalness and/or control, as we dis-
cus the control and naturalness provided by different motion
techniques.

5. Control

Animation involves the creation of animation plans that typ-
ically span multiple motion spaces and are executed by mul-
tiple motion primitives. To be able to deal with interactive
and changing environments, such plans need constructed and
adapted in real-time.

Control involves the parameterization, combination and
concatenation of motion spaces. Parameterization deals with
selecting the motion primitive from a motion space that sat-
isfies some desired properties (for example: select the mo-
tion primitive that hits the tennis ball from the forehand mo-
tion space). Motion spaces that are active on different body
parts can be combined to cover a wider natural motion space
(for example: a walk cycle motion space and a chew gum
motion space can be combined to a walk while chewing
gum motion space). Motion spaces are concatenated to form
a more complex animation plan (for example: concatenate
walk cycle primitives to form a walk on a path).

5.0.1. Parameterization in Procedural Motion

Procedural animation is very parameterizable by design, the
parameters can be expressed in terms of variables of the
motion functions. Pose constraints are typically satisfied by
using the parameters of procedural functions to enforce IK
positions or joint rotations. Authoring procedural motions
requires specifying how each parameter influences the mo-
tion. For higher level parameters, this is not a very intuitive

process. Typically the procedural animation techniques use
a mapping of intuitive high level control parameters to the
lower level parameters that select the motion primitive. A
crucial issue in parameterization of procedural motion is pa-
rameter conflict resolution: the procedural model must be
able to deal with parameter spaces that are unachievable or
result in unnatural movement.

Neff and Fiume [NF05], design a hierarchical frame-
work for procedural motion and provides a generic parame-
ter mapping framework. Lower level parameters specify the
motion on a single joint or group of joints (called an ac-
tion in [NF05]). Higher level parameters map to lower level
parameters through a script created by an animator. Motion
primitives are constructed from various, possibly conflict-
ing low level and high level parameters. Therefore, several
mechanisms are in place to handle conflict resolution. Low
level parameters (placed on a single DoF, rather than on the
whole body) take precedence over high level parameters. Pa-
rameters defined on actions take precedence over default pa-
rameters defined in a Sketch that models the VHs style (see
6.3.2).

Densley and Willis [DW97] modify poses by mapping
emotional parameters to adaptations in stance and joint rota-
tion. The exact mapping is not disclosed in their paper.

Chi et al. [CCZB00] claim that Effort and Shape param-
eters from Laban Movement Analysis (LMA) not only pro-
vide means to parameterize gesture, but are necessary ele-
ments of gesture. Shape involves the changing forms that
the body makes in space. Effort describes dynamic qualities
of movement, like weight (light, for example dabbing paint
on a canvas or strong, for example punching someone in the
face in a boxing match) and flow (uncontrolled, for example
shaking of water vs. controlled, for example carefully carry-
ing a hot cup of tea). Their work provides a computational
framework that maps abstract Effort and Shape parameters
to lower level parameters that guide arm movement, spec-
ified as end effector key locations. Shape parameters influ-
ence the position of the hand in space on those key loca-
tions. Effort parameters influence the path and timing of the
movement toward the end effector location. In later work,
Badler et al. [BAZB02] achieve emotional parameterization
by mapping emotion to LMA parameters.

Howe et al. [HHL∗05], use a smaller but quite similar
set of parameters. From a literature review they conclude
that six parameters (activation, spatial extend, temporality,
fluidity, power and repetivity) are sufficient to specify ges-
ture expressivity [MHP04]. The parameter selection is based
on what humans can observe and reliably recognize. In
their system, gestures are generated by TCB splines [KB84]
defining the trajectory of the hands. The six high level pa-
rameters are mapped to low level parameters that modifying
the timing and position of the control points in the spline or
set the tension, bias and continuity of the spline. Their high-
level parameters are intuitive, but not independent, specif-
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ically they mention an unresolved conceptual interdepen-
dence between the power and temporal extend (roughly du-
ration) parameters.

5.1. Parameterization of Motion Spaces

Parameterization deals with selecting a motion primitive
from the motion space, based on certain parameter values.
One common parameterization is the specification of a pose
constraint (for example, requiring the hand to be at a certain
location) at a desired time. It can easily be checked if or how
precise such constraint is achieved by checking the motion
primitive at the frame the constraint is imposed on. Higher
level parameterizations deal with parameters like emotion or
physical state (such as tiredness).

5.1.1. Parameterization in Motion Modification

Recorded motion primitives can be modified to adhere to
pose constraints, using motion modification techniques (see
section 4.2.1.2 and 4.1.1). These techniques only allow small
modifications. Larger modifications can be made by motion
combination techniques, such as blending (see section 4.1.3)
and statistical modeling (see section 4.1.4), that use multiple
motion segments as a basis for the new motion.

5.1.2. Parameterization using Constraint Editing

Amaya et al. [ABC96] state that emotion is observed in mo-
tion timing and spatial amplitude. An emotion transform is
applied on neutral motion using non-linear timewarping and
a spatial amplitude transform technique based on signal am-
plifying methods. The required timewarp and amplification
for such an emotion transform is obtained by determining
the emotional transforms needed to get from recorded neu-
tral movement to the same movement executed in an emo-
tional style. Hsu et al. [HPP05] describe a similar method for
style transform, using a Linear Time Invariant model [Lju98]
rather than signal amplification for the spatial transform.

5.1.3. Parameterization using Blending

Blending techniques have to solve the inverse motion inter-
polation problem [SM01] to achieve the desired pose: a set
of motion primitives and their interpolation weights have to
be found so that after blending a motion primitive with the
desired pose constraints at the desired time results. Many
blending techniques have been developed to solve a subset
of the pose constraint problem: positioning an end effector at
a desired position sdes, specified by three parameters. Blend-
ing does not yield a linear parameterization of the parameter
space [RSC01]. That is, if sdes is perfectly inbetween s1 and
s2, this does not mean that a blend with interpolation weights
of 0.5 of the joint rotation vectors q1 and q2, placing the en-
deffector at s1 and s2, will end up placing the end effector at
sdes.

Rose et al. [RCB98] use scattered data interpolation to

compute a best linear map between blend weights and mo-
tion parameters. Radial basis functions are then created in
this space, centered on each recorded motion primitive. The
run time cost of the interpolation is O(n), with n the num-
ber of recorded motion primitives. For desired parameters
far from the examples, blend weights are based purely on
the linear approximation and hence are effectively arbitrary
[KG04]. Grassia [Gra00] approximates the end effector po-
sition using blending and uses a constrained based method
(see 4.1.2) to exactly position the end effector at the goal
position. Many other techniques make us of pseudo exam-
ple motion primitives, created by setting predefined blend
weights. Wiley and Hahn [WH97a] constructs an dense, reg-
ular grid in parameter space offline, in a pre-computing step
that exhaustively searches through interpolation weights and
motion primitives to find the desired end effector locations
on the grid. The grid can then be used to efficiently select
the motion primitives to be interpolated. The interpolation
weights are assumed to vary linearly with the motion param-
eters in such a dense grid. In later work Rose et al. [RSC01]
use the smoothness of the function that maps blend weights
to parameter values to create pseudo examples online at
selected positions. Kovar and Gleicher [KG04] create ran-
dom pseudo samples online, in/near the bounding box of the
parameter space. By using k-nearest neighbor interpolation
rather than interpolating from all samples, the run-time cost
of their algorithm is independent of the number of recorded
and pseudo example motion primitives.

Using blending methods, the ’degree’ of an emotion or
physical state can be adapted. For example: by blending
a happy walk with a normal walk, a slightly happy walk
can be obtained [RCB98, IST02]. Unuma et al. [UAT95]
introduces blending in the Fourier domain for cyclical mo-
tions (such as walking and running). Such a Fourier domain
blend ensures that the motions that are to be blended are
time-aligned automatically, so time-warping is not needed
in the pre-processing steps. For walking and running, the
Fourier description provides parameters to control the step
size, speed, duration of the flight stage and maximum height
during the flight stage. Similar motions with different emo-
tional or physiological aspects (brisk, tired, happy, etc) can
be blended in the Fourier domain, so that these aspects can
be used as motion parameters. Fourier descriptions can also
be used to transfer motion aspects: by applying the Fourier
description of briskness from a brisk walk onto a normal run,
a brisk run is created. Because the parameters are qualitative,
strict accuracy is unneeded: the blending method described
above do not ensure that the desired parameters are achieved
by the blend weights.

Torresani et al. [THB07] provide numerically accurate pa-
rameterization of three of the LMA Effort parameters (see
section 5.0.1). A blend is created between two recorded mo-
tion primitives with annotated LMA parameter values. The
LMA parameter values of the blend are then again annotated.
This annotated motion primitive is used to learn a function
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that maps blend weights, input joint angle data and input
LMA parameter values to the LMA parameter values of the
blended motion. The style of a motion with unknown Ef-
fort parameters can then be adapted to a desired set of Ef-
fort parameters by blending. This entails finding its k-nearest
neighbors in the database of annotated motion primitives and
find the motion primitive pair that, with the optimal blend
weight, approximates the desired LMA parameter values the
best. The optimal blend weights are found by uniformly
sampling the blend weights space for each pair. At the cost of
computation time and annotation effort (by an LMA-expert),
this method achieves the generation of motion that more pre-
cisely matches desired LMA Effort parameter values than
the simpler linear interpolation schemes described above.

5.1.4. Parameterization in Statistical Models

Grochow et al. [GMHP04] search their SGPLMVM model
representation of the motion space using optimization to find
motion primitives with poses satisfying certain constraints.

Li et al.’s [LWS02] motion texton representation of the
motion space allows the construction of motion primitives
by specifying poses at selected frames.

Mukai and Kuriyama [MK05], create a geostatistical
model of a set of recorded motion primitives with given pose
parameters. Geostatistical interpolation is then used to ob-
tain the motion primitive with the desired pose constraints.
This method is more accurate in achieving the desired pose
constraints than blending methods that use radial basis func-
tions (provided that they do not employ pseudo examples).
It is more efficient (in terms of calculation time and memory
usage) than blending methods that do use pseudo examples.

Carvalho et al. [CBT07] introduce a constraint based edit-
ing method that uses the same IK solver as [BLCHB03]
on a low-dimensional statistical motion model rather than
on the full body. This low-dimensional model is a sta-
tistical model generated using principle component analy-
sis (PCA) or probalistic PCA (PPCA). Their system takes
less calculation time, and is, according to the authors, in
some cases more natural than the PFIK+F approach used
in [BLCHB03].

In human motion, there are many correlations between
joint actions [PB02]. Statistical methods [EMMT04] and
machine learning [BH00] have been employed to find or-
thogonal parameters in a set of recorded motion primitives.
Because the parameters are independent, it is not necessary
to resolve parameter conflicts. However, the movement pa-
rameters learned in such approaches are not very intuitive
to use and are highly depended on the training data. For ex-
ample, [BH00] reports having a parameter that sets both the
speed and the global pose. Therefore, such parameters are
typically used solely to create small variations on existing
motion.

5.1.5. Parameterization using Physical Simulation

The desired state of a controller can be used as a set of mo-
tion parameters. Parameters like desired joint rotation, pelvis
height or CoM position provide intuitive direct low-level
control. However, many other physical parameters of con-
trollers, such as stiffness and damping gains do not provide
intuitive control and are typically tweaked by trail and error.

Satisfying pose constraints precisely and timely using
physical controllers is still an open problem, since in general
it is unknown if and when a controller achieves such a pose
constraint. Some recent efforts attempt to address this issue.
Neff et al. [NKAS08] uses empirically determined offsets
on the pose time and angular span multipliers on the pose
itself, so that their system achieves poses on time, for cer-
tain classes of movement (e.g. gesture). Other systems rely
on critically damped controllers to achieve arm poses pre-
cisely and timely [ACSF07, KMB96]. These controllers can
only generate movement in which the ’muscles’ are critically
damped and impose limited or no movement of the trunk.

Some techniques have been devised to map higher level
parameters to low level controller parameters. Chao et al.
[CYL06] provide a mapping from LMA-Effort parameters
to parameters for a tracking controller, such as damping,
stiffness and desired joint rotation. Yin et al. [YCBvdP08]
apply an optimized learning strategy to adapt the parame-
ters of a walking controller to new situations (for example:
low friction as in walking on ice, step over an obstacle, push
furniture). A continuation variable γ represents the param-
eterization of the change. The parameter space is searched
for valid combinations (as in, those that do not make the
VH fall) of γ and the controller parameters w. There might
be many viable solutions of w that achieve γ. An objective
function evaluates w to help select a unique optimal solu-
tion. This function is hand-authored. It can be designed to
prefer solutions that have a minimal deviation from the orig-
inal parameters, a certain walking speed or step size, etc. The
learning process is offline, but the learned parameterizations
can be interpolated to achieve real-time control. It is yet to
be seen if and how this method generalizes to more than one
continuation variable.

5.2. Concatenating Motion Spaces and Primitives

To achieve a natural concatenation of two natural motion
primitives, one needs to retain naturalness in the transition
point. A possible way used to achieve a natural concatena-
tion is to let all motion primitives start and stop in an idle
pose. This is not very flexible, since transitions can only be
generated after the motion primitive finishes. Such a method
sacrifices naturalness on the motion plan to gain some nat-
uralness on the motions physics. Another possible solution
in a limited set of motion primitives, is to create transition
motion primitives for every motion primitive to the motion
primitives that could be concatenated to it, as done in the
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computer game Prince of Persia, The Sands of Time [Ubi04].
However, this is quite a time consuming task, and again, this
only provides concatenation opportunities at the end of each
motion primitive. In computer games that require fast inter-
action, motion primitives (mocap clips) are often directly
concatenated, preserving only the general shape (standing,
lying, etc) [Lon07].

5.2.1. Concatenation using Motion Editing

Interpolation techniques, using ease-in ease-out, introduced
in [Per95] use interpolation between two motion primitives
to concatenate them. The first motion primitive is faded out
as the second one is faded in. Transitions between different
sets of motion primitives differ in naturalness. Ikemoto et.
al. [IAF07] generate transitions by cached multi-way blends.
They cluster recorded motion primitives using the distance
metric by Kovar et al. [KGP02]. All mediods (central item
of cluster) are representatives for the clips belonging to that
cluster. During preprocessing, all possible 2, 3 or 4 multiway
blends between representatives are evaluated by footskating
and ZMP evaluation and the best blend recipe (containing a
weight function and representatives) is stored. A transition is
generate at runtime by matching the current and next motion
primitives to mediods and applying the stored blend recipe.
Treuille et al. [TLP07] define a cost metric for each transi-
tion that measures how much closer it brings a motion to a
desired goal and how much naturalness is lost in the transi-
tion. Using offline reinforcement learning, they approximate
a value function that measures the total cost of the optimum
motion primitive transition sequence that reaches a desired
goal. This value function can then be used to select the (near)
optimal motion primitive sequence in real-time, given a start
motion primitive.

5.2.1.1. Motion graphs In many applications, one requires
a continuous stream of motion. A very common technique
is to put all the possible transitions between animations in
a graph like structure: a motion graph. A motion graph
is a directed graph where all edges correspond to motion
primitives. A trivial motion graph can be constructed where
the original motion primitives are single edges, blends (or:
edges) can then be added between poses that are similar
enough. Note that a single edge can correspond to very small
motion primitives.

In the game industry, these graphs, move trees, were orig-
inally created manually [MBC01]. Kovar et al. [KGP02]
present an algorithm that automatically creates motion
graphs. Good transition points are automatically detected us-
ing a geometrical distance metric. In order to avoid dead
ends, they prune the graph by using only the largest strongly
connected component. After the graph is created, control can
then be gained by doing a graph search that searches for an
animation that adheres to certain constraints. For example,
one can concatenate motion primitives such that the result-
ing motion primitive follows a specific path.

Many variations of motion graphs exist which can be dis-
tinguished in off-line methods where the desired animation
is known in advance [AF02, AFO03, KGP02, PB02, CLS03,
TH00, SH07] and methods that work at interactive speed
[GSKJ03, PSS02, PSKS04, KS05, LL04, LCR∗02].

In order to speed up the search the graph is often re-
structured using, for instance, clustering [AF02,LCR∗02] of
the edges. Gleicher et al. [GSKJ03] present snap-together
graphs where common poses are used as hubs in the graph.
Lee and Lee [LL04] precompute the desired behavior and
animation of a VH using reinforcement learning and dy-
namic programming. Choi et al. [CLS03] use a combination
of a motion graph and probabilistic path planning techniques
[KcLO97] to capture the connectivity of the free space
which is then used for footplan-driven synthesis. Arikan and
Forsyth [AF02] searches for a global solution by making lo-
cal changes using a local search technique.

Methods that work at interactive speed only evaluate lo-
cal properties, for they do not know the desired animation in
advance, nor do they have time to evaluate global properties
[FAI∗06]. Local search, as used in [KGP02] evaluates only
properties of a certain number of nodes ahead when choos-
ing what node to transition to. This might lead to a horizon
problem [FAI∗06]: a choice made now might lead to trouble
that is invisible because it is on the other side of the horizon,
separating the future cases we consider from those we do
not. Global search [AFO03] cannot be done in real-time, but
is suitable for motion authoring purposes. Typically, mul-
tiple paths satisfy the desired motion constraints, this phe-
nomena is called ’motion ambiguity’ in [FAI∗06]. The oc-
currence of motion ambiguity on a motion graph lessens the
amount of occurring horizon problems.

Control and motion planning is limited by the available
paths on the graph. Using motion graphs it is in general very
hard to generate motion that needs tight coupling to the envi-
ronment, like pointing to an object in the world, or walking
up a stairs, unless exactly those motion are in the database.
As more motion constraints are added, less paths will be-
come available. Motion graphs are successfully used in ap-
plications in restricted domains that require few constraints.
Examples are dancing [SNI06,hKPS03], gesturing feedback
on a predefined snowboard tutorial in a game [SDO∗04] or
moving through small game like environments [LCR∗02].

5.2.1.2. Concatenation of Motion Spaces Recently, sev-
eral techniques have been developed that are able to con-
catenate motion spaces to generate a continuous stream of
motion.

Shin and Oh [SO06] present fat graphs. These graphs
are based on the snap-together graphs of Gleicher et al.
[GSKJ03], see 5.2.1.1. The common poses (hubs) are the
nodes of a fat graph. The edges that start and end at this
common pose are grouped together in a motion space. The
fat graphs suffer from the same disadvantage as the snap-
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together graph. In order to transition from one motion to an-
other, the VH first needs to transition to a common pose.
Heck and Gleicher [HG07] introduce parameteric motion
graphs. They use the method of Kovar and Gleicher [KG04]
to automatically create motion spaces. The motion graph is
constructed by sampling the motion spaces using different
parameter values and creating edges for the parameter val-
ues that result in appropriate transitions between the motion
spaces.

5.2.1.3. Concatenation using Statistical Methods Li et
al [LWS02] models a motion space as a LDS. They define
a distance metric for LDSs and construct a motion graph-
like structure to support concatenation of similar LDSs. By
setting the first two poses of the next LDS in the path to
the last two poses of the current LDS (see 5.1.4), a fluent
connection is achieved.

5.2.2. Concatenation of Physically Controlled Motion

In physical simulation using controllers, a different physical
controller constructs each motion space. This implies that
a transitions between motion spaces is a transition between
controllers. If the exit state of one controller leaves the sim-
ulation in a valid entry state for the next controller, valid
transitions can easily be attained [WH97b]. A transitional
controller can be designed to facilitate transitions between
controllers with incompatible exit and entry states. Wooten
and Hodgins [WH97b] demonstrates this, by using a landing
controller to take a VH from a flight to a state suitable for
balancing on the ground. Faloutsos et al. [FvdPT01a] facili-
tates transitions between controllers by describing pre condi-
tions and post conditions for each controller. The pre condi-
tions in define the entry state region that leads to a successful
execution of the controller. Specifying valid pre conditions
for controllers is not always a trivial task (for example: what
are valid pre conditions for balancing?). Support vector ma-
chine (SVM) classifiers are trained to predict the success or
failure of a controller for an arbitrary starting state. The pre-
conditions for a controller are then determined by what a
trained SVM for that controller classifies as successful.

Different phases of a single motion space can be mod-
eled by different controllers [HWBO95, WH95, LvdPF00,
FvdPT01b, YLS04]. These phases are then typically con-
catenated using a state machine. For example, [HWBO95]
shows a state machine that uses different phases (and thus,
controllers) for the flight, loading, heel contact, heel and toe
contact, toe contact and unloading phases of a running mo-
tion space.

5.2.3. Concatenation of Procedural Motion

Zeltzer [Zel82] models the different phases of a procedu-
ral walking motion by different procedures and concatenates
them using a state machine. Some frameworks for the gen-
eration of procedural arm gestures concatenate the gestures

using procedural techniques that allow a flexible start pose
of the arm [KW02, HMP02]. The end pose of the previous
gesture is then used as the start pose of the current gesture.
Other procedural animation systems use blending to gen-
erate a transition motion primitive between two procedural
motion spaces [PG96, KM05a].

5.2.4. Concatenating Physical Simulation and Motion
Editing

Motion editing techniques provide natural motion, but it is
hard to set them up to interact with the physical world. Phys-
ical simulation provides world interaction, but less natural-
ness. Several methods have been developed to take advan-
tage of the strength of both techniques by switching between
them depending on the type of interaction needed.

Shapiro et al. [SPF03] switches control from kinematics
to physics on contact with active objects in the environment.
Active objects are defined as those objects that apply phys-
ical forces upon the VH to be animated that are not part of
the original motion. A transition from physical simulation to
motion editing (in this system a motion graph) can be made
if the VHs pose is similar to a pose in a motion primitive of
one the motion editing motion spaces. It is not stated state
how a suitable motion space and motion primitive therein is
found. Presumably the number of motion primitives in the
graph is low, so that an exhaustive search can be performed
on all their poses.

Mandel [Man04] makes the transition from motion edit-
ing to PD-control, whenever some physical event is trig-
gered, pushing the VH over. A PD-control system is then
started in the pose last set by the motion capture animation.
A fall controller lets the VH fall, while trying to break this
fall with the hands. As soon as the hands hit the floor, the
system attempts to return control to motion editing. To find a
suitable animation, the motion capture database is searched
for a motion primitive that has a similar pose to the pose
the VH is in. This is done using the Approximate Nearest
Neighbor Search algorithm. An intermediate physical con-
troller then moves the VH to this pose. Once the VH is close
enough to that pose, animation is played using motion cap-
ture again.

Zordan et al. [ZMCF05] search a motion capture database
to find a suitable motion primitive to play after a physical im-
pact. During the physical impact, a physical ragdoll motion
is played for a short period of time (0.1-0.2s), then motion
is steered by a physical tracking controller (see 6.1.3), that
tracks a blend of the motion primitive before the impact and
the selected motion primitive after the impact. In later work,
Zordan et al. [ZMM∗07] contribute an automatic, real-time,
motion primitive search algorithm. Re-entry motion primi-
tive candidates are classified offline, using machine learning.
This significantly reduces the number of candidates to select
from.
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Naturalmotion’s Euporia [Natb] and Endorphin [Nata] an-
imation systems allow transitions between motion editing
and physically simulation. Selecting a suitable motion prim-
itive to play after physical simulation is left to the motion
author.

5.3. Combining Motion Techniques on Different Body
Parts

A VH can execute multiple tasks at the same time that
each require motion, possibly on different parts of the body.
Rather than using one animation technique for every pos-
sible combination of tasks, it is more efficient to combine
techniques to form one larger motion space.

5.3.1. Combination using Motion Editing

A simple way to combine motion primitives is by using a
direct ’ease-in ease-out’ interpolation of the motion prim-
itives [Per95, BBET97, KM05b]. The interpolation weights
of the motion primitives to be combined is set per joint, so
that certain motion primitives can be set up to affect certain
joints more than others. This method can produce unrealistic
results because it ignores both physical and stylistic correla-
tions between various joints in the body [HKG06].

Heck et al. [HKG06], combine (splice) the upper body
motion of one motion space with lower body motion of an-
other. Both motion spaces contain a walk cycle. Temporal
relations between the upper and the lower body are main-
tained by making use of the rhythmic nature of walking to
time warp and align the motion spaces. The pelvis is rotated
in such a way that the upper and lower body are aligned,
while retaining the desired upper body posture.

Ha and Han [HH08] decouple the body and splice the two
motion spaces (one for the upper and one for the lower part
of the body). They present a double timewarping scheme
where each recorded motion primitive is first synchronized
with a reference motion primitive (for both the upper and
lower body motion primitives). The upper and lower body
motion space is then synchronized using these reference mo-
tions. An additional problem is that the configuration of the
lower body changes the parameter space of the upper body.
Therefore they preprocess the parameter space of the upper
body and transform it to the current lower body configura-
tion.

Bruderlin [BW95] introduces multiresolution filtering.
The motion signal passes through a cascade of lowpass fil-
ters to produce a set of bandpass or lowpass signal com-
ponents. Motions primitives can be stored as a pyramid of
lowpass or bandpass filter bands where each level repre-
sents a different band of frequencies. Subtleties of a move-
ment (and noise) are typically considered to be encoded by
high frequencies, while general, gross motion aspects are en-
coded by low frequencies. Using this technique, it is possi-
ble to blend bands of various motion primitives. Using mul-
tiresoltion filtering, one can blend specific frequency bands

of two or more motion primitives. High frequency move-
ment can hence be transferred to another motion primitive.

5.3.2. Combination of Physical Controllers

Physical controllers can be combined by adding up the
forces and torques applied by them on each joint [WH00].
Sentis and Khatib [SK05] introduce a prioritized-based con-
trol architecture. End effector controllers (see 4.2.1.1.3) with
lower priority are controlled without violating the goals or
constraints of higher priority end effector controllers. This
is achieved by projecting the torques generated by the lower
priority controllers onto the motion null-space (see 3.1.5.1)
of the higher lever controllers.

5.3.3. Combination of Procedural Motion

Many procedural animation systems combine procedural
motion on different body parts, by employing a procedural
motion technique for each body part [KW04, HMP02]. Pro-
cedural motion on the same body part can be combined us-
ing ease-in ease-out blending (see 5.3.1) [PG96]. Thiebaux
et al. [TMMK08] employ specialized blend controllers to
combine motion primitives generated by different procedu-
ral animation techniques.

5.3.4. Combination of Kinematic Motion and Physical
Simulation

Oore et al. [OTH02] present a mixed kinematics/physics an-
imation puppeteering system. The physical model helps to
reduce the amount of DoFs for the puppeteer, while full free-
dom of control is maintained. It acts on the knee and ankle
joints. The physical model is coupled with the upper body
through its mass displacement. The joint torques of the kine-
matically moved parts in the upper body are not taken into
account in the physical movement of the lower body.

Isaacs and Cohen [IC87] show how ID and FD can be
combined in a single physical simulation system, given that
either the joint accelerations or the joint torques are known
for each joint, at each frame. This way, if kinematic motion
is known for every frame for some joints, the forces those
joints exert on the other joints is taken into account when the
remaining joints are moved using physical simulation. Com-
bined solving of accelerations and torques can only be done
if the physical system is formulated using Lagrange equa-
tions. More efficient recursive formulations can not deal with
such a partial force and partial motion specification [Ott03].
Van Welbergen et al. [vWRV08, vWZR09] extend on this
work by providing a simplification of the simulation model.
Their system allows the use of efficient iterative techniques
to calculate the torques exerted by the kinematically steered
joints and provides easy integration with existing physics en-
gines.
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5.3.5. Combining Procedural Motion and Motion
Editing

Lance and Marsella [LM08] combine a biomechanical
model of eye movement (which is hard to motion capture)
with a motion editing technique for neck and trunk move-
ment. Heck [Hec07] notes that augmenting a motion editing
technique with gaze would require a prohibitive amount of
motion primitive recordings. Instead, she employs a biolog-
ically and psychologically inspired model for gaze that is
layered on top of motion space generated by motion editing.

5.4. Aspects of Control

In the previous subsections we have looked at ways to pa-
rameterize, concatenate and combine motion spaces using
various techniques. Here we discus how much control was
gained using such techniques, by looking at various aspects
of control.

Responsiveness deals with how fast a motion editing tech-
nique responds to new parameter value setting or how fast a
motion plan is adapted to a new goal. For example, how fast
does an animated soccer player respond to a gamer press-
ing the shoot button? Responsiveness is a major theme in
the design of motion graphs, it might take a while to tra-
verse to the graph to reach the desired node, especially if
the graph is sparse. Forsyth et al. [FAI∗06] introduce the di-
ameter: the average path length of the shortest path connec-
tion two nodes on a motion graph as a measure for respon-
siveness. A denser graph (with a smaller diameter) can be
created by sacrificing some naturalness (see 5.2.1.1). Phys-
ical simulation has high responsiveness to physical events
(for example, being hit by a falling anvil), but lower respon-
siveness to parameter changes that effect the desired state of
the VH. Procedural animation and motion editing techniques
have higher responsiveness to parameters that change the de-
sired of state the VH, but do not provide high responsiveness
to physical events.

Precision deals with how good the desired parameters
(like pose constraints, and timing constraints) are satisfied.
Procedural motion is very precise. Motion editing tech-
niques can provide precision at the cost of calculation time.
Physical simulation is imprecise, it is unknown if and when
desired pose and time constraints are met. Some precision
can be gained by sacrificing naturalness and creating only
motions in which the ’muscles’ are critically damped (see
5.1.5).

Coverage deals with how much of a parameter space is
covered and what goals can be satisfied by a motion plan.
Motion graphs can suffer from bad coverage, for example:
some parts in an environment cannot be reached from a cer-
tain position because no path on the graph will go there. Re-
itsma and Pollard [RP07] present quality metrics to evaluate
the (global) quality of motion graphs, including the cover-
age of the environment and the distance between the short-

est walk through an environment and a walking path gen-
erated by the motion graph. Physical simulation can suf-
fer from bad coverage in parameters values near the edge
of balance, a physically simulated VH can easily fall over
for such parameter values. Less natural but more stable bal-
ancing mechanisms can increase coverage. While most mo-
tion editing techniques can cover a wide range of parameter
values, only parameter values that select a motion primitive
near a recorded motion primitive will yield natural motion.
Procedural motion has good coverage, but not all parameter
instances will provide natural motion.

Expressiveness is a measure for the size of a motion space.
The expressiveness of an animation technique is determined
by the number of parameters that can be used to select mo-
tion primitives using the technique and the coverage of the
parameters. Motion techniques that can deal with a large set
of parameters, such a procedural motion and to a lesser ex-
tend physical simulation have high expressiveness. Motion
editing has a lower expressiveness.

Intuitiveness deals with how intuitive the parameter set of
a motion technique is. For example, an amplitude parameter
is a more intuitive parameter than a damping gain parame-
ter. All techniques provide parameters that can set pose con-
straints. Higher level parameters (such as emotion, physical
state) are typically mapped to low-level parameters that are
then provided to an animation technique. An intuitive set of
higher-level parameters might cause conflicts between pa-
rameters, but an orthogonal set of parameters is typically not
intuitive (see 5.1.4).

By combining and concatenating motion spaces generated
by different animation techniques, control on several aspects
can be enhanced. For example, a concatenation of a motion
space generated by motion editing by one generated using
physical simulation enhances the responsiveness to physical
events. Another example is the enhancement of expressive-
ness by combining procedural motion and motion editing.

6. Naturalness

For many animation systems, plausibility or naturalness
rather than full realism is acceptable [ODGK03]. We define
naturalness as observed realism of VH movement. Natural-
ness therefore partly depends on properties of human ob-
servation. For example, naturalness depends on the realism
of the embodiment of the VH: as anthropomorphism of the
embodiment increases, the same animation is more likely to
be judged artificial, rather than biological [CHK07]. Human
sensitivity to errors in animation can be different in horizon-
tal direction than in the vertical direction and can be different
for acceleration and deceleration [RP03].

In 3.2, we identify physical realism as one property of nat-
ural animation. Involvement of the whole body is also crucial
to make an animation natural [BCZC00]. Other properties
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are the plausibility of the motion is with respect to the cogni-
tive and emotional state of the moving VH [BCZC00]. Fur-
thermore, movement should be consistent with static (such
as age, gender) and dynamic (like tiredness, anger) proper-
ties of the VH that is being animated [GRA∗02]. How these
properties affect movement is captured in a VH’s style. Vari-
ability is a concern if a motion is to be repeated. In this sec-
tion we will elaborate on different aspects of naturalness and
show how naturalness can be enhanced and evaluated.

6.1. Physical and Biological Realism

Motion spaces constructed by physical animation tech-
niques are physically realistic by design. It is relatively easy
to consider joint strength and comfort in these methods.
Keyframed animation created by a skilled animator, or mo-
tion captured animation is also physically realistic, since it
origins from real humans moving or expert knowledge of hu-
man movement. However, even if this original motion was
physically correct, when we modify this motions to gain
control in non-physical ways, physical correctness might be
invalidated. Typical artifacts that invalidate physical realism
include foot skate, unnatural balance, or momentum changes
in flight. We outline some methods to enhance physical and
biological realism.

6.1.1. Physical filters

The physical naturalness of motion primitives can be im-
proved by post processing motion primitives with a physical
filter.

Pollard and Reitsma [PR01] propose a filter for physically
correct ground contacts. A friction model is used to make
the foot slide when appropriate. Their filter makes use of the
fact that no forces or torques can be applied at the root of a
VH, since that joint is not actuated. Each frame of motion is
casted on a physical model of the VH. Then, per frame, the
root forces and torques are determined. Contact forces on the
feet that are necessary to eliminate or minimize such root
torques and forces are then calculated. If any force/torque
remains on the root, it is eliminated by modifying the rota-
tional acceleration on all actuated joints and the rotational
and transitional acceleration on the root.

Shin et al. [SKG03] employ a constraint based motion
editing method (see 4.1.2) to enhance the physical and
biomechanical correctness of edited motion. During flight
stages, the angular momentum is conserved and the center
of mass is constrained to follow a parabolic path. The ZMP
is constrained to fall into the support polygon. The correc-
tions are applied to a user-selected set of joints during the
flight stage, ZMP correction is applied on one user selected
joint.

Footskate is a typical artifact caused by motion editing.
The VH’s foot slides on the floor after the VH plants it,
rather than remaining tightly in place [IAF06]. If it is known

when a foot is planted, then a constraint based motion editing
method (see 4.1.2) can be used as a motion filter, to constrain
the movement of the planted foot [KSG02]. Fully automatic
reliable detection of footskate in real time is still an open
problem. Existing methods have to be trained for each mo-
tion [IAF06] or refine roughly estimated contact times and
durations [GBT06]. Alternatively, foot contact can be anno-
tated in the recorded motion primitives, and motion editing
techniques can be set up to retain these annotations [KG03].

6.1.2. Physical Correctness of Blending

Because the difficulties and large computation time associ-
ated with physical filters, some blending approaches deal
with physical realism during the blend stage, rather than us-
ing a post-hoc method. A number of simple modifications
can be used to improve the physical correctness of inter-
polation of motion primitives that are physically correct on
their own [SH05]. By interpolating the center of mass, rather
than the root and by setting the total interpolation time as

T =
√

T 2
1 w+T 2

2 (1−w), rather than T = T1w + T2(1−w)
(with T1 the duration of animation 1, T2 the duration of ani-
mation 2, w the blend weight), the net force during flight is
equal to gravity. If, during ground contact, only the non re-
dundant DoF (that is: the center of mass, the foot positions,
two ’knee-circle’ parameters and all joints angles except the
legs) are interpolated, rather than directly interpolating joint
rotations, the feet will not slide, balance will be retained and
the ground friction will be within the same friction cones as
the source motion primitives. Ménardais et al. [MKMA04]
use a simple technique to avoid or reduce footskate. Motion
primitives are annotated with support phase information (left
foot, right foot, double support, no support). A time-warp
then assures that the support phases of the motion primitives
are compatible during the blend. Treuille et al. [TLP07] pre-
vent footskate in support phases where only one foot is on
the ground by first aligning the support feet and then inter-
polating the motion primitives with the support feet as the
root.

6.1.3. Improving Physical Correctness using Tracking

A tracking controller tracks the rotation of joints specified
in a motion primitive. This is done by specifying these rota-
tions as the desired state for a physical controller for each
joint. The resulting motion obeys Newtonian physics and
thus (among others) can respond to collisions with the envi-
ronment and its own body in a physically realistic way. Phys-
ical tracking recently became a component of some commer-
cial high level animation toolkits [Art08, Hav08a].

Motion capture noise, retargetting errors, tracking errors
and environmental changes can easily disturb the balance of
a VH that is controlled by tracking. For early tracking meth-
ods [KMB96,ZH99] this was not an issue because they only
track the upper body. Other tracking methods enforce bal-
ance by constraining the root to the translation specified in
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the motion primitive [Nata, Natb, YCP03]. Zordan and Hod-
gins [ZH02] experiment with both a virtual actuator [Pra95]
pulling up the root and a PD-controller for balancing like
that in [Woo98]. These realistic balance controllers limit the
application domain to non-locomotive motion. Wrotek et
al. [WJM06] use a less realistic balancing method that does
allow locomotion: a weak root spring connects the root of
the VH to the universe. This spring can ’break’ if too much
force is exerted on it, causing the VH to lose balance.

A tracking PD-controller neceseraly has very high PD-
gains, which results in stiff reaction to the environment. The
PD-gains can be reduced on impact, to decrease such unde-
sired stiffness [ZH02,WJM06]. Yin et al. [YCP03] track mo-
tion capture movement using a controller based on a simple
human neuromotor model: ID acts as a feedforward mech-
anism and small perturbations are corrected using a low
gain feedback PD-controller. The gains on the feedback con-
troller increase with the amount of exerted force. This corre-
sponds with perturbation movement in real humans, where
muscle stiffness (corresponding with PD-gains) increases
upon perturbation.

Oshita and Makinouchi [OM01] track an input motion us-
ing an acceleration controller, that exerts joint accelerations
rather than joint forces, in a customly designed physical sim-
ulation environment. Their system is aimed at dynamically
changing physically realistic input motion perturbated by
impulses or forces, and provides some biomechanical en-
hancement of the motion by reducing stress on joints. The
balance controller used in their system is designed for stand-
ing with double-support.

6.1.4. Physical Correctness through Procedural
Techniques

Physical simulation can greatly enhance expressive proce-
dural motion. It can help model important nuances of VH
motion, such as realistic balance, force transference between
limbs and momentum effects like overshoot [Nef05]. Phys-
ical controllers can explicitly address muscle strength and
comfort limits. Some of these effects have, to some extent,
been reproduced by procedural models.

Inverse kinetics [BK07] is a kinematic technique that can
be used to position the CoM of a VH. This does help in
creating balanced poses, but to generated realistically bal-
anced movement, these methods need to be augmented with
a model that provides a path of the CoM over time. Neff
[Nef05] devises a feedback-based procedural balance sys-
tem based on the physical controller of [WH00]. Unlike
this physical balance controller, the procedural system works
only on a single supporting foot and takes just the position
of the CoM and velocity of the CoM, but not the forces gen-
erated by upper body movement into account.

ID can be used to analyze the muscle power used in pro-
cedural motion. The motion can then be adapted to adhere to
muscle strength and comfort limits [LWZB90, KB96].

6.2. Whole Body Involvement

Procedural gesture animation techniques typically steer the
head and the arms starting at the shoulder and leave the rest
of the body relatively stiff. Naturalness can be enhanced by
providing automatic, coherent movement of the rest of the
body. Some of the techniques used to enhance physical re-
alism also help engaging the whole body. For example, a
physically based balance model can be used to automatically
generate lower body movement (see 6.1.4 and [Nef05]).

Egges and Magnenat-Thalmann [EMT05] propose a sta-
tistical model to enhance the naturalness of procedurally
generated gesture movement on the arms. PCA is performed
on a mocap database of gesture animation. Using this PCA
analysis, the procedural animation is filtered in PCA-space,
in such a way that only movement similar to that in the
database (and thus assumed natural) remains. Because the
PCA components involve multiple joints, this automatically
engages the full body.

Both Chi et al. [CCZB00] and Neff et al. [Nef08] aim to
involve the torso automatically in gesture movement. The
Effort and Shape parameters used to enhance the expressive-
ness of procedural gesture in [CCZB00] (see 5.0.1) are also
used to enhance their procedurally generated torso move-
ment. Neff [Nef08] show that ’drives’, such as hand posi-
tion and gaze direction can be used to automatically generate
torso movement. This is done by defining a linear mapping
between the drives and movement parameters of a procedu-
ral torso movement model.

6.3. Style

Style denotes the particular way in which a motion is per-
formed. Stylistic differences of motion with the same func-
tion are caused by certain more or less static personal char-
acteristics of the subject, like age, gender and personality
[RP02, THN04]. It is important to endow VHs with style.
Style contributes to naturalness, and, even more importantly,
expresses information about the VH as cultural identity, as
well as his relationship to other (virtual) humans, such as
role and power relationship. Style is reflected by the motions
a VH performs and the manner in which these motions are
performed [NR05, NKAS08]. In this article we focus solely
on the latter.

6.3.1. Style using Motion Editing

Urtasun et al. [UGB∗04] employ blending from recorded
motion primitives from different subjects (and thus with dif-
ferent styles) in PCA space for style transition. A motion
capture database is constructed, containing recorded motion
primitives of several subjects, with different parameter val-
ues for one parameter (walking with variable speed, jumping
with variable height). A motion in the style of a new sub-
ject is created from one recorded motion primitive of this
subject. First, the recorded motion primitive is modeled as a
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blend of motion primitives from the different subjects in the
database that have the same parameter value. The weights
of this blend are then used to construct motion primitives
with a new parameter values using a blend of motions in the
database with these new parameter values. This system can
create motion in the style of a user in an online application,
by tracking the users movement using a cheap computer vi-
sion system.

Egges et al. [EMMT04] generate different styles of idle
motion using recorded motion primitives of different indi-
viduals. On top of the posture shift motions, variation of
movement is generated by applying a noise function on prin-
cipal components derived from recorded motion primitives.
This noise function is defined by a probabilistic model of
recorded variations in motion. Individualized variations can
be synthesized by determining the parameters of the proba-
bilistic model for a given individual.

6.3.2. Style in Simulation

Procedural animation applies style by mapping high level
style characteristics to lower level animation parameters, us-
ing parameterization. Perlin [Per95] models personality and
emotion using noise functions on top of motion generated
by an existing procedural model. Ruttkay and Pelachaud
[RP02] model style as a mapping from static characteris-
tics, such as age or sex and dynamic characteristics, such
as emotion to gesture animation parameters. Neff and Fi-
ume [NF05], models style using a Character Sketch. Such a
sketch defines modifications to be made to motion parame-
ters, can be designed to automatically insert new actions to
an animation script and can provide a default stance.

6.4. Variability

Variability is a measure of the differences in a motion which
is repeated many times by the same person [BSH99]. If, us-
ing a specific motion technique, the same parameters pro-
duce the same motion primitive, the motion will look unnat-
ural if those parameters occur several times in the motion
performance. Several methods can be used to avoid this in-
validation of naturalness.

6.4.1. Procedural Generation of Variability

Perlin [Per95] simulates variability by adding noise to the
rotation of some of the joints in the skeleton of a VH. This
method is not scalable on all joints, because relations exist
between rotation of one joint and rotation of another. If these
relations are not captured, the resulting animation will look
unrealistic [EMMT04].

Bodenheimer et al. [BSH99] apply variability by using a
biomechanically inspired method. Since the amount of vari-
ability is usually correlated to larger movements of the body,
the noise has its largest amplitude at the extrema of a DoF
of a moving joint. The noise is scaled with the distance

the joint travels, thus obeying Fitts’ Law. Since the shape
of the noise is based upon the movement of the joints, this
approach somewhat implicitly models inter-joint variability
relations. However, reciprocally covarying movement vari-
ability between joints (like, when elbow moves to compen-
sate shoulder variability on an aiming task) is not captured
by this approach.

6.4.2. Generating Variability using Statistical Models

Statistical methods that capture orthogonal components of
motion also capture the relation between joint movements
[BH00, EMMT04]. Since these components are indepen-
dent, they can be modified separately. Small posture varia-
tions are generated by adjusting the components using perlin
noise [Per95]. In Li et al.’s [LWS02] LDS model, variability
is generated by sampling noise.

6.4.3. Generating variability in Physical Simulation

Motion generated by physical simulation often looks ’ster-
ile’, because variation caused by small details is not taken
into account [BHW96]. Such details, for example small
bumps on a floor, or the non-rigidness of human body parts
are not simulated because it would not be possible to do so in
real time or because simulation methods for this are yet un-
known. Barzel et al. [BHW96] propose some techniques to
model some of these details in a physically plausible (but not
physically realistic) ways. For example: the inherent vari-
ability and instability of a physical simulation system can be
exploited to generate motion variability by slight variations
in its starting state, or a physical form of bumpmapping can
be used to create slight variations in the normal of a physi-
cally modeled flat floor.

Another cause of variability in human movement is noise
in the control signals that steer our limbs [HW98]. The vari-
ability of the noise increases with the torque to be exerted.
Bodenheimer et al. [BSH99] model this type of variability
by adding noise to joint torques in a physical simulation in a
similar way as described above for kinematic motion.

Naturalmotion’s Euphoria [Natb] and Endorphin [Nata]
toolkits provide an undisclosed method to add noise to phys-
ical controllers. The amount of noise can be set as a param-
eter value for the controllers.

6.5. Evaluation of Naturalness

VHs usually do not have a photo-realistic embodiment.
Therefore, if the naturalness of animation of VHs is eval-
uated by directly comparing moving humans with a mov-
ing VH, the embodiment could bias the judgment. A motion
captured human movement can be projected onto the same
embodiment as the VH. This projection is then compared
with generated animation. Typically this is done in an in-
formal way. A motion Turing Test is used to do this more
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formally [HWBO95,EVMT04,CHK07,vBE09]. Some met-
rics have been defined that aim to measure certain aspects of
naturalness objectively.

6.5.1. User Testing

In a motion Turing test, subjects are shown generated move-
ment and similar motion captured movement, displayed on
the same VH. Then they are asked to judge whether this was
a ’machine’ moving or a real human. The size of the nat-
ural parameter space, that is, the space of parameters that
select natural motion primitives from a motion space can be
explored by having subjects directly set and evaluate the pa-
rameter values, as done in [BSH99, vBE09].

However, such a human judgment is not sufficient to mea-
sure the naturalness of motion. Even if a certain movement
is judged as natural, an invalidation of naturalness that is not
noticed consciously can still have a social impact [RN96].
Unnatural moving VHs can be evaluated as less interesting,
less pleasant, less influential, more agitated and less success-
ful in their delivery. So, while a VH Turing test is a good
first measure of naturalness (at least it looked human-like),
further evaluation should determine if certain intended as-
pects of the motion are delivered. Such aspects could include
showing emotion, enhancement of the clearness of a spoken
message using gesture, showing personality, etc.

6.5.2. Comparing with Motion Invariants

Some qualitative comparisons have been made by compar-
ing motion invariants of record motion with those of gen-
erated motion. Graphs of end effector speed, end effector
square jerk, end effector position and motion curvature can
be used to compare human motion to generated motion, to
evaluate how well the systems model invariants such as the
bell shaped velocity profile, minimum jerk, Fitts’ law and
the two-third power law [GLM01, MZW99, KW04].

6.5.3. Metrics for Naturalness

Intuitively, physical correctness can be measured directly
from the animation. Reitsma and Pollard [RP03] evaluate
physical correctness is by checking and evaluating percep-
tual metrics for allowable errors in horizontal and verti-
cal velocities and the effective gravity constant for ballistic
movement.

Metrics such as the average amount of foot gliding
[Ahm04] and the number of frames in which the ZMP is out-
side the support polygon [JLLL08] address the anomalies in
motion editing and can be used to compare the naturalness
of different motion editing techniques.

Some attempts have been made to evaluate naturalness au-
tomatically. Ren et al. [RPE∗05] argue that evaluation of the
naturalness of human motion is not intrinsically subjective,
but instead, an objective measure is imposed by the data as
whole. In other words, movements that we have seen often

are judged as natural, and movements that occur rarely are
not. They make use of machine learning techniques, trained
with statistical properties of human motion to classify new
animations as natural or unnatural, and to point out the parts
that invalidate natural movement. The system is still outper-
formed by human observers in recognizing natural or unnat-
ural movement.

6.5.4. On Motion Demand

An unnatural motion that occurs often in an application de-
grades the naturalness of the overall motion more than an
equally unnatural motion that occurs rarely. Therefore, the
naturalness of motion should be tested considering a valid
motion demand for the application using the motion. In
[IF04] Unreal Tournament game sessions are used to model
such a motion demand.

7. Conclusion

In this STAR we have discussed a variety of techniques that
all can contribute to an ’ultimate’ fully-controllable anima-
tion system producing natural motions in real-time. Current
techniques offer trade-offs between control, naturalness and
calculation time. The selected trade-off depends on the ap-
plication domain. Motion editing techniques employ the de-
tail of captured motion or the talent of skilled animators, but
they allow little deviation from the captured examples and
can lack physical realism. Procedural motion offers detailed
and precise control using a large number of parameters, but
lacks naturalness. Physical simulation provides integration
with the physical environment and physical realism. How-
ever, physical realism alone is not enough for naturalness
and physical simulation offers poor precision in both timing
and limb placement.

Motion editing is typically used for current computer
games (requiring huge motion capture databases), films and
cartoons. Physical simulation is typically used for the ani-
mation of physically constrained motion, such as motion by
athletes and stuntmen or ’ragdoll’ animation. Expressive an-
imation, such a gesturing while speaking requires tight syn-
chronization to speech, precise limb placement and a large
number of control parameters. Therefore, expressive anima-
tion is the domain of procedural animation techniques.

A big challenge in the animation domain is finding an in-
tegrated way of generating natural motions that interact with
the environment and provide detailed control. We show that
hybrid systems that combine and concatenate motion gen-
erated by different paradigms can enhance both naturalness
and control. These systems could provide a starting point for
such an integration.

Another issue deals with simulating physiological pro-
cesses, such as emotions, sleepiness, hungriness and so on.
We hope that this STAR will provide a useful starting point
for researchers who are interested in animation of VHs on
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the basis of such concepts, thus bringing us one step closer
to a ’real’ VH.
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[LP02] LIU K. C., POPOVIĆ Z.: Synthesis of complex
dynamic character motion from simple animations. ACM
Transactions on Graphics 21, 3 (2002), 408–416.

[LS99] LEE J., SHIN S. Y.: A hierarchical approach
to interactive motion editing for human-like figures.
In SIGGRAPH (New York, NY, USA, 1999), ACM
Press/Addison-Wesley Publishing Co., pp. 39–48.

[Lue84] LUENBERGER D.: Linear and nonlinear pro-
gramming. Addison-Wesley, Reading, MA, 1984.

[LvdP96] LAMOURET A., VAN DE PANNE M.: Motion
synthesis by example. In Computer Animation and Simu-
lation (New York, NY, USA, 1996), Springer-Verlag New
York, Inc., pp. 199–212.

[LvdPF00] LASZLO J., VAN DE PANNE M., FIUME

E.: Interactive control for physically-based animation.
In SIGGRAPH (New York, NY, USA, 2000), ACM
Press/Addison-Wesley Publishing Co., pp. 201–208.

[LWS02] LI Y., WANG T., SHUM H.-Y.: Motion texture:
a two-level statistical model for character motion synthe-
sis. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 2002), ACM Press, pp. 465–
472.

[LWZB90] LEE P., WEI S., ZHAO J., BADLER N. I.:

c© The Eurographics Association 2009.

68



H. van Welbergen B. J. H. van Basten A. Egges Zs. Ruttkay M. H. Overmars / Real Time Animation of Virtual Humans

Strength guided motion. In SIGGRAPH (New York, NY,
USA, 1990), ACM, pp. 253–262.

[Mac90] MACIEJEWSKI A. A.: Motion simulation: Deal-
ing with the ill-conditioned equations of motion for articu-
lated figures. IEEE Computer Graphics and Applications
10, 3 (1990), 63–71.

[Man04] MANDEL M. J.: Versatile and Interactive Vir-
tual Humans: Hybrid use of Data-Driven and Dynamics-
Based Motion Synthesis. Master’s thesis, Carnegie Mellon
University, August 2004.

[MBC01] MIZUGUCHI M., BUCHANAN J., CALVERT T.:
Data driven motion transitions for interactive games. In
EUROGRAPHICS 2001 short papers (2001).

[MHP04] MANCINI M., HARTMANN B., PELACHAUD

C.: Non-verbal behaviors expressivity and their repre-
sentation. PF-star report 3, University of Paris 8, 2004.

[Mir96] MIRTICH B.: Fast and accurate computation of
polyhedral mass properties. J. Graph. Tools 1, 2 (1996),
31–50.

[MK05] MUKAI T., KURIYAMA S.: Geostatistical motion
interpolation. ACM Trans. Graph. 24, 3 (2005), 1062–
1070.

[MKMA04] MÉNARDAIS S., KULPA R., MULTON F.,
ARNALDI B.: Synchronization for dynamic blending of
motions. In Symposium on Computer Animation (2004),
pp. 325–335.

[MM04] MEREDITH M., MADDOCK S.: Using a half-
jacobian for real-time inverse kinematics. In Proceedings
of the International Conference on Computer Games: Ar-
tificial Intelligence, Design and Education (2004), pp. 81–
88.

[MTSC04] MAGNENAT-THALMANN N., SEO H.,
CORDIER F.: Automatic modeling of virtual humans
and body clothing. Journal of Computer Science and
Technologie 19, 5 (2004), 575–584.

[MTT96] MAGNENAT-THALMANN N., THALMANN D.:
Computer animation. ACM Computing Surveys 28, 1
(1996), 161–163.
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optimal character animation with continuous control.
ACM Trans. Graph. 26, 3 (2007), 7.

[TMMK08] THIEBAUX M., MARSHALL A. N.,
MARSELLA S., KALLMANN M.: Smartbody: Be-
havior realization for embodied conversational agents.
In Proc. 7th International Conference on Autonomous
Agents and Multiagent Systems (2008), pp. 151–158.

[UAT95] UNUMA M., ANJYO K., TAKEUCHI R.: Fourier
principles for emotion-based human figure animation. In
SIGGRAPH (New York, NY, USA, 1995), ACM Press,
pp. 91–96.

[Ubi04] UBISOFT: Prince of persia: The sands of time,
2004. http://www.princeofpersiagame.com/.

[UGB∗04] URTASUN R., GLARDON P., BOULIC R.,
THALMANN D., FUA P.: Style-based motion synthesis.
Computer Graphics Forum 23, 4 (2004), 799–812.

[UKS89] UNO Y., KAWATO M., SUZUKI R.: Formation
and control of optimal trajectory in human multijoint arm
movement - minimum torque-change model. Biological
Cybernetics 61 (1989), 89–101.

[vBE09] VAN BASTEN B. J., EGGES A.: Evaluating dis-
tance metrics for animation blending. In Proceedings of
the 4th International Conference on the Foundation of
Digital Games (to appear) (2009).

[vdP93] VAN DE PANNE M.: Sensor-actuator networks.
In SIGGRAPH (New York, NY, USA, 1993), ACM Press,
pp. 335–342.

[vdPKF94] VAN DE PANNE M., KIM R., FIUME E.: Vir-
tual wind–up toys for animation. In Graphics Interface
’94 (May 1994), pp. 208–215.

[VT82] VIVIANI P., TERZUOLO C.: Trajectory deter-
mines movement dynamics. Neuroscience 7, 2 (1982),
431–437.

[vWNRZ06] VAN WELBERGEN H., NIJHOLT A., REI-
DSMA D., ZWIERS J.: Presenting in virtual worlds: To-
wards an architecture for a 3D presenter explaining 2D-
presented information. IEEE Intelligent Systems 21, 5
(2006), 47–99.

[vWRV08] VAN WELBERGEN H., RUTTKAY Z., VARGA

B.: Informed use of motion synthesis methods. In Motion
in Games, Egges A., Kamphuis A., Overmars M., (Eds.),
vol. 5277 of Lecture Notes in Computer Science. Springer
Verlag, Berlin, 2008, pp. 132–143.

[vWZR09] VAN WELBERGEN H., ZWIERS J., RUTTKAY

Z.: Real-time animation using a mix of dynamics and
kinematics. Submitted to Journal of Graphics Tools
(2009).

[WC91] WANG L. C. T., CHEN C. C.: A combined opti-
mization method for solving the inverse kinematics prob-
lems of mechanical manipulators. Robotics and Automa-
tion, IEEE Transactions on 7, 4 (1991), 489–499.

[Wel93] WELMAN C.: Inverse kinematics and geometric
constraints for articulated figure manipulation. Master’s
thesis, Simon Fraser University, September 1993.

[WH95] WOOTEN W. L., HODGINS J. K.: Simulation
of human diving. In Graphics Interface ’95 (May 1995),
pp. 1–9.

[WH97a] WILEY D. J., HAHN J. K.: Interpolation syn-
thesis of articulated figure motion. IEEE Comput. Graph.
Appl. 17, 6 (1997), 39–45.

[WH97b] WOOTEN W. L., HODGINS J. K.: Transitions
between dynamically simulated motions: Leaping, tum-
bling, landing, and balancing. In In ACM SIGGRAPH Vi-
sual Proceedings: The art and interdisciplinary programs
of SIGGRAPH (1997), ACM Press, p. 217.

[WH00] WOOTEN W. L., HODGINS J. K.: Simulat-
ing leaping, tumbling, landing, and balancing humans.
In International Conference on Robotics and Animation
(2000), pp. 656–662.

[Win04] WINTER D. A.: Biomechanics and Motor Con-
trol of Human Movement. Wiley, August 2004.

[WJM06] WROTEK P., JENKINS O. C., MCGUIRE M.:
Dynamo: Dynamic, data-driven character control with ad-
justable balance. In Proceedings of the Sandbox Sympo-
sium on Video Games (July 2006), ACM, ACM.

[WK88] WITKIN A., KASS M.: Spacetime constraints.
In SIGGRAPH (New York, NY, USA, 1988), ACM Press,
pp. 159–168.

c© The Eurographics Association 2009.

71



H. van Welbergen B. J. H. van Basten A. Egges Zs. Ruttkay M. H. Overmars / Real Time Animation of Virtual Humans

[Woo98] WOOTEN W. L.: Simulation of leaping, tum-
bling, landing, and balancing humans. PhD thesis, Geor-
gia Institute of Technology, March 1998.

[WP95] WITKIN A., POPOVIC Z.: Motion warping. In
SIGGRAPH (New York, NY, USA, 1995), ACM Press,
pp. 105–108.

[WP00] WATT A., POLICARPO F.: 3D Games: Volume 1:
Real-Time Rendering and Software Technology. Addison-
Wesley, 2000.

[WTT92] WOODSON W. E., TILLMAN B., TILLMAN P.:
Human Factors Design Handbook. McGraw-Hill, 1992.

[YCBvdP08] YIN K., COROS S., BEAUDOIN P., VAN DE

PANNE M.: Continuation methods for adapting simulated
skills. ACM Trans. Graph. 27, 3 (2008).

[YCP03] YIN K., CLINE M. B., PAI D. K.: Motion per-
turbation based on simple neuromotor control models. In
Pacific Graphics (Washington, DC, USA, 2003), IEEE
Computer Society, pp. 445–449.

[YLS04] YANG P.-F., LASZLO J., SINGH K.: Layered
dynamic control for interactive character swimming. In
Proceedings of the ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation (Aire-la-Ville, Switzer-
land, Switzerland, 2004), Eurographics Association,
pp. 39–47.

[Zel82] ZELTZER D.: Motor control techniques for figure
animation. Computer Graphics and Applications, IEEE
2, 9 (Nov. 1982), 53–59.

[ZH99] ZORDAN V. B., HODGINS J. K.: Tracking and
modifying upper-body human motion data with dynamic
simulation. In In Proceedings of Computer Animation and
Simulation (September 1999), pp. 13–22.

[ZH02] ZORDAN V. B., HODGINS J. K.: Motion capture-
driven simulations that hit and react. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (New York, NY, USA, 2002), ACM Press,
pp. 89–96.

[ZMCF05] ZORDAN V. B., MAJKOWSKA A., CHIU B.,
FAST M.: Dynamic response for motion capture anima-
tion. In SIGGRAPH (2005), ACM Press, pp. 697–701.

[ZMM∗07] ZORDAN V. B., MACCHIETTO A., MEDINA

J., SORIANO M., WU C.-C.: Interactive dynamic re-
sponse for games. In Sandbox: Proceedings of the ACM
SIGGRAPH symposium on Video games (New York, NY,
USA, 2007), ACM Press, pp. 9–14.

[ZvdP05] ZHAO P., VAN DE PANNE M.: User interfaces
for interactive control of physics-based 3d characters. In
I3D ’05: Proceedings of the 2005 symposium on Interac-
tive 3D graphics and games (New York, NY, USA, 2005),
ACM Press, pp. 87–94.

c© The Eurographics Association 2009.

72


