
Shape Representations Based on Simplicial and Cell
Complexes

L. De Floriani†1,2 and A. Hui‡2

1 Dept. of Computer Science, University of Genova (Italy)
2 Dept of Computer Science, University of Maryland at College Park (USA)

Abstract
Simplicial and cell complexes are the most common way to discretize 3D shapes and two-, three and higher-
dimensional scalar fields. In this state-of-the-art report, we review, analyze and compare data structures for sim-
plicial and cell complexes. We first classify such representations, based on the dimension of the complexes they
can encode, into dimension-independent, and dimension-specific ones. We further classify the data structures in
each group according to the basic types of topological entities they represent. We present a description of each
data structure in terms of the entities and topological relations it encodes, and we evaluate it based on its expres-
sive power, on its storage cost, on the efficiency in supporting navigation inside the complex (i.e., in retrieving
topological relations not explicitly encoded in the data structure). We also discuss a decomposition approach to
modeling non-manifold shapes, which has led to powerful and scalable representations.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Curve, surface, solid and object representations

1. Introduction

Simplicial and cell complexes are the most common way to
discretize geometric shapes, such as static and dynamic 3D
objects, or surfaces and hyper-surfaces describing the behav-
ior of scalar or vector fields. Representations for simplicial
and cell complexes are at the heart of modeling and simula-
tion tools in a variety of application domains, including com-
puter graphics, Computer Aided Design (CAD), Computer
Aided Engineering (CAE), finite element analysis, anima-
tion, scientific visualization, and geographic data process-
ing.

Historically, data structures for representing 3D shapes
have been developed in solid modeling. The most common
representations for 3D objects are boundary representations.
A boundary representation consists of a description of a 3D
object in terms of its bounding surfaces, which are decom-
posed into a collection of faces, edges and vertices forming

† e-mail:deflo@disi.unige.it
‡ e-mail:huiannie@cs.umd.edu

a cell complex. The first data structure for boundary repre-
sentation is the Winged-Edge data structure, proposed by
Baumgardt in 1972 [Bau72]. This has been only the start-
ing point for the development of a variety of representa-
tions, which are at the basis of current solid modeling sys-
tems [Man87].

Triangle meshes have been used for a long time in fi-
nite element analysis and in terrain modeling. Specific data
structures for triangle meshes have been developed as well
as a variety of algorithms for generating and updating such
meshes. Triangles are also the basic primitive handled by
graphics hardware, and, thus, triangle meshes have become
the most common way of discretizing 3D surfaces and
scenes, as well as one of the most common exchange for-
mat for such shapes.

Both boundary representations and triangle meshes dis-
cretize surfaces which can either be closed (without bound-
ary) or be the graphs of functions of two variables (i.e., 2D
scalar fields) as in the case of terrain models. Such surfaces
have a simple topological structure. On the other hand, sev-
eral applications, such as CAD/CAE, finite element simu-
lation, require modeling objects with a more complex topol-

c© The Eurographics Association 2007.

EUROGRAPHICS 2007/ D. Schmalstieg and J. Bittner STAR – State of The Art Report

http://www.eg.org
http://diglib.eg.org

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

ogy, including singularities and parts of different dimension-
alities, the so-called non-manifold and non-regular objects.
Recall that a manifold (with boundary) is a subset of the Eu-
clidean space for which the neighborhood of each internal
point is homeomorphic to an open ball and the neighborhood
of each boundary point to an open half-ball. Objects that do
not fulfill such properties at one or more points are called
non-manifold objects. Non-manifold objects, which contain
parts of different dimensionalities, are called non-regular.
Non-manifold and non-regular objects are discretized as
two-dimensional cell and simplicial complexes. Data struc-
tures have been developed for both kinds of complexes as
well as operators for manipulating them. Some of such data
structures are based on a decomposition of a non-manifold
shape into simple manifold or nearly manifold components.

Several applications, like solid modeling, simulation and
scientific visualization, require a shape, or the domain of
a scalar field to be discretized as a three-dimensional sim-
plicial complex. Thus, representations and update operators
have been developed for such complexes. Finally, data struc-
tures for encoding arbitrary dimensional simplicial com-
plexes have been proposed, mainly in the computational ge-
ometry literature, as the basis for a dimension-oriented ap-
proach to the design and implementation of a data structure
for a cell or a simplicial complex.

This state-of-the-art report reviews, analyzes and com-
pares data structures for simplicial and cell complexes used
for modeling 3D shapes and scalar fields. The comparison is
performed in terms of their expressive power, of their stor-
age cost, and of the efficiency and effectiveness of navigation
operations on them.

The remainder of this paper is organized as follows. Sec-
tion 2 provides some background notions on cell and simpli-
cial complexes. Section 3 gives a formalization of topolog-
ical relations. Section 4 presents a taxonomy of data struc-
tures for cell and simplicial complexes. Section 5 reviews
and compares dimension-independent data structures. Sec-
tion 6 reviews and compares data structures specific for
two-dimensional complexes. Due to the large number of
data structures in this category, we distinguish between data
structures for manifold and non-manifold cell complexes,
addressed respectively in Subsections 6.1 and 6.2. Section 7
reviews and compares data structures for three-dimensional
cell and simplicial complexes. Section 8 addresses shape
representations that are based on the decomposition of a 3D
shape into parts of lower complexity. Finally, section 9 draws
some concluding remarks.

2. Background Notions
In this Section, we review some notions on cell and sim-
plicial complexes, that we will use throughout this report
(see [Ago05] for more details).

Intuitively, a Euclidean cell complex is a collection of ba-

sic elements, called cells, which cover a domain in the Eu-
clidean space. A k-dimensional cell (or simply a k-cell) γ in
the Euclidean space En, 1 ≤ k ≤ n, is a subset of En homeo-
morphic to a closed k-dimensional ball Bk = {x ∈ Rk : ||x|| ≤
1}. (||x|| denotes the norm of vector x.) A 0-cell is a point in
Rn. k is called the order, or dimension, of k-cell γ.

A (Euclidean) cell complex is a finite set Γ of cells of
dimension at most d in En, 0 ≤ d ≤ n, such that the interi-
ors of the cells of Γ are disjoint, and if γ,γ1 ∈ Γ, such that
γ∩γ1 6= ∅, then γ∩γ1 is the disjoint union of interiors of cells
of Γ. A cell complex Γ such the maximum dimension of its
cells is equal to d is called a d-dimensional complex, or sim-
ply a d-complex. The domain, or carrier, of a Euclidean cell
d-complex Γ embedded in En, with 0 ≤ d ≤ n, is the subset
of En defined by the union, as point sets, of all the cells in Γ.

The (combinatorial) boundary of a cell γ in a cell com-
plex Γ is the set of all cells in Γ, which are subsets of the
boundary of cell γ (considered as a point set). Every cell in
b(γ) is called a face of γ. If k is the dimension of the face, it
is called a k-face. The co-boundary, or star, of a cell γ, is the
collection of all the cells in Γ containing γ in its boundary.
The link of a cell γ is defined as the collection of the cells
bounding the cells in the star of γ, which do not contain γ. A
cell is called a top cell if it is not contained in the boundary
of any other cell in Γ.

Two cells are called k-adjacent if they share a k-face. Two
p-cells, 0 < p ≤ d, are said to be adjacent if they are (p−1)-
adjacent. Two vertices (i.e., 0-simplexes) are called adja-
cent if they are both incident at a common 1-simplex. An
h-path, 0≤ h≤ d−1, is a sequence of (h+1)-cells (γi)

k
i=0

such that two consecutive cells γi−1 and γi in the sequence
are h-adjacent. Two cells γ and γ∗ are said to be h-connected
if there exists an h-path (γi)

k
i=0 such that γ is a face of γ0 and

γ∗ is a face of σk. A complex Γ∗ is called h-connected if and
only if any two cells of Γ∗ are h-connected.

A d-complex Γ, in which all top cells are d-cells, is called
regular (or uniformly d-dimensional). A regular (d−1)-
connected d-complex in which each (d−1)-cell is shared
by one or two d-cell is called a (combinatorial) pseudo-
manifold (possibly with boundary). A pseudo-manifold
complex whose domain is a manifold is called a manifold
complex. Figure 1(a) shows an example of a regular com-
plex, which is not a pseudo-manifold, while Figure 1(b) and
(c) show an example of a pseudo-manifold complex which
does not have a manifold domain.

Simplicial complexes can be seen as a subclass of the cell
complexes. Their cells, called simplexes, are defined by the
convex combination of points in the Euclidean space. A Eu-
clidean simplex σ of dimension k is the convex hull of k+1
linearly independent points in the n-dimensional Euclidean
space En, 0 ≤ k ≤ n. We simply call a Euclidean simplex of
dimension k a k-simplex. k is called the dimension of σ. Any
Euclidean p-simplex σ′, with 0 ≤ p < k, generated by a set
Vσ′ ⊆ Vσ of cardinality p+1 ≤ d, is called a p-face of σ.

c© The Eurographics Association 2007.

64

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

(a) (b) (c)

Figure 1: (a) A regular cell complex that is not manifold;
(b) A pseudo-manifold with a non-manifold domain (a 3D
pinched pie) and (c) shows the cross-section of the pinched
pie at the non-manifold point

Whenever no ambiguity arises, the dimension of σ′ will be
omitted, and σ′ is simply called a face of σ. Any face σ′ of
σ such that σ′ 6= σ is called a proper face of σ.

A finite collection Σ of Euclidean simplexes forms a Eu-
clidean simplicial complex if and only if (i), for each simplex
σ ∈ Σ, all faces of σ belong to Σ, and (ii), for each pair of
simplexes σ and σ′, either σ∩σ′ = ∅ or σ∩σ′ is a face of
both σ and σ′. If d is the maximum of the dimensions of the
simplexes in Σ, we call Σ a d-dimensional simplicial com-
plex, or a simplicial d-complex. The domain (or carrier) of
a Euclidean simplicial complex is defined in the same way
as for a cell complex. Since a simplicial complex is a cell
complex, all the properties of cell complexes are inherited
by simplicial complexes.

We characterize the non-manifold singularities in the
combinatorial representation of a non-manifold shape by
defining non-manifold vertices and edges in its discretiza-
tion as a cell complex. A vertex (0-cell) v in a cell (simpli-
cial) d-complex Γ (with d ≥ 1) is a manifold vertex if and
only if the link of v in Γ is homeomorphic to a triangulation
of the (d−1)-sphere Sd−1, or of the (d−1)-disk Bd−1. A
vertex is called non-manifold otherwise. Figure 2 (a) shows
an example of a non-manifold vertex. An edge (1-cell) e in
a d-complex Γ (with d ≥ 2) is a manifold edge if and only if
the link of e in Γ is homeomorphic to a triangulation of the
(d−2)-sphere Sd−2, or of the (d−2)-disk Bd−2. An edge
is called non-manifold otherwise. Figure 2 (b) shows an ex-
ample of a non-manifold edge. In general, a k-cell γ is a d-
complex Γ (with d ≥ k+1) is a manifold k-cell if and only if
the link of γ in Γ is homeomorphic to a triangulation of the
(d−k)-sphere Sd−k or of the (d−2)-disk Bd−k. It is called
non-manifold otherwise.

3. Topological Relations
The connectivity information among the entities in a cell or
in a simplicial complex are expressed through topological
relations, which provide an effective framework for defin-
ing, analyzing and comparing the wide spectrum of existing
data structures. Data structures for cell and simplicial com-
plexes can be described formally in terms of the topologi-
cal entities and relations they encode. We define topological

3t
1t

2t 4t

v t 2

t 1

4t

t 3

dfe
(a) (b)

Figure 2: (a) A non-manifold vertex v; (b) A non-manifold
edge e

relations for the case of a cell complex (since a simplicial
complex can be seen as a special case of a cell complex).

We consider a cell d-complex Γ and a cell γ ∈ Γ, with
0≤ p≤ d. We can define topological relations as follows:

• Boundary relation Rp,q(γ), with 0 ≤ q ≤ p− 1, consists
of the set of q-cells which are faces of γ.

• Co-boundary relation Rp,q(γ), with p + 1 ≤ q ≤ d, con-
sists of the set of q-cells incident in γ.

• For p>0, adjacency relation Rp,p(γ) consists of the set of
p-cells in Γ that are (p−1)-adjacent to γ.

• Relation R0,0(γ), where γ is a vertex, consists of the set of
vertices that are adjacent to γ through a 1-cell.

Note that both boundary and co-boundary relations are
called incidence relations.

f
e

e

e

2

31

e1

e2
e3

e4

e5

e7 e6

v

1f

f 3f 2

f 4

f

(a) (b) (c)

Figure 3: Example of topological relations (a) boundary re-
lation R2,1(f) = {e1,e2,e3} for face f , (b) co-boundary re-
lation R0,1(v) = {e1, · · · ,e7} for vertex v, and (c) adjacency
relation R2,2(f) = { f1, · · · , f4} for face f

We call constant any relation which involves a constant
number of entities. Relations which involve a variable num-
ber of entities are called variable. Co-boundary and adja-
cency relations are variable relations in general. Boundary
relations are constant in simplicial complexes. Thus, we con-
sider an algorithm for retrieving a topological relation R to
be optimal if it retrieves a given relation R in time linear in
the number of entities involved in R.

Depending on the amount of information encoded, data
structures for cell and simplicial complexes may support the
retrieval of topological relations according to various degree
of efficiency. If the retrieval of a relation requires examining
the star of all the cells adjacent to or on the boundary of the
query cell, we say that the data structure offers a sub-optimal
support for the retrieval of that relation. If the retrieval a re-
lation from a data structure requires examining all cells of a

c© The Eurographics Association 2007.

65

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

specific dimension, then the data structure does not support
efficient retrieval of that relation.

4. A Taxonomy for Data Structures for Cell and
Simplicial Complexes

We can first classify the data structures for cell and simplicial
complexes in terms of:

1. the domain of the complexes represented: manifold,
pseudo-manifold, regular, etc..

2. the dimension: dimension-independent data structures
can describe cell and simplicial complexes in any dimen-
sion, while dimension-specific data structures are for 2D
and 3D cell and simplicial complexes embedded in the
three-dimensional Euclidean space.

3. the type of topological information encoded: in a cell (or
simplicial) complex, the basic topological elements are
the cells (simplexes). A data structure may encode all the
cells of a complex, or only a subset of it.

4. the way topological information is encoded: some data
structures encode the cells and their topological relations
explicitly. In such data structures, the cells are entities and
the relations are associated with the entities. Implicit data
structures encode the relations among cells indirectly,
through tuples of cells in the same relation.

Explicit data structures can be further classified into
incidence-based, and adjacency-based representations.
Incidence-based data structures encode all cells in a
complex and a suitable subset of incidence relations.
Adjacency-based data structures generally encode only top
cells (i.e., cells which are not on the boundary of other
cells) and vertices, and adjacency relations among them
plus possibly a suitable subset of co-boundary relations. A
further category exists for data structures for simplicial and
cell 2- and 3-complexes and consists of edge-based data
structures in the 2D case, and face-based data structures in
the 3D case.

Data structures that are designed for cell complexes can
be used for simplicial complexes. In some cases, specializa-
tions of such data structures have been developed by taking
advantage of the properties of simplicial complexes.

**** ANNIE: if it is too long, we can cut the paragraph
below

In what follows, we organize the description of the various
representations on the basis of the dimension of the com-
plex they represent. We present a description of each data
structure in terms of the entities and topological relations en-
coded, and we evaluate it based on its expressive power, on
its space requirements, and on the efficiency in supporting
navigation inside the complex (i.e., in retrieving topological
relations not explicitly encoded). The space requirements are
expressed throughout this report in terms only of number of
items of topological information encoded, since we assume

that all the data structures encode the same geometrical in-
formation. This is also gives an evaluation which is indepen-
dent of the specific implementation. We compare the various
data structures inside each category based on the above fea-
tures and, for representations for non-manifold shapes, also
based on their scalability to the manifold case. We empha-
size data structures for simplicial complexes since these are
the most common mesh-based models in a variety of appli-
cations.

5. Dimension-independent Representations
In this Section, we discuss dimension-independent represen-
tations for cell complexes first, and then for simplicial com-
plexes. We review first two dimension-independent implicit
representations, namely the Cell-Tuple [Bri89] and the N-G-
map [Lie94] representations, and an explicit incidence-based
representation, the Incidence Graph (IG) [Ede87]. The two
implicit representations are for manifold shapes, while the
latter is for non-manifold shapes as well. We then discuss
data structures specific for simplicial complexes, namely
the Indexed data structure with Adjacencies (IA) [PBCF93]
(which is a d-dimensional extension of the representation
discussed in [Nie97]), and the Incidence Simplicial data
structure (IS) [DH06]. The former is an adjacency-based
representation, while the latter is a simplified version of the
Incidence Graph specific for simplicial complexes. The IA
data structure is for pseudo-manifolds, while the IS is for
arbitrary simplicial complexes.

5.1. Cell-Tuple and N-G-map
A cell-tuple [Bri89] is a representation for Euclidean cell
complexes with a manifold domain, while the n-G-map
[Lie94] has been developed for abstract cell complexes be-
longing to the class of quasi-manifolds, which is a superclass
of combinatorial manifolds defined in [Lie94]. In essence,
however, the cell-tuples and the n-G-maps are equivalent.
Here, we describe, for brevity, only Cell-Tuple data struc-
ture.

Given a Euclidean d-dimensional cell complex, a cell tu-
ple is a (d +1)-tuple t of d +1 cells, t = (c0,c1, · · ·cd), such
that ci is an i-cell on the boundary of cells ci+1 to cd . A func-
tion si for i = 0..d, called a switch function, is defined on the
cell-tuples such that t′ = si(t) if the cell tuple t′ is identical
to t in every element except the i-th one. The si functions
partition the set of cell-tuples into equivalent classes of size
2 each. The si functions have the following two properties:

• For i = 0, ...,d, si is an involution. That is, given a cell
tuple t, si(si(t)) = t;

• For i = 0, ...,d−2 and i+2 ≤ j ≤ d, sis j , where sis j(t) =
s j(si(t)), is an involution. That is, sis j(sis j(t)) = t.

Figure 4(a) gives a simple example of a cell complex de-
fined on a surface without boundary. The cell complex is

c© The Eurographics Association 2007.

66

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

composed of triangle A, square B and the face C that covers
the remainder of the surface. Figure 4(b) shows all the tuples
in small squares, and all the si (i = 0,1,2) functions. Two tu-
ples are related by function s0 if they are connected through
a dotted line, by s1 if connected by a thin solid line, or by s2
if connected by a dashed line.

The Cell-Tuple data structure encodes all cell-tuples in a
complex, and the switch functions si for i = 0..d. It is an
implicit representation because the cells and their relations
are only implicitly represented by the cell-tuples.

A

d

e
a

c3

4

5

f bB

2

1

C

(a)

A Bf b

a

c
d

e

5 1

3 2

C4

s 2

s 1

s 0(C,a,5) (C,a,1)
(C,e,5)

(B,a,1)

(b)

Figure 4: (a) A simple cell complex on a surface homeomor-
phic to a sphere. The complex is composed of triangle A, o
square B and the remaining face C on the surface; (b) all the
tuples and all the switch si (i = 0,1,2) functions encoded by
the cell-tuple

The space requirements of the Cell-Tuple data structure
can be evaluated as follows. Given a d-dimensional cell
complex with nd d-cells, there are nd(d+1)! cell-tuples. The
switch functions si are encoded as (si, t, t′) where si(t) = t′,
which consists of nd(d + 1)(d + 1)! pieces of information.
To support topological navigation at each simplex, it is nec-
essary to store links from each p-simplex σ to all the cell-
tuples that contain of σ. This needs nd(d +1)! links and thus
it results in a verbose representation.

It can be shown that all topological relations can be re-
trieved in optimal time from the Cell-Tuple data structure.
As an example, consider, the retrieval of relation R0,2(5)
for vertex 5 in Figure 4, which consists of all the faces
that are incident at vertex 5. The retrieval starts with any
of the tuples that include vertex 5, such as (C,a,5). By
alternately applying functions s2 and s1 to each new tu-
ple visited, the cyclic sequence (C,a,5), (B,a,5), (B, f ,5),

(A, f ,5), (A,e,5), (C,e,5) is obtained, which produces the
set of faces {C,B,C} that are incident at vertex 5.

5.2. Incidence Graph (IG)
The Incidence Graph (IG) [Ede87] is an incidence-based ex-
plicit data structure for cell complexes. The topological in-
formation captured is the set of incidence relations among
cells that differ by one dimension. Formally, the IG encodes
all the cells of any given cell d-complex Γ, and for each p-
cell γ, its immediate boundary, and immediate co-boundary
relations, namely:

• for each p-cell γ, where 0 < p ≤ d, boundary relations
Rp,p−1(γ),

• for each p-cell γ, where 0≤ p<d, co-boundary relations
Rp,p+1(γ)

Figures 5(a)-(c) give an example that illustrates the relations
encoded in the IG.

e3e2e1

v1 v2

e4 e5

f 1 f 2

v3 v4

f 2e2f 1

v1

v3

v4

e5

e3

v2

e4

e1

e3e2e1

v1 v2

e4 e5

f 1 f 2

v3 v4

(a) (b) (c)

Figure 5: (a) A simple simplicial complex formed by two
triangles; (b) all the boundary relations encoded by the IG;
(c) all the co-boundary relations encoded by the IG

The design of the IG supports a simple recursive strategy
to retrieve topological boundary and co-boundary relations.
Boundary relation Rp,q(γ) (p > q) for a given p-cell γ is ob-
tained by retrieving the encoded boundary Ri,i−1 relations
of all the i-faces for i = p, · · · ,q−1 of γ. Co-boundary rela-
tion Rp,r(γ) (p < r) is obtained by retrieving the encoded co-
boundary Ri,i+1 relations of all the i-cells for i = p, · · · ,r−1
in the star of γ. The retrieval of such relations can be done
in time linear in the number of cells involved, which is thus
optimal. We can evaluate the exact space requirements of the
IG when it encodes a simplicial complex because each sim-
plex has a constant number of faces. The boundary and co-
boundary relations encoded by the IG for a simplicial com-
plex amounts to

2 ∑
0<p≤d

np(p+1)

pieces of information, because each p-simplex has exactly
(p+1) faces of dimension (p−1).

5.3. Indexed Data Structure with Adjacencies
The Indexed data structure is a representation for simplicial
d-complexes which encodes, for each top k-simplex σ, rela-
tion Rk,0(σ), i.e., the indexes to its (k + 1) vertices. Only

c© The Eurographics Association 2007.

67

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

boundary relations of type Rk, j(σ), j < k, for any top k-
simplex σ, can be extracted in optimal time from such rep-
resentation. Note that the j-simplexes on the boundary of σ
are described through j +1 vertex indexes.

The Indexed data structure with Adjacencies (IA), also
called winged representation [Nie97, PBCF93] extends the
indexed data structure into a topological data structure,
which also encodes adjacency information among the sim-
plexes. This restricts its representation domain to pseudo-
manifolds. The IA data structure encodes, for each d-
simplex σ in a simplicial complex Σ:
• relation Rd,0(σ), i.e., the indexes of its (d +1) vertices;
• relation Rd,d(σ), i.e., the indexes of the (d + 1) d-

simplexes sharing a (d −1)-face with σ.
Only boundary relations, as in the indexed data structure,

plus relation Rd,d can be retrieved in optimal time from the
IA data structure. Vertex-based co-boundary relations can
retrieved in optimal time from an extension of the IA data
structure. This is achieved by encoding, for each vertex v,
a partial version of relation R0,d(v), that we denote R∗

0,d(v),
i.e., one d-simplex for each connected component of the link
of v.

Figure 6 gives an example of the retrieval of the com-
plete R0,3(v) relation for vertex v from the encoded partial
R∗

0,3(v) = {t1, t4} relation. From v, t1 is accessible through
R∗

0,3(v). t2 is accessible through the R3,3(t1) relation of t1.
Similarly, the tetrahedra t3 and t5 in the star of v are retriev-
able first by extracting t4 from R∗

0,3(v) and then by retrieving
R3,3(t4).

t 5t 3

t 41t

t 2

v

Figure 6: Example of the retrieval of the R0,3(v) relation
from the encoded partial R∗

0,3(v) = {t1, t4} relation in the IA
data structure

This extension allows extracting all simplexes in the star
of a vertex in time linear in the number of such simplexes,
i.e., all R0,k(v) relations, where 0 ≤ k ≤ d, can be retrieved
in time linear in the number of d-simplexes in the star of v.
For d ≤ 3, R0,k(v) is optimal. Retrieval of all Rq,k(σ) rela-
tions for 0 < q < k < d − 1 requires traversing the star of
each of the vertices of σ and thus it takes time linear in the
number of d-simplexes incident at the vertices of σ. Thus,
such algorithms are still local, but sub-optimal.

The storage cost of the IA data structure with this exten-
sion is equal to 2nd(d + 1)+ n0 items for a simplicial com-
plex with nd d-simplexes and n0 vertices, only n0 items more
with respect to storing just the Rd,0 and Rd,d relations. For a
manifold simplicial 2-complex, this leads to 6n2 +n0, which
is approximately 13n0 as a consequence of Euler’ formula.

5.4. The Incidence Simplicial Data Structure
The Incidence Simplicial (IS) Data Structure [DH06] is
an improved version of the Simplified Incidence Graph
[DGH04] which simplifies the IG for encoding simplicial
complexes. It encodes all simplexes in a simplicial complex
Σ as well as the following topological relations:

• for each p-simplex σ, where 0< p≤d, boundary relations
Rp,p−1(σ),

• for each p-simplex σ, where 0 ≤ p < d, partial co-
boundary relations R∗

p,p+1(σ), which is defined as fol-
lows: R∗

p,p+1(σ) consists of one arbitrarily-selected (p+
1)-simplex, for each connected component in the link
lk(σ) of σ. In the example of Figure 7(a), t1, t2 and t3
form a connected component, and t4 is a single com-
ponent in the link of v shown in Figure 7(b). Relation
R∗

0,1(v) = {e1,e2}.

3t
1t

2t 4t

v

1e
2e

v

(a) (b)

Figure 7: (a) The star of v (b) The link of v shown in shaded
area. The partial co-boundary C∗

p,p+1(v) relation consists of
one edge for each connected component in the link of v

Note that partial co-boundary relation R∗
d−1,d(σ) is the

same as co-boundary relation Rd−1,d(σ). If the domain of
Σ is manifold, all partial co-boundary relations have one el-
ement with the exception of R∗

d−1,d(σ), which consists of
at most two d-simplexes. Note also that the IS encodes the
same boundary relations as the IG.

The storage cost of the IS for encoding a simplicial com-
plex is:

∑
0<p≤d

np(p+1)+ ∑
0≤p<d

kp,

where np is the number of p-simplexes in Σ and kp is the
total number of connected components at all p-simplexes of
Σ. For the case of a manifold simplicial 2-complex, there is
exactly one component at each vertex (ie., k0 = n0) and the
total number of components at all the edges is equal to 3n2
(i.e., k1 = 3n2). Therefore, the storage cost of the IS is at
most equal to 6n2 +2n1 +n0, which is approximately 19n0,
because of Euler formula.

5.5. Comparisons
Table 1 summarizes the comparison among the various
dimension-independent data structures in terms of their do-
main, of the complexes they can describe, and of the repre-
sentation method.

We summarize the space requirements of the above data

c© The Eurographics Association 2007.

68

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

Data Domain Complexes Method
Structure
Cell-Tuple Manifold Cell Implicit
IG Non-Manifold Cell Incidence-based
IA Manifold Simplicial Adjacency-based
IS Non-Manifold Simplicial Incidence-based

Table 1: Data structures for d-dimensional complexes

structures, for manifold and for arbitrary simplicial com-
plexes. These costs are expressed throughout this report only
in terms of items of topological information encoded. The
storage costs of the cell-tuple, of the IG and of the IA, and
IS data structures for a manifold d-dimensional simplicial
complex are as follows (they are expressed in terms of the
number of q-simplexes, denoted as nq):

• Cell-Tuple: nd(d +1)(d +1)!+nd(d +1)!
• IA: 2(d +1)nd +n0
• IG: 2∑0<p≤d np(p+1)
• IS: ∑0<p≤d np(p+1) + 2nd−1+∑0≤p<d−1 np

For arbitrary d-dimensional simplicial complexes, we can
only report the storage costs of the IG and of the IS data
structures, since the other two are for restricted classes of
complexes. In the following, kq denotes the total number of
connected components at all the links of the q-simplexes of
the complex.

• IG: 2∑0<p≤d np(p+1)
• IS: ∑0<p≤d np(p+1) + ∑0≤p<d kp

We summarize in Table 2 the navigation costs by evalu-
ating the optimality of algorithms for retrieving topological
relations on the various representations.

Data Boundary Co-boundary Adjacency
Structure relations relations relations
Cell-Tuple Optimal Optimal Optimal
IG Optimal Optimal Optimal
IA Optimal R0,k: optimal Rd,d : optimal

Others: Others:
sub-optimal sub-optimal

IS Optimal Sub-optimal Sub-optimal

Table 2: Navigation efficiency of data structures for d-
dimensional complexes

6. Representations for Two-dimensional Cell and
Simplicial Complexes

In this Section, we discuss representations for two-
dimensional cell and simplicial complexes embedded in the
3D Euclidean space. We classify them according to the tax-
onomy introduced in Section 4, and organize their descrip-
tion in two subsections according to the domain of the com-

plexes (manifold or non-manifold). We perform the com-
parison based on their space requirements and on their ef-
ficiency in retrieving topological relations. We evaluate and
compare the non-manifold representations also based on
their scalability to the manifold case. We discuss briefly
those for manifold and arbitrary (non-manifold) cell com-
plexes, and focus on representations for simplicial com-
plexes.

6.1. Representations for Manifold 2-Complexes
We discuss here representations for cell and simplicial com-
plexes for manifold shapes. A thorough analysis and com-
parison of data structures for manifold cell 2-complexes can
be found in [Sam06]. Here, we briefly review the Winged-
Edge [Bau72], the Doubly-Connected Edge List (DCEL)
[MP78], the Half-Edge [Man87] the Quad-Edge [GS85],
and the Lath-based [JLM02] data structures for manifold
cell complexes, and the Star-Vertex [KT01], and the Cor-
ner Table [RSS01] data structures for manifold simplicial
complexes (usually called triangle meshes). The Winged-
Edge, DCEL, and the Half-Edge data structures are all edge-
based representations, since they represent the edge as the
primary entity and the relations around it. The quad-edge
and the lath-based data structures are implicit representa-
tions. The Corner Table and the Star-Vertex data structures
are adjacency-based representations.

6.1.1. Explicit Edge-based Data Structures for Cell
2-Complexes

The Winged-Edge (WE) data structure [Bau75] is histori-
cally the first one proposed for two-dimensional cell com-
plexes. It encodes: (i) for each edge e, its two vertices, the
two 2-cells (usually called faces in the context of boundary
representations for solid objects) incident at e, and the four
edges that are both adjacent to e and are on the boundary
of the two faces incident at e; (ii) for each face f , a refer-
ence to one edge on the boundary of f ; (iii) for each vertex
v, a reference to one edge incident at v. It supports the re-
trieval of all topological relations in optimal time. Also the
cells in the star of a vertex or on the boundary of a face can
be traversed in both clockwise or counterclockwise direc-
tions. Given a cell 2-complex with n2 faces, n1 edges and n0
vertices, the Winged-Edge data structure stores n2+8n1+n0
pieces of topological information.

The Doubly-Connected Edge List (DCEL) data struc-
ture [MP78] is a simplified version of the WE representa-
tion. For each edge e, instead of encoding all four edges on
the boundary of the two faces incident at e, it stores only
two edges, one for each of the two faces incident in e. This
data structure supports the traversal of all topological rela-
tions, but only in counterclockwise direction in the star of
a vertex, and in clockwise direction around the boundary of
a face. n2+6n1+n0 pieces of topological information are en-
coded in the DCEL data structure.

c© The Eurographics Association 2007.

69

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

The Half-Edge (HE) data structure [Man87] encodes two
copies of each edge, each of which is called a half-edge. A
half-edge has a direction with respect to the face to which
it bounds. For each half-edge, the following information is
encoded: its start vertex, the face associated with it, the pre-
vious and the next edges on the same face, the companion
half-edge. Relations encoded at vertices and faces are the
same as those encoded in the Winged-Edge and DCEL data
structure. The Half-Edge data structure supports the retrieval
of all topological relations in optimal time, and also the cells
in the star of a vertex or on the boundary of a face can be
traversed in both clockwise or counterclockwise directions.
There are n2+10n1+n0 pieces of topological information en-
coded in the HE data structure. An implementation of the
HE data structure which has the same storage cost as the
WE data structure is described in [Sam06].

The edge-based relations encoded in each of the edge-
based data structures described are illustrated in Figures
8(a)-(c). All the edge-based data structures presented in this
section encode, for each edge, relations R1,0 and R1,2, dif-
ferent partial R∗

1,1 relations, since only two or four edges
are encoded, a partial R∗

0,1 relation for each vertex, which
consists of one edge in the star of the vertex, and a partial
R∗

2,1 relation for each face, which consists of one edge on
the boundary of the vertex. All these data structures support
the retrieval of all topological relations in optimal time.

3e 4e

1e 2e

1f
2f

v

u

e

3e

1f
2f

2e

v

u

e
3he

1f
1he
he he’

u

(a) (b) (c)

Figure 8: Edge-based relations represented in the edge-
based data structures: (a) In the Winged-Edge data struc-
ture, e has a reference to e1,e2,e3,e4,u,v, f1 and f2. (b) In
the DCEL, e has a reference to e2,e3,u,v, f1 and f2. (c) In
the Half-Edge data structure, each edge e is represented as
two half-edges he and he. Half-edge he has a reference to
he′,he2,he3,u and f1

6.1.2. Quad-Edge and Lath-based Data Structures

The Quad-Edge data structure [GS85] and the Lath-based
data structures [JLM02] are implicit data structures for cell
2-complexes with a manifold domain. In such complexes,
edges in the star of each vertex can be ordered radially on a
plane around the vertex, and the edges on the boundary of
a face can be ordered clockwise or counterclockwise around
the face. Thus, each edge belongs to four loops: the two at
its extreme vertices, and the two at the faces sharing it. All
these representations exploit these property.

In the Quad-Edge data structure, each quad-edge is as-
sociated with its two extreme vertices, its two adjacent
faces and the next edges in its four loops. Essentially, the
Quad-Edge data structure encodes the same information as
the Winged-Edge data structure. In a quad-edge that cor-
responds to edge e, the four adjacent edges of e are orga-
nized as part of the two loops around two faces, and two
loops around two vertices. In the Winged-Edge data struc-
ture, the same four edges belong to the two loops of the two
faces. Same relations at vertices and faces are encoded as
in the Winged-Edge data structure. As the edge-based data
structures presented in Subsection 6.1.1, the Quad-Edge data
structure encodes partial relations R∗

2,1 for each face, partial
relation R∗

0,1 for each vertex, complete relations R1,0, R1,2
and a partial version of relation R1,1 for each edge. As in
the other edge-based representations, all topological rela-
tions can be retrieved in optimal time. The storage cost of
the Quad-Edge data structure is n2+8n1+n0.

The Lath-based data structures are a collection of data
structures that use vertices and laths as the basic elements.
Each lath is uniquely identified with exactly one vertex, one
edge and one face of a complex. A lath is conceptually sim-
ilar to a cell-tuple. A Lath-based data structure requires no
separate records for edges and faces. There are three vari-
ations in the encoding of a lath, giving rise to three data
structures: the Split-Edge, the Half-Edge-Lath and the Cor-
ner data structures. In the Split-Edge data structure, each
lath se corresponds to one side of an edge and encodes a
link to its start vertex u, a link to the lath se′ of the other
side of the same edge, and a link to the lath se3 of the next
edge in the clockwise direction on the same face (see Figure
9(a)). In the Half-Edge-Lath data structure, each lath he (il-
lustrated in Figure 9(b)) is associated with half of an edge.
It encodes a link to its vertex u, a link to the lath he′ of the
other half of the same edge, and a link to the lath he′1 of the
next edge in the clockwise direction around the same ver-
tex. Joy et al. called this version of the lath-based data struc-
ture the Half-Edge data structure, but the edge is halved dif-
ferently from that of the Half-Edge data structure described
above [Man87], and we call it the Half-Edge-Lath to distin-
guish it from the latter. In the Corner data structure, a lath
is associated with one corner of a vertex. Each lath u′ en-
codes: a link to the vertex u, a link to the lath v′ of the next
vertex v in the clockwise direction on the same face, and a
link to the lath u′′′ of the next face in the clockwise direc-
tion around the same vertex. All Lath-based data structures
support the retrieval of all topological relations through laths
in optimal time. However, because of the implicitness of the
faces, edges and vertices, access from these cells to their as-
sociated laths is not time-efficient. All Lath-based data struc-
tures have the same storage costs, which is 6n1, because each
lath stores three pieces of topological information and the
total number of laths is 2n1 in each case elaborated as fol-
lows. For the Split-Edge and Half-Edge-Lath structures, ev-
ery edge corresponds to exactly two split-edge laths, exactly

c© The Eurographics Association 2007.

70

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

two half-edge laths, respectively. In the Corner structure, it
can be observed that the number of corners at each vertex is
equal to the degree of the vertex (the number of edges in-
cident at that vertex), while each edge is incident at exactly
two vertices.

3se
se se’

u 1he
1he’

u

he’
he

u"’

u’ u"
v’ v"

v"’

u

v

(a) (b) (c)

Figure 9: (a) Split-Edge Lath; (b) Half-Edge Lath; (c) Cor-
ner Lath

6.1.3. The Star-Vertex Data Structure
The Star-Vertex data structure [KT01] is an adjacency-based
data structure for manifold simplicial 2-complexes. The ba-
sic entity here is the vertex. For each vertex v, the Star-Vertex
data structure encodes all the vertices in the link of v in coun-
terclockwise order. For each vertex v′ in the link of v, the
data structure encodes a reference to the position of vertex
v′′ in the link of v′, such that v,v′,v′′ are in the same triangle.

In terms of topological relations, we can say that the Star-
Vertex data structure encodes relation R0,0 explicitly and re-
lation R2,0 implicitly. It only supports the retrieval of bound-
ary relations and relations R0,0 in optimal time. Co-boundary
relations cannot be retrieved locally. The Star-Vertex data
structure encodes 6n2 pieces of information for a manifold
simplicial 2-complex with n2 triangles, as the sum of the
number of neighbors at all vertices, ∑v deg(v) is equal to
twice the number of edges, and for each neighbor, two pieces
of information (i.e., the neighbor vertex, and the next vertex
on face) are encoded. Based on Euler’ formula, this is ap-
proximately equal to 6n2.

6.1.4. The Corner Table (CoT) Data Structure
The Corner Table (CoT) data structure [RSS01] is an
adjacency-based data structure for manifold simplicial 2-
complexes. A corner is a unique index that is assigned to
a triangle-vertex pair. It encodes the following information:
• For each triangle t, its three vertices a,b,c;
• For each corner c of triangle t, let e be the edge of t that is

opposite to c. Then the opposite corner of the triangle that
shares e is associated to c.
Formally, the Corner-Table data structure encodes the

complete R2,2 and R2,0 relations, and the R0,2 relation par-
tially. All topological relations can be retrieved from the
Corner-Table in optimal time. The total amount of encoded
information is equal to 6n2, of which 3n2 accounts for the
vertices of the triangles, and 3n2 accounts for the opposite
corner of each corner.

6.1.5. Comparisons
We compare the data structures for manifold 2-complexes in
terms of their characteristics, their space requirements and
efficiency in supporting the retrieval of topological relations.
Table 3 summarizes the characteristics of the various data
structures in terms of the complexes they represent and of
their representation method.

Data Domain Complexes Method
Structure
Winged-Edge Manifold Cell Edge-based
DCEL Manifold Cell Edge-based
Half-Edge Manifold Cell Edge-based
Quad-Edge Manifold Cell Implicit
Lath Manifold Cell Implicit
Star-Vertex Manifold Simplicial Adjacency-based
Corner Table Manifold Simplicial Adjacency-based

Table 3: Characteristics of the data structures for manifold
2-complexes

The storage cost of each data structure is evaluated based
on the topological information encoded. We also consider
the two-dimensional instances of the dimension-independent
data structures, except for the Cell-Tuple data structure,
which is the dimension-independent generalization of the
Quad-Edge data structure. The storage costs of these data
structures for a cell 2-complex with n2 faces, n1 edges and
n0 vertices, are listed below. From Euler’ formula, we have
that n2 ≤ 2n0 and n1 ≤ 3n0. Thus, for the sake of compar-
ison, we can express all the storage costs in terms of the
number of vertices.

• Winged-Edge: n2 +8n1 +n0 ≈ 27n0
• DCEL: n2 +6n1 +n0 ≈ 21n0
• Half-Edge: n2 +10n1 +n0 ≈ 33n0
• Quad-Edge: n2 +8n1 +n0 ≈ 27n0
• Laths: 6n1 ≈ 18n0
• IG: 8n1 ≈ 24n0

The storage costs of these data structures are evaluated
for six data sets of manifold cell-complexes and reported
in Table 4. The Laths is the most compact data structures
for manifold cell 2-complexes, followed by the Incidence
Graph. The compactness of the lath-based data structures
is achieved, however, at the expense of the fact that access
from vertices, edges and faces to their associated laths is not
efficient. The IG, which is 1.33 times the size of the Laths
data structures, on the other hand, explicitly represents all
these entities. Explicit edge-based data structures generally
are less space-efficient. Among them, the Half-Edge data
structure has the largest space requirements, which is 1.8
times that of the Laths data structures.

The storage costs of the data structures for manifold sim-
plicial 2-complexes and of the two dimensional instances of
the IA and the IS data structures are:

c© The Eurographics Association 2007.

71

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

Data set n0 n1 n2 deg(V) deg(F)
Football 1 1232 2340 1110 3.80 4.22
Football 2 930 1500 572 3.23 5.24

Crumb 312 564 254 3.62 4.44
Multidode 80 150 72 3.75 4.17

Torus 10.2k 20.5k 10.2k 4.00 4.00
Cone 641 1310 671 4.09 3.90

(a)

Data set CT IG WE DC HE QE L
Football 1 26.6k 18.7k 21.1k 16.4k 25.7k 21.1k 14.0k
Football 2 13.7k 12.0k 13.5k 10.5k 16.5k 13.5k 9.00k

Crumb 6.1k 4.5k 5.1k 4.0k 6.2k 5.1k 3.4k
Multidode 1.7k 1.2k 1.4k 1.1k 1.7k 1.4k 0.9k

Torus 246k 164k 184k 143k 225k 184k 123k
Cone 16.1k 10.5k 11.8k 9.17k 14.4k 11.8k 7.86k

(b)

Table 4: (a) Six data sets of manifold cell 2-complexes:
deg(V)=Average number of faces incident at a face,
deg(F)=Average number of vertices on a face; (b) Stor-
age cost of seven data structures for data sets in (a): CT
(Cell Tuple), IG (Incidence Graph), WE (Winged Edge), DC
(DCEL), HE (Half-Edge), QE (Quad-Edge), L (Lath)

• Winged-Edge: 13n2 +n0 ≈ 27n0
• DCEL: 10n2 +n0 ≈ 21n0
• Half-Edge: 16n2 +n0 ≈ 33n0
• Quad-Edge: 13n2 +n0 ≈ 27n0
• Laths: 9n2 ≈ 18n0
• Corner Table: 6n2 ≈ 12n0
• Star-Vertex: 6n2 ≈ 12n0
• IS: 9n2 +n0 ≈ 19n0
• IA: 6n2 +n0 ≈ 13n0

We have evaluated the storage costs of these data struc-
tures for six data sets of manifold simplicial 2-complexes
and the results are reported in Table 5. We can see that the
space requirements of the Corner-Table, of the IA and of the
Star-Vertex data structures are comparable, but all of them
encode only vertices and triangles. When applied to sim-
plicial complexes, the edge-based representations have the
largest space requirements, at least twice the storage cost
of those encoding only vertices and triangles. The IS data
structure and the lath-based ones are somehow in-between,
and, as the edge-based representations, encode all the enti-
ties uniquely and explicitly.

Finally, we summarize in Table 6 the navigation costs by
evaluating the optimality of algorithms for retrieving topo-
logical relations on the various representations.

Data set n0 n1 n2 deg(V)
Car 6.94k 18.0k 11.8k 5.09
Doll 551 1.38k 831 4.52
Face 2.09k 6.15k 4.05k 5.83

Temple 6.85k 17.8k 11.00k 4.82
Sofa 8.09k 23.5k 15.1k 5.61
Lion 5.17k 15.2k 10.1k 5.84

(a)

Data set WE DC HE QE L CoT SV IS IA
Car 163k 127k 199k 163k 108k 70.7k 70.7k 114k 77.7k
Doll 12.4k 9.65k 15.2k 12.4k 8.27k 5.0k 5.0k 8.56k 5.54k
Face 55.3k 43.0k 67.6k 55.3k 36.9k 24.3k 24.3k 38.8k 26.4k

Temple 160k 125k 196k 160k 107k 66.0k 66.0k 111k 72.9k
Sofa 211k 164k 258k 211k 141k 90.8k 90.8k 147k 98.9k
Lion 137k 106k 167k 137k 91.1k 60.4k 60.4k 96.1k 65.5k

(b)

Table 5: (a) Six data sets of manifold simplicial 2-
complexes: deg(V)=Average number of faces incident at a
face; (b) Storage cost of nine data structures for data sets
in (a): WE (Winged Edge), DC (DCEL), HE (Half-Edge),
QE (Quad-Edge), L (Lath), CoT (Corner Table), SV (Star-
Vertex), IS (Incidence Simplicial) and IA

Data Boundary Co-boundary Adjacency
Structure relations relations relations
Winged-Edge Optimal Optimal Optimal
DCEL Optimal Optimal Optimal
Half-Edge Optimal Optimal Optimal
Quad-Edge Optimal Optimal Optimal
Lath Optimal Optimal Optimal
Star-Vertex Optimal Not supported R0,0: optimal

Others:
not supported

Corner Table Optimal Optimal Optimal

Table 6: Navigation performances of data structures for 2-
dimensional complexes specific for manifold domains

6.2. Representations for Arbitrary Two-Dimensional
Complexes

In this Subsection, we review representations for non-
manifold shapes discretized through cell and simplicial com-
plexes. The first data structure proposed in the literature
for cell 2-complexes is the Radial Edge (RE) data struc-
ture [Wei88], which has been extended and specialized
in [GCP90, YK95]. More recent simplified representations
are the Partial Entities (PE) [LL01] and the Loop Edge-use
(LE) data structure [MH01] for cell complexes. The PE data
structure has the same representation power as the RE data
structure, but it is considerably more compact. The LE data
structure is a specialization of the RE data structure to regu-
lar cell complexes.

c© The Eurographics Association 2007.

72

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

We describe first the Radial-Edge and the Partial-Entities
data structures first. Then, we present and analyze in de-
tails data structures for simplicial 2-complexes, namely, an
edge-based data structure, the Directed Edge (DE) data
structure [CKS98], which can be viewed as an extension
of the Half-Edge data structure to the non-manifold sim-
plicial case, an adjacency-based data structure, called the
Triangle-Segment (TS) data structure [DMPS04], which ex-
tends the IA data structure to the non-manifold case, and an
incidence-based data structure called the Vertex-Face (VF)
data structure [VL97]. We compare such representations
based on their storage requirements and on their perfor-
mance in retrieving topological relations, also with respect
to two-dimensional instances of the Incidence Graph and of
the IS data structure described in Subsections 5.2 and 5.4,
respectively.

One important issue in evaluating a data structure for non-
manifold shapes is its scalability to the manifold case, which
is evaluated as the overhead of the storage cost of data struc-
ture when applied to a manifold shape with respect to that
of a data structure of the same type but specifically designed
for manifold shapes. This is relevant since in a typical mod-
eling scenario we need to have a representation capable to
deal with non-manifold shapes, but most of the shapes will
be in any case manifold.

6.2.1. The Radial-Edge data structure

The Radial Edge (RE) data structure [Wei88] has been de-
veloped in order to describe the decomposition of the bound-
ary of non-manifold and non-regular three-dimensional ob-
jects. The decomposition is not a cell complex as defined
in algebraic topology, since the 2-cells are not necessarily
homeomorphic to closed disks, but they can be multiply con-
nected 2-manifolds with boundary. The connected compo-
nents formed by the edges bounding any 2-cell (face) are
called loops. The entities in the RE data structure are thus:
regions, shells, faces, loops, edges and vertices. A region is
a solid objects, which is bounded by a collection of shells.
A shell is thus an oriented boundary surface of a region,
consisting of maximal connected sets of 2-cells (faces). In
addition, faces, loops, edges and vertices are characterized
by orientations, namely face-uses, loop-uses, edge-uses and
vertex-uses. A face f has two face-uses associated with it,
which correspond to the two possible orientations of f . The
oriented boundary of a face-use is described by loop-uses.
A loop-use is composed of a circular list of edge-uses. Each
edge-use associates an edge e with the orientation induced
on e by the face-use to which it belongs. Since each edge is
bounded by two vertices, each edge-use is associated with
two vertex-uses, which describe the use of those vertices as
the boundary of that edge-use.

Here, we present, for clarity, a simpler version of the RE
data structure for representing an object described by a con-
nected cell 2-complex, in which the 2-cells are homeomor-

phic to disks, and there are no isolated vertices. Thus, ev-
ery face is bounded by exactly one loop. This simple ver-
sion of the RE data structure does not contain high-level
topological elements, namely, regions, and shells. This sim-
ple version of the RE data structure has the following en-
tities: faces, edges, vertices, face-uses (which also capture
their oriented boundaries originally described by loop-uses),
edge-uses and vertex-uses. It encodes only the following in-
formation:

• For each face f , a reference to a face-use (for example, in
Figure 10(a) f1 points to fu1);

• For each face-use fu (see fu1 of Figure 10(a)):

– the face f which it bounds (that is f1 in the example);
– a reference to the other face-use on the boundary of f

(that is fu2 in the example);
– a reference to an edge-use on fu (that is eu1 in the ex-

ample);

• For each edge e, a reference to an edge-use that is associ-
ated with e (for example, in Figure 10(b) e points to eu1);

• For each edge-use eu in face-use fu of face f (such as eu1
in Figure 10(b)):

– the corresponding undirected edge e;
– its face-use fu (that is fu1 in the figure);
– the mate edge-use in the other face-use of f (that is eu2

in the figure);
– the adjacent edge-use radially ordered around e (that

is eu6);
– the previous edge-use in fu (see Figure 10(c), the pre-

vious edge-use of eu1 is eu4);
– the next edge-use in fu (in Figure 10(c), the next edge-

use of eu1 is eu2);
– the start vertex-use of eu (in Figure 10(c), the start

vertex-use of eu1 is vu1;

• For each vertex v, a reference to one vertex-use that is
associated with v (in Figure 10(d), v has a reference to
vu1;

• For each vertex-use vu that is associated with one edge-
use eu (such as vertex-use vu1 of Figure 10(d)):

– the corresponding undirected vertex v;
– the previous vertex-use of v (that is vu5);
– the next vertex-use of v (that is vu2);
– its edge-use eu (that is eu1);

While the edge-uses around an edge can be ordered, the
vertex-uses at a vertex cannot be ordered. Therefore, the list
of vertex-uses at vertex v simply collect all the vertex-uses
at v.

The RE data structure can be formalized in terms of topo-
logical relations as follows (note that the formalization does
not take into account the orientations captured by face-uses,
edge-uses and vertex-uses):

• For each face f : relation R∗
2,1(f), which consists of one

edge on the boundary of f ,

c© The Eurographics Association 2007.

73

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

f1
f2

u1e
u2e

u3e

u4e

u2f
u1f

f2f3

f1

u4eu5e
u6e

u1e u2e

u3e

f2f3

f1
u1f u2f

e

e

(a) (b)

u3eu1e

u2e

u4e u4vu1v

u3v
u2v

f

l

vu1

vu5

vu4
vu3

vu2

eu1

eu2

eu3
eu4

eu5

e1

e2

e3

e5

e4

v

v

(c) (d)

Figure 10: (a) Edge-uses radially ordered around an edge
between two faces; (b) Cross-section view of edge-uses radi-
ally ordered around an edge between three faces (c) Planar
view of a loop l bounding face f ; (d) Vertex-uses of the same
vertex v

• For each edge e:

– relation R1,2(e), where the faces are ordered around e;
– partial relation R∗

1,1(e), defined as the collection of the
pair of edges adjacent to e and bounding the faces in-
cident in e, ordered around e, so that both the 2i-th
element and the (2i+1)-element in this relation are on
the i-th face in R1,2(e);;

– relation R1,0(e), ordered by indices of the vertices;

• For each vertex v: relation R0,1(v), unordered.

Relations R1,2(e), R∗
1,1(e) and R∗

1,0(e) for edge e describe
the information encoded at edges. R1,2(e) describes the rela-
tion between an edge and a face defined by an edge-use. Re-
lation R∗

1,1(e) captures the association between an edge-use
ep and the edges following and preceding ep in the boundary
of the face f with which ep is associated. The adjacency of
edge-uses at the same edge e is implicitly expressed through
the order in R∗

1,1(e). It can be seen that all topological re-
lations can be retrieved in optimal time from the RE data
structure.

The Tri-Cyclic Cusp representation [GCP90] extends the
RE data structure with new elements (called cusps) intro-
duced to handle the inclusion relations of topological disks
at non-manifold vertices. The Coupling Entities representa-
tion [YK95] is an improvement over both the RE and the Tri-
Cyclic Cusp data structures, obtained by introducing entities
that address the relationships at the loop cycles formed by

edges around faces, the radial cycles formed by faces around
edges and cycles formed by faces at vertices.

The RE representation is not highly scalable to the de-
gree of manifold singularities of a shape. It has been shown
in [LL01] that, when the domain is manifold, the RE rep-
resentation occupies about four times as much storage space
as the manifold representations such as the Winged-Edge de-
scribed in Section 6.1.1, which resembles the RE in terms of
the entities and relations encoded.

6.2.2. The Partial Entities Data Structure
The Partial Entities (PE) data structure [LL01] has been
proposed for cell complexes. It encodes regions, shells,
faces, loops, edges, and vertices, partial-faces which are the
two sides of a face, partial-edges and partial-vertices.

Each face has a unique orientation defined based on the
geometry of its surface normal. Each face is bounded by one
loop with orientation, which consists of a cycle of partial-
edges. Each partial-edge corresponds to the appearance of
an edge on a loop bounding a face. Thus, if there are m faces
incident at edge e, the PE data structure stores m partial-
edges corresponding to e. A top 1-simplex we, called a wire-
edge, has a loop that consists of two partial-edges of we. The
partial-edge is comparable to the edge-use in the RE data
structure, except that each edge-use is associated with one
face-use, while a partial-edge is associated with a face. As
there are two face-uses to each face in the RE data structure,
the number of edge-uses in the RE data structure is twice the
number of partial edges in the PE data structure.

Partial-faces are the defining components of shells and are
comparable to the face-uses in the RE data structure. Each
face has two partial-faces as a face may belong to two shells.
A partial vertex is a copy of a vertex split for each manifold
surface sharing it.

The PE data structure is designed to encode objects with
several boundaries and several connected components. By
limiting the domain to objects with just one connected com-
ponent, and with faces that are homeomorphic to 2-disks,
and are thus bounded by one loop, we have simplified the
original PE data structure for the purpose of highlighting its
capability in representing the connectivity among the enti-
ties of a cell complex. Therefore, high-level topological ele-
ments, namely, regions and shells are not represented. We
also do not consider partial-faces and partial-vertices be-
cause their primary function is associated with the descrip-
tion of the high-level topological elements. The simplified
version of the PE data structure encodes the following infor-
mation (we refer to Figure 11 to illustrate it):

• For each face f : a reference to a partial-edge on its bound-
ary. (In Figure 11, f1 has a reference to ep1);

• For each partial-face fp
• For each edge e, a reference to a partial-edge that de-

scribes e. (In Figure 11, e has a reference to ep1);

c© The Eurographics Association 2007.

74

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

p4e
v

p6e p5e
p7e

p1ep2e p3e

e

f1
f2f3

Figure 11: Elements of the PE structure: relations at a non-
manifold edge e shared by three faces: f1, f2, f3

• For each partial-edge ep bounding face f , there is a refer-
ence to: (see ep1 in Figure 11 as an example)

– the corresponding edge e (e in the example);
– the face f (f1 in the example);
– the previous adjacent partial-edge ordered in counter-

clockwise direction around e (ep4 in the example);
– the next adjacent partial-edge ordered around e (ep6 in

the example);
– the previous partial-edge in counter-clockwise direc-

tion on the boundary of f (ep3 in the example);
– the next partial-edge on the boundary of f (ep2 in the

example);
– the start vertex of ep (v in the example);

• For each vertex v: the list of all partial-edges ep that start
at v (In Figure 11, v has references to ep1, ep5 and ep7.)

We can express the information encoded in the specialized
PE data structure in terms of topological relations as follows:

• For each face f : relation R∗
2,1(f), which encodes one edge

on the boundary of f ,
• For each edge e:

– relation R1,2(e), ordered around edge e;
– Partial relation R∗

1,1(e) which is defined as follows:
R∗

1,1(e) consists of the edges on the boundary of the
faces incident at e and sharing one extreme vertex with
e. The elements in relation R∗

1,1(e) are ordered so that
both the 2i-th and the (2i+1)-th elements in R∗

1,1(e)
are on the i-th triangle in R1,2(e).

– Relation R1,0(e);

• For each vertex v: relation R0,1(v), unordered.

Relations R1,2(e), R∗
1,1(e) and R1,0(e) for edge e describe

the information encoded at edges. R1,2(e) describes the re-
lation between an edge and a face defined by a partial-edge.
Relation R∗

1,1(e) captures the association between a partial-
edge ep and the edges following and preceding ep in the
boundary of the face f with which ep is associated. The
adjacency of partial-edges at the same edge e is implicitly
expressed through the order in R∗

1,1(e). Thus, the PE data
structure encodes the same relations as the RE one. All topo-
logical relations can be retrieved in optimal time from the PE
data structures, as described in [LL01].

It has been shown in [LL01] that the storage cost of the PE

representation of non-manifold cell-complexes is half that
of the RE representation, while the PE representation of a
manifold cell 2-complex uses twice as much space as that of
the Winged-Edge representation (see Section 6.1.1).

The primary difference between the RE and the PE data
structure is that the PE data structure considers each face to
have one orientation geometrically defined based on its face
normal. The orientation of its boundary can thus be uniquely
defined. In the RE data structure, a face entity is without ori-
entation. The face-uses of the RE data structure describe all
the possible orientations of each face. In the RE data struc-
ture, the connectivity among the faces, edges and vertices is
defined through face-uses, edge uses and vertex-uses. In the
PE data structure, however, the connectivity among faces,
edges and vertices is captured at the faces, at partial-edges
and at partial-vertices (which have almost one-to-one corre-
spondence with their corresponding vertices), Thus, the only
entity required for topological navigation is the partial-edge.

6.2.3. The Directed Edge data structure
The Directed-Edge (DE) data structure [CKS98] is an exten-
sion of the Half-Edge data structure [Man87], proposed for
two-dimensional cell complexes with a manifold domain, to
simplicial 2-complexes embedded in the three-dimensional
Euclidean space. The DE data structure is based on the con-
cept of directed edge. A directed edge ed of an edge e in a
simplicial 2-complex is an occurrence of e on the boundary a
triangle incident at e. A directed edge is similar to the edge-
use and to the partial-edge in the RE and PE data structures,
respectively.

In the DE data structure, the entities stored are directed
edges and vertices. Triangles and undirected edges are
not explicitly encoded. Triangles are implicitly referenced
through the edges on their boundary. The association be-
tween a triangle and its three edges is through indexing.
The i-th triangle, fi is described by the 3i-th, (3i+1)-th and
(3i+2)-th directed edges, which form the oriented boundary
of fi. Wire-edges are represented as directed edges. Thus, the
DE data structure encodes the following information:

2v

1v

de’’

de’

re
de

f

f ’

Figure 12: An illustration of the relations encoded at a di-
rected edge ed

• For each triangle f , the three directed edges on the bound-
ary of f ;

• For each directed edge ed on the boundary of face f , there
is a reference to each of the following entities(see Figure
12 for the illustration of the symbols)
– the start vertex v1;

c© The Eurographics Association 2007.

75

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

– the end vertex v2;
– the adjacent directed edge er that is incident at v1 and

v2;
– the previous directed edge e′′d bounding f in counter-

clockwise order;
– the next directed edge e′d bounding f in counter-

clockwise order;

• For each vertex v, one directed edge for each connected
component of the link of v.

The topological relations encoded in the DE data structure
are:

• For each face f : R2,1(f), which is encoded implicitly (the
i-th directed edge belongs to the (i/3)-th triangle);

• For each edge e:

– Relation R1,0(e);
– Partial relation R∗

1,1(e), as defined for the RE data
structure;

• For each vertex v: partial relation R∗
0,1(v), which consists

of one edge for each connected component of the link of
v.

In our formalization, we have considered the undirected
edge e, instead of its oriented version and, thus, the informa-
tion in the directed edges in the DE data structure has been
transferred to the undirected edge and described by partial
relation R∗

1,1(e), and in its ordering. Note that the DE struc-
ture encodes almost the same relations as the PE data struc-
ture except for relation R0,1(v) at vertex v which is partially
encoded in the DE data structure, but completely encoded in
the PE data structure.

The DE data structure is highly scalable to the degree of
manifoldness in a simplicial 2-complex. An cost-effective
implementation reported in [CKS98] has a storage cost of
68n2 bytes, which is 1.13 times the cost of the Winged-
Edge data structure for representing 2-manifolds. The DE
data structure is also highly adaptable to the availability of
memory space by trading off the amount of topological in-
formation encoded with assess time. The DE data structure
is implementable at three levels of details. The full level has
a storage cost of 68n2 bytes, while the medium and the small
levels have respectively 44n2 bytes and 32n2 bytes.

6.2.4. The Triangle-Segment (TS) Data structure

The Triangle-Segment (TS) data structure [DMPS04] de-
scribes simplicial 2-complexes embedded in the two-
dimensional Euclidean space. It encodes all vertices, the top
2-simplexes, i.e., the triangles, and the top 1-simplexes, that
called wire-edges together with the following topological re-
lations (see Figure 13):

• For each triangle t:

– boundary relation R2,0(t);

– a partial R∗
2,2(t) relation defined as follows: for each

edge e of t, it encodes the triangle(s) that are immedi-
ately preceding and succeeding t in counter-clockwise
order around edge e. In the example of Figure 13(a),
R∗

2,2(f2) = { f1, f3}.

• For each wire-edge we, boundary relation R1,0(we);
• For each vertex v:

– a partial R∗
0,2(v) relation which encodes one triangle

for each connected component of the link of vertex v,
as illustrated in the example of Figure 13(b), R∗

0,2(v) =
{ f1, f2};

– a partial R∗
0,1(v) relation, which encodes the list of

the wire-edges in the star of vertex v, for example,
R∗

0,1(v) = {e} in Figure 13(b).

v

e
f 1

f 2

f 3f 1

f 2

f 4

e

(a) (b)

Figure 13: (a) Non-manifold edge e shared by three faces;
(b) Non-manifold vertex v shared by two connected compo-
nents and wire-edge e

In the TS data structure, only wire-edges are explicitly
encoded, but not edges bounding triangles. In a compact im-
plementation of the TS data structure, relation R∗

2,2 is imple-
mented through arrays and bit flags, while relations R∗

0,1(v)
and R∗

0,2(v) are implemented as linked lists. It has been
shown in [DMPS04] that the TS data structure supports the
retrieval of all topological relations in optimal time.

In [DMPS04], a highly manifold-scalable implementation
of the TS data structure is reported which has a storage cost
overhead of one byte per triangle for a manifold simplicial
2-complex.

6.2.5. The Vertex-Face Data Structure
The Vertex Face (VF) data structure [VL97] has been de-
veloped to describe regular simplicial complexes (i.e., sim-
plicial 2-complexes without wire-edges). It encodes all ver-
tices, edges, triangles explicitly and the following topologi-
cal relations:
• For each triangle t, boundary relation R2,1(t)
• For each edge e, boundary relation R1,0(e)
• For each vertex v, co-boundary relation R0,2(v)

Boundary relations as well as co-boundary relations based
on vertices, namely relations R0,0(v), R0,1(v) and R0,2(v) can
be retrieved in optimal time, while edge-based co-boundary
relations are retrieved in sub-optimal time, since we need to
consider R0,2 relation for both the extreme vertices of any
edge. As a consequence, also retrieving adjacency relations
is sub-optimal. Algorithms for retrieving topological rela-
tions are reported in [HF04].

c© The Eurographics Association 2007.

76

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

6.2.6. Comparisons

We compare the data structures for cell and simplicial 2-
complexes in terms of their characteristics, their space re-
quirements and their efficiency in supporting topological
navigation. Table 7 summarizes the domain, the kinds of
complexes which can be described by the various data struc-
tures, and the representation methods.

Data Domain Complexes Method
Structure
RE Non-manifold Cell Edge-based
PE Non-manifold Cell Edge-based
DE Non-manifold Simplicial Edge-based
TS Non-manifold Simplicial Adjacency-based
VF Regular Simplicial Incidence-based

Table 7: Characteristics of the data structures for arbitrary
2-dimensional complexes

For simplicity, we report in Table 8 the storage costs of
the data structures reviewed for simplicial 2-complexes plus
the 2D instances of the Incidence Graph and of the IS data
structure. The notations are specified in the caption.

Data storage cost
Structure
RE 73n2 + n1 + n0
PE 36n2 + n1 + 8nt

1 + n0
DE 15n2 +2nt

1 + Cv
TS 6n2 + Ce + Cv
VF 6n2 + 2n1
IG 6n2 +4n1
IS 6n2 +2n1 + Cv

Table 8: Storage costs of the data structures for simpli-
cial 2-dimensional complexes with n2 triangles, n1 edges,
of which nt

1 are wire-edges, and n0 vertices. The total num-
ber of connected components at the link of non-manifold
edges is denoted by Ce, and the total number of connected-
components at all vertices is denoted by Cv

In Table 9, we report an evaluation of the storage costs for
some simplicial 2-complexes. Among the three edge-based
data structures, namely, the RE, the PE and the DE, the space
consumption of the RE data structure is twice that of the
PE, which is about 2.4 times that of the DE. The TS is the
most compact among the seven data structures compared in
Table 9. The incidence-based data structures, i.e., the VF,
the IG and the IS are less space-consuming than the edge-
based structures, but not as compact as the adjacency-based
TS data structure.

We summarize in Table 10 the navigation costs by evalu-
ating the optimality of the algorithms for retrieving topolog-
ical relations on the various representations.

Data set n0 n1 n2 nt
1 Ce Cv−n0

cylinders 91 300 204 0 16 2
pies 696 2.98k 2.30k 0 1.92k 72

frame 987 2.16k 1.08k 216 0 390
cubes 2.20k 10.7k 9.60k 0 14.9k 0

densetower 8.32k 24.6k 15.9k 896 2.42k 1.92k
(a)

Data set RE PE DE TS VF IG IS
cylinders 15.3k 7735 3153 1333 1824 2424 1917

pies 172k 86.6k 35.3k 16.5k 19.8k 25.7k 20.5k
frame 82.0k 43.8k 18.0k 7.9k 10.8k 15.1k 12.2k
cubes 714k 358k 146k 74.7k 79.0k 100k 81.2k

densetower 1,191k 611k 250k 108k 144k 194k 155k
(b)

Table 9: (a) Five non-manifold 2D simplicial data sets:
Ce=# connected components at non-manifold edges, Cv=#
connected components at all vertices; (b) Storage cost of
seven data structures for 2D data sets in (a)

Data Boundary Co-boundary Adjacency
Structure relations relations relations
RE Optimal Optimal Optimal
PE Optimal Optimal Optimal
DE Optimal Optimal Optimal
TS Optimal Optimal Optimal
VF Optimal R0,k: optimal Sub-optimal

Others: sub-optimal

Table 10: Navigation efficiency of data structures for 2-
dimensional complexes specific for non-manifold domains

7. Representations for Three-dimensional Cell and
Simplicial Complexes

In this Section, we discuss representations for three-
dimensional cell and simplicial complexes embedded in
the three-dimensional Euclidean space. There are relatively
few representations for describing 3D shapes discretized
as cell and simplicial 3-complexes. Most of such repre-
sentations are limited to the manifold domain. Represen-
tations for manifold cell complexes are the Facet-Edge
[DL89,Muc93] and the Handle-Face [LT97] data structures.
The Compact Half-Face (CHF) data structure [LLLV05]
specializes the handle-face data structure to manifold sim-
plicial 3-complexes (these latter are usually called tetra-
hedral meshes). The Non-manifold Indexed Data Structure
with Adjacencies (NMIA) proposed in [DH03] generalizes
the IA data structure to arbitrary simplicial complexes. In
this Section, we analyze and compare such representations
also with respect to the three-dimensional instances of the
dimension-independent data structures discussed in Section
5.

c© The Eurographics Association 2007.

77

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

7.1. The Facet-Edge (FE) Data Structure
The Facet-Edge (FE) data structure [DL89] is an exten-
sion of the Quad-Edge data structure developed for cell 2-
complexes (see Subsection 6.1.2), and thus it is an implicit
representation for manifold cell 3-complexes. The basic en-
tities encoded in the Facet-Edge data structure are the ver-
tices and the so-called facet-edges defined on the 2-cells and
1-cells (faces and edges). The three-dimensional cells and
their topological information are encoded through the topo-
logical vertex-based relations of the complex which is dual
to the given one. The dual The 0-cells of the dual complex
correspond to the 3-cells of the original complex, its 1-cells
to the faces, its 2-cells to the edges and its 3-cells to the ver-
tices.

The boundary of each face (2-cell) f contains a ring of
edges (1-cells) e1, ..,en. This ring is called a face-ring, and
may be ordered in two directions. The star of an edge e con-
tains a ring of faces f1, ..., fm. This ring is called an edge-
ring and can also be ordered in two directions. A facet-
edge pair uniquely associates a face f with an edge e on
the boundary of f . Each facet-edge pair exists in four ver-
sions. Each version is associated with exactly one face-ring
of f and exactly one edge-ring of e. Each version of a facet-
edge has its dual which is defined in the dual complex. Fig-
ure 14(a)-(h) illustrates the concept of facet-edge. The four
unique facet-edges formed by face f1 and edge e1 in Fig-
ure 14(a) are shown in Figures 14(b)-(e). Figure 14(f) shows
the dual complex of the one shown in Figure 14(a), in which
edge e∗1 is the dual of f1 and the highlighted faces corre-
spond to the edges of f1. Figure 14(g) shows the dual of the
facet-edge shown in Figure 14(b).

Given a face f and an edge e on its boundary, the four
versions of facet-edges and the duals of each of them are
related by the following operators.

• Clock, which returns the facet-edge with the face-ring in
reversed direction;

• Rev, which returns the facet-edge with the edge-ring in
reversed direction;

• Fnext, which returns the facet-edge of the next face in the
same edge-ring as f ;

• Enext, which returns the facet-edge of the next edge in
the same face-ring as e;

• Dual, which returns the facet-edge with the same orienta-
tion in the dual complex.

Operators Clock, Rev, Fnext and Enext are illustrated in
Figure 14(h) for the facet-edge shown in Figure 14(b).

In addition, the relations between the facet-edges and their
vertices are described by the operator Org, which returns
the start vertex of each facet-edge. Org induces a partition
(known as origin partition on the set of facet-edges in the
complex and in its dual complex. Note that, while the origin
partition in the 3-complex captures the incidence relations
between edges and vertices, such a partition in the dual com-

plex captures the incidence relations between the 3-cells and
their bounding faces.

The Facet-Edge data structure describes a complex Σ by
encoding, for each facet-edge pair a associated with edge e
in a face-ring and with face f in an edge-ring, the preced-
ing and succeeding facet-edges in both the face-ring and the
edge-ring of a. The successors of a in the face-ring in two
opposite directions correspond to aFnext and aClockFnext.
The successors of a in the edge-ring in two opposite direc-
tions correspond to aDualFnext and aDualClockFnext in
the dual-complex of Σ. Using the example of Figure 14(a),
the successors of (f1,e1) in the face-ring of e1 in both direc-
tions are respectively (f2,e1) and (f3,e1). The successors of
(f1,e1) in the edge-ring of f1 are (f1,e2) and (f1,e3), which
correspond to the facet-edges (f ∗2 ,e∗1) and (f ∗3 ,e∗1) shown in
Figure 14(f).

The Facet-Edge data structure also encodes the vertex-
based functions by implementing the partition of the facet-
edges induced by the Org operator on the 3-complex and on
the dual complex.

f 1

e1

e2

f 2

e3

f 3

f 1

e1

f 1 f 1 f 1

e1e1
e1

(a) (b) (c) (d) (e)

e*1
f *2

e*2 f *1 e*3

f *3 f *1

e*1

(f) (g)

f 1

e1

f 1
e2f 1

e1

f 2 e1

RevClock Fnext Enext
(h)

Figure 14: An illustration of the concept of facet-edge:
(a) a model of two cubes; (b)-(e) the four facet-edge pairs
formed by face f1 and edge e1; (f) the dual complex of (a);
(g) the dual of the facet-edge shown in (b); (h) the facet-
edges mapped from (b) by operators Clock, Rev, Fnext, and
Enext, respectively

In terms of topological relations, the FE data structure en-

c© The Eurographics Association 2007.

78

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

codes relations R2,1 in the form of facet-edges, relation R1,2
in the form of face-rings, partial relation R∗

1,1 in the form of
edge-rings, relations R1,0 and R2,3 implicitly as the incident
vertices of the edges, and relation R0,1 as the origin partition.
Relation R3,2 is implicitly encoded as the origin partition of
the dual. It can be shown that topological relations can be
retrieved from the FE data structure in optimal time.

The storage cost of the FE data structure for a gen-
eral cell 3-complex with n3 3-cells, n2 faces, and n0 ver-
tices is 4∑i=1..n2 deg(fi)+∑i=1..n3 deg(ci)+∑i=1..n0 deg(vi),
where deg(fi) is the number of edges on the i-th face,
deg(ci) the number of faces on the i-th 3-cell and deg(vi) the
degree of vertex vi. The term 4∑i=1..n2 deg(fi) derives from
the encoding of the successors on the edge-ring and face-ring
of each facet-edge. The remaining two terms derive from the
vertex-based relations. In the case of simplicial 3-complexes,
deg(fi) = 3, deg(ci) = 4 and ∑i=1..n0 deg(vi) = 2n1, so the
amount of information encoded by the FE data structure is
4n3 +12n2 +2n1.

Unlike incidence-based and adjacency-based representa-
tions, the FE data structure does not explicitly encode cells
as entities but it preserves the orientation of the cells, which
makes it a suitable choice for applications that depend on
the orientation of cells. The FE data structure has been spe-
cialized to the simplicial case in Triangle-Edge data struc-
ture [Muc93] for the application of computing a tetrahedral-
ization of a solid object and of the simplification of tetra-
hedal meshes [NE04].

7.2. The Handle-Face (HF) Data Structure

The Handle-Face (HF) data structure [LT97] is an explicit
representation for manifold cell 3-complexes. It is similar to
representations for cell 2-complexes embedded in the three-
dimensional Euclidean space, like the RE and the PE data
structures (see Section 6.2), since the 3-cells are described
in the HF data structure through their boundaries, made by
faces, edges and vertices. The HF data structure contains
two types of entities: the basic entities, which are faces,
edges and vertices in the complex, and the surface entities,
which describe the boundary of a 3-cell. The surface enti-
ties are surfaces, half-faces, surface edges, surface oriented
edges and surface vertices. Each half-face belongs to one 3-
cell surface, and is bounded by a cycle of surface-oriented
edges, whose orientation is aligned with the orientation of
the half-face. Each surface-edge belongs to one 3-cell, and
corresponds to exactly one pair of surface-oriented edges on
the same 3-cell. At most two half-faces may correspond to
one face. Several surface-edges may correspond to the same
edge, and the same occurs for surface vertices. Figure 15 il-
lustrates the entities in the HF data structure.

Thus, the HF data structure encodes the 3-cells as col-
lection of half-faces bounded by surface-oriented edges be-
longing to surface-edges incident at surface vertices. Each

(a) (b) (c)

Figure 15: (a) A 3-complex with two cubic 3-cells, com-
posed of 11 faces, 20 edges, and 12 vertices; (b) there are 12
half-faces, 24 surface-edges, and 16 surface vertices in the
whole complex. of all the half-faces, only two (the shaded
pair) are interior half-faces, while the rest are boundary
half-faces; (c) surface oriented edges of the two 3-cells

half-face, surface-edge and surface-vertex is associated with
the corresponding actual face, edge and vertex in the com-
plex. Besides these incidence relations, two adjacency re-
lations are encoded, namely, the one between each pair of
half-faces belonging to the same face, and the one of the
surface-oriented edges that correspond to the same edge in
the same pair of half-faces.

A surface-oriented edge represents an association be-
tween a surface-edge and a half-face, and it is associated
with its own half-face and its start surface-vertex. Thus, it
corresponds to the half-edge in the Half-Edge data structure,
to the edge-use in the RE data structure and to the partial-
edge in the PE data structure.

We can formalize the HF data structure in terms of topo-
logical relations as follows:

• For each face f , partial R∗
2,1(f) relation, which encodes

one edge bounding face f ;
• For each edge e, partial R∗

1,1(e) relation, which encodes
all the edges that share a face with edge e, radially ordered
around e and relation R1,2, which encodes all faces around
an edge in the same radial order;

• For each vertex v, partial relation R∗
0,1(v), which encodes

one edge incident in vertex v.

All the relations are ordered, but the above formalization
does not capture the association between faces and half-faces
and thus the orientations on the faces. Note that the 3-cells
are not represented explicitly in the HF data structure. The
drawback is that no attribute can be attached to the 3-cells
as a consequence. Also, the HF representation encodes the
same relations as in the RE and PE data structures. On the
other hand, unlike the RE and the PE data structures, the HF
data structure cannot represent shapes with dangling edges
or faces, as well as 3D shapes with non-manifold vertices
and edges. As all representations which encode orientations
by duplicating the basic entities, the HF data structure is
quite verbose.

All topological relations at faces, edges and vertices can
be retrieved in optimal time from the HF data structure, and
the representation of surface entities allows retrieving the

c© The Eurographics Association 2007.

79

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

boundaries of the 3-cells even if these latter are not explicitly
represented.

7.3. The Compact Half-Face (CHF) Data Structure

The Compact Half-Face (CHF) data structure [LLLV05] is
a specialization of the HF data structure for representing
manifold simplicial 3-complexes (usually called tetrahedral
meshes). It is a multi-level data structure that encodes the
connectivity among simplexes at different levels of detail.
The CHF data structure encodes almost the same entities as
the HF data structure. They are the physical entities, namely,
tetrahedra, faces, edges, and vertices, and the surface enti-
ties which uniquely belong to each tetrahedron, namely, the
half-faces and half-edges, which correspond to the surface-
oriented edge.

The CHF is designed with four levels (0-3). We de-
scribe levels 0 to 2 in detail. Level 3 addresses the bound-
ary information of the 3-manifold, whereby boundary cells
are encoded. This level is not elaborated here as it is an
application-specific feature of the data structure.

• Level 0 encodes the vertices of each tetrahedron. Given a
tetrahedron t, based on the encoded ordering of the ver-
tices of t, the half-faces and half-edges of t can be com-
binatorially computed and expressed in terms of the order
of their vertices. At this level, the only relations explicitly
encoded are R3,0 for all tetrahedra.

• At level 1, half-faces that belong to the same pair are en-
coded, and based on that mate half-edges can be computed
combinatorially. Formally, the relations encoded are R3,3
for all tetrahedra, and partial relation R∗

1,3, which encodes
for each edge on tetrahedron incident in it.

• Up to level 1, only tetrahedra, half-faces and vertices are
explicitly addressable entities. Level 2 encodes the faces
and edges explicitly by mapping one half-face from each
pair of half-faces to the physical face at which attributes
can be assigned, and by mapping each half-edge defined
by its vertices to one of its incident half-faces. In addi-
tion, one incident tetrahedron is encoded for each vertex.
The relations explicitly encoded are partial relations R∗

0,3
which encodes an incident tetrahedron for each vertex,
partial relations R∗

1,2, which associates each edge to its
half-face.

The CHF data structure at level 2 supports topological
navigation. Namely, the retrieval of tetrahedron-based rela-
tions R3,3 and R3,0, and face-based relations R2,∗ can be per-
formed in constant time. The retrieval of vertex-based and
edge-based co-boundary relations can be performed in time
linear with respect to the size of the relations.

The amount of information encoded by the CHF data
structure up to level 2 is 8n3 + n2 + n1 + n0, where each
of level 0 and level 1 contributes to 4n3, level 2 contributes
to n2 + n1 + n0. In the actual implementation described in

v

t
df

we

t 2

t 1

4t

t 3

dfe
(a) (b)

Figure 16: Properties of simplicial complexes in 3D space:
(a) non-manifold vertex whose star has more than one con-
nected components which may be of mixed dimensions; (b)
non-manifold edge whose star consists of fans of tetrahedra
and dangling faces

[LLLV05], the mapping between the half-faces and the ac-
tual faces uses a red-black tree structure, which requires a
cost of O(n2log2n2), and the mapping between the edges
and the half-faces has a cost of O(n1log2n1). The storage
cost of this implementation of the CHF data structure is
O(8n3 +n2log2n2 +n1log2n1 +n0)

7.4. The Non-manifold Indexed Data structure with
Adjacencies

The Non-Manifold Indexed data structure with Adjacencies
(NMIA) [DH03] is a representation for arbitrary simplicial
3-complexes embedded in the three-dimensional Euclidean
space. Another representation for such complexes based on
a decomposition approach will be described in Section 8.
The NMIA data structure is an adjacency-based data struc-
ture which encodes the vertices, and all the top simplexes of
a simplicial 3-complex, namely tetrahedra, top 2-simplexes,
that we call dangling faces and top 1-simplexes, that we call
wire-edges (for instance, triangle df Figure 16(a)), and a top
1-simplex a wire edge (for instance, edge we in Figure 16(a)).

Given a simplicial 3-complex Σ, we consider, for each
edge e of Σ, the sub-complexes of the star of e bounded
by different connected components of the link of e. Any
of such sub-complexes is called an edge-based cluster. An
edge-based cluster may consist of just one single dangling
face (such as df in Figure 16(b) and the three faces in Figure
16(c)), one single tetrahedron, or a fan of tetrahedra (such as
t1, t2 and t3 in Figure 16(b)).

The NMIA data structure encodes the following topologi-
cal relations:

• For each tetrahedron t:

– relation R3,0(t), i.e., the four vertices of t;
– relation R3,3(t), i.e., the four tetrahedra adjacent to t

along a triangle;
– for each non-manifold edge e of t, the top simplexes

preceding and following t around e, and not belonging
to the same edge-based cluster as t. For the example of
Figure 16(b), we associate with t3) at edge e t4, but not
t2.

• For each dangling face f :

c© The Eurographics Association 2007.

80

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

– relation R2,0(f);
– for each non-manifold edge e of f , the top simplexes

preceding and following f around e. In the example
of Figure 16(b), t4 and t1 are associated with dangling
face d f ,

• For each wire-edge w: relation R1,0(w);
• For each vertex v: one top simplex from each connected

component of the link of v.

The NMIA data structure is a non-manifold extension of
the IA data structure. The extension is done by encoding
the multiple connected components at non-manifold vertices
and non-manifold edges. Note that the NMIA data structure
encodes a partial version of relations R0,1, R0,2 and R0,3, at
each vertex v, namely R0,1 only for wire-edges, R0,2 only for
the connected components of the link of v consisting only
of edges (and thus the corresponding portion of the star con-
sists only of dangling faces), and R0,3, for each connected
component of the link containing at least one triangle (and
thus the corresponding portion of the star contains at least
one tetrahedron). At any non-manifold edge e, it encodes a
partial R1,2 relation, restricted to dangling faces in the star
of e, and a partial R1,3 relation, restricted to the tetrahedra in
the star of e, which belong to different edge-based clusters.

An efficient and compact implementation of the NMIA
data structure is described in [DH03]. For a simplicial com-
plex with n3 tetrahedra, nt

2 dangling faces and nt
1 wire-edges,

such that the total number of components at non-manifold
vertices is Ce and the total number of components at all
vertices is Cv, the storage cost of such implementation is
8n3 + 3nt

2 + 2nt
1 + Ce +Cv. The data structure scales very

well to manifold simplicial complexes. In the case of a man-
ifold domain, nt

2 = nt
1 = Ce = 0 and Cv = n0. Therefore, the

NMIA data structure encodes only 8n3 + n0 pieces of infor-
mation, which is equivalent to the IA (see Section 5.3).

All boundary topological relations can be retrieved in op-
timal time from the NMIA data structure. Co-boundary re-
lations R1,3 and R0,3 can be retrieved in sub-optimal time
because they are retrieved by visiting the stars of edges
and vertices, respectively, which may consist of dangling-
faces not in the relations. All other co-boundary relations
can be retrieved in optimal time. Apart from adjacency re-
lation R3,3, which is encoded in data structure, all other
adjacency relations are retrieved through a combination of
boundary and co-boundary relations and can be retrieved
in optimal time. Algorithms for extracting topological rela-
tions from the NMIA data structure are described in [DH03].
In [DH04], efficient algorithms are presented for performing
update operations on a simplicial 3-complex encoded in an
NMIA data structure.

7.5. Comparisons
We compare the above data structures in terms of their char-
acteristics, their storage costs and efficiency in supporting

topological navigation. Table 11 summarizes the comparison
among the various data structures in terms of their domain,
represented complex, and representation method.

Data Domain Complexes Method
Structure
HF Manifold Cell Edge-based
CHF Manifold Simplicial Edge-based
Facet-Edge Manifold Cell Implicit
NMIA Non-Manifold Simplicial Adjacency-based

Table 11: Characteristics of data structures for 3-complexes

We evaluate here the storage costs of the various data
structures for simplicial 3-complexes except the HF data
structure, which is represented into the CHF, and the special-
ization of the dimension-independent ones for the manifold
and non-manifold domains.

In the case of manifold simplicial 3-complexes, the stor-
age cost of the data structures are evaluated to be:

• NMIA: 8n3 +n0
• IA: 8n3 +n0
• IG : 8n3 + 6n2 + 4n1
• IS : 4n3 + 5n2 + 3n1 +n0
• CHF: 8n3 +n2log2n2 +n1log2n1 +n0
• FE: 4n3 +12n2 +2n1

A numerical comparison of their storage costs is made
experimentally based on five data sets of manifold simpli-
cial 3-complexes shown in Table 12. The CHF in its full
capacity has the highest storage cost, seconded by the im-
plicit FE representation, which has slightly more than half its
storage cost. The incidence-based IG and the IS data struc-
tures are more compact than the FE. The most compact is
the adjacency-based IA data structure.

Data set n0 n1 n2 n3
Rings 2.52k 13.2k 18.8k 8.13k
Basket 1.21k 6.43k 9.22k 4.00k

Cylinder 1.31k 7.79k 11.6k 5.16k
Gargoyle 2.73k 14.7k 22.0k 10.0k

Torus 2.29k 15.4k 24.0k 10.9k
(a)

Data set IA IG IS CHF FE
Rings 67.6k 231k 169k 516k 285k
Basket 33.2k 113k 82.6k 237k 139k

Cylinder 42.6k 142k 104k 295k 176k
Gargoyle 82.7k 271k 197k 597k 333k

Torus 89.2k 293k 212k 641k 362k
(b)

Table 12: (a) Five manifold 3D simplicial data sets; (b)
Storage cost of six data structures for the data sets in (a)

The only data structures that can describe non-manifold

c© The Eurographics Association 2007.

81

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

simplicial 3-complexes are the NMIA, the Incidence Graph
(IG) and the IS data structures. Table 13(a) shows five non-
manifold data sets with mixed tetrahedra, dangling-faces and
wire-edges. The storage cost of the NMIA data structure
and of 3D instances of the IG and of the IS data structure
are compared for these 3-complexes. The NMIA is the most
compact as it encodes only tetrahedra and vertices explicitly.
The IG is at least three times as much as the NMIA because it
encodes all simplexes and a large number of incidence rela-
tions. IS is more compact than the Incidence Graph because
it only encodes a subset of the incidence relations encoded
by the IG.

Data set n0 n1 n2 n3 nt
1 nt

2 Ce Cv−n0
Bucket 53 167 160 48 6 32 32 14
Wheel 402 2093 2728 1148 96 32 56 256

Balloon 1108 3913 3616 856 64 1632 0 160
Flasks 1301 6307 8465 3455 0 460 104 0
Teapot 4658 17.9k 17.0k 5666 2944 3930 144 5959

(a)
Data set NMIA IG IS
Bucket 591 2012 1105
Wheel 10.2k 33.9k 17.7k

Balloon 13.1k 44.2k 23.4k
Flasks 30.4k 104k 53.2k
Teapot 73.8k 219k 120k

(b)

Table 13: (a) Five non-manifold 3D simplicial data sets;
(b) Storage cost of three non-manifold data structures for
the data sets in (a)

Topological relations can be retrieved in optimal time
from the HF, and the FE data structures, while all but R0,3
and R1,3 relations can be retrieved in optimal time from the
NMIA data structure. R0,3 and R1,3 relations can be retrieved
in suboptimal time.

8. Decomposition Approaches
Another way to represent non-manifold shapes consists of
decomposing them into manifold, or nearly-manifold, com-
ponents. The various decomposition approaches in the lit-
erature try to realize in the discrete case a stratification
of the shape which has been defined for analytic sets (see
[Whi65]). In this Section, we focus on those approaches
which have been developed as a basis of data structures for
non-manifold shapes.

Selective Geometric Complexes (SGCs) [RO89] describe
arbitrary-dimensional non-manifold objects through collec-
tions of mutually disjoint cells, which are defined as open
subsets of d-manifolds. Thus, the cells can be either open,
and not simply connected, and they form a stratification of
the shape. Note that SGC is not equivalent to a combinatorial
cell complex. In SGCs, cells and their mutual adjacencies are

encoded in an Incidence Graph (IG) (see Section 5.2). Thus,
the storage cost and the navigation efficiency of the SGC
representation is exactly that of the IG.

Some techniques have been proposed in the literature
for decomposing the boundary of regular non-manifold 3D
shapes into manifolds, that is of solid objects without dan-
gling faces or edges, the so-called r-sets, [FR92, GTLH98,
RC99]. The objective is to apply modeling tools developed
for manifold shapes (data structures and manipulation op-
erators) to non-manifold ones. In [FR92], the result of the
decomposition is represented as a graph in which the arcs
describe non-manifold singularities. The approach has been
applied for identifying form features in r-sets. In [RC99], a
decomposition algorithm for a non-manifold object is pre-
sented which minimizes the number of duplications intro-
duced by the decomposition process. In [GTLH98], the idea
of cutting a two-dimensional non-manifold complex into
manifold pieces is exploited to develop compression al-
gorithms. A cut-and-stitch technique is proposed for han-
dling non-manifold cell 2-complexes. The cutting part of the
cut-and-stitch technique decomposes the star of every non-
manifold vertex in such a way that 2-cells (faces) that share
manifold edges in the star are in the same component. Each
such component is homeomorphic to a disc or to a half-
disc. After cutting, the non-manifold edges in the original
complex become boundary edges in the new complex. Also,
multiple components may have resulted from cutting. The
stitching part of the cut-and-stitch technique merges selected
edges that are created in the cutting phase

8.1. Combinatorial Stratification
Pesco et al. [PTL04] propose an approach inspired from
stratification to represent non-manifold shapes. A cell 2-
complex describing the boundary of a 3D non-manifold
shape is decomposed into subcomplexes, which are the anal-
ogous of the strata (the components) in a stratification of an
analytic set. They define a combinatorial stratification of a
cell 2-complex Γ as a collection of k-dimensional connected
combinatorial manifolds S = {M1, · · · ,Mn} (k = 0,1,2) with
or without boundary such that the union ∪iMi gives Γ and
the intersection between any two elements Mi and M j in S is
either empty of a sub-complex of both Mi and M j . A com-
binatorial stratification is not necessarily unique. As an ex-
ample, two valid stratifications of a simplicial 2-complex in
Figure 17(a) are shown in Figures 17(b) and (c). The result-
ing set of strata and their connectivity provides a descrip-
tion of the original shape which is used as the basis for a
data structure for non-manifold shapes discretized as cell 2-
complexes, called the Handle-Cell (HC) data structure.

The Handle-Cell (HC) data structure consists of two sets
of cells, namely the global cells and the local cells. The
global cells, i.e., global vertices, global edges and global
faces are the vertices, edges and faces of the given cell com-
plex. The local cells are the cells that describe the strata.

c© The Eurographics Association 2007.

82

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

(a) (b) (c)

Figure 17: (a) A 2-complex that consists of three triangles
sharing an edge; (b) and (c) two valid stratifications of (a)
which result in different manifold components

The strata are points, curves and surfaces. Curves are com-
posed of curve-vertices and curve-edges. Surfaces are com-
posed of surface-vertices, surface-edges, boundary-curves
and surface-faces. Since strata are 2-complexes with a mani-
fold domain, surfaces are represented through the Half-Edge
data structure. This is conceptually similar to the represen-
tation of the surfaces of the 3-cells in the Handle-Face (HF)
data structure (see Section 7.2). Curves are described as lists
of edges connected by vertices. The connectivity among the
strata is captured through the sharing of global vertices and
global edges.

The Handle-Cell data structure can be formalized in terms
of topological relations as follows:

• For each face f : Relation R∗
2,1(f) which consists of one

edge on the boundary of f ,
• For each edge e:

– Relation R1,2(e), which consists of all faces incident
in e;

– Partial relation R∗
1,1(e), ordered around edge e, so that

both the 2i-th element and the (2i+1)-element in this
relation are on the i-th face of e;

– Relation R1,0(e), which consists of the extreme ver-
tices of edge e;

• For each vertex v: Relation R0,1(v), which consists of the
set of edges incident in a vertex v.

The Handle-Cell data structure supports efficient topolog-
ical navigation, as the incidence relations among q-cells and
(q−1)-cells are fully encoded and the edge-based adjacency
relations among edges in the 2-manifold strata are encoded.
The HC data structure encodes a large number of topological
relations in order to support incremental shape construction
in the non-manifold domain through a specific category of
topology-modifying operators.

The Handle-Cell data structure is closely related to the
Handle-Face data structure for manifold 3D cell complexes,
and it is similar to the data structures for non-manifold 2-
complexes, such as the Radial-Edge data structure (Section
6.2.1) and Partial-Edge data structure (Section 6.2.2). The
primary difference between the HC representation and the
latter group lies in the explicit description of the stratification
encoded in the HC data structure. Within the decomposition

paradigm, the SGC can be considered as an object stratifica-
tion into open connected subsets of manifolds, while the HC
approach is a combinatorial stratification.

8.2. Initial Quasi-manifold Decomposition
A decomposition of a non-manifold shape into simpler parts
can be obtained by splitting the shape at those elements (ver-
tices, edges, faces, etc.) where singularities occur. In order
to be effective, the decomposition process should remove
as many singularities as possible, without introducing ar-
tificial, or arbitrary, “cuts" through manifold parts. Under
these assumptions, a decomposition into manifold compo-
nents is possible, in general, only for two-dimensional com-
plexes. In three or higher dimensions, a decomposition into
manifold components may need to introduce artificial cuts
through the object. In six or higher dimensions, a decompo-
sition into manifold components is not feasible in general,
since the class of d-manifolds has been proven to be not de-
cidable for d ≥ 6 [Nab96].

In [DMMP03], a decomposition of a non-manifold com-
plex in arbitrary dimensions is proposed, which is unique,
since it does not make any arbitrary choice in deciding where
the object has to be decomposed, and natural, since it re-
moves singularities by splitting the complex at non-manifold
simplexes only. Such a decomposition is known as the stan-
dard decomposition of the original complex. The compo-
nents of such decomposition, called Initial Quasi-Manifolds
(IQMs), admit a local characterization in terms of combina-
torial properties around each vertex. A d-dimensional IQM
is a simplicial d-complex Σ in which all top simplexes have
dimension d and such that the star of each vertex of Σ is
(d−1)-connected, i.e., can be traversed by moving between
adjacent d-simplexes through their common (d−1)-face. If
an IQM is embeddable in Rd where d ≥ 3, it must be a
pseudo-manifold complex (i.e., a (d − 1)-connected com-
plex in which every (d−1)-simplex is on the boundary of
one, or two d-simplexes).

The properties of the IQM decomposition makes it a good
basis for defining representation for non-manifold simpli-
cial shapes. The Double-Level Decomposition (DLD) data
structure [HVD06] is a representation for a simplicial 3-
complex based on its IQM decomposition. The IQM de-
composition of a simplicial 3-complex splits the complex
into one-, two- and three-dimensional IQM components.
One- and two-dimensional IQM components are manifold.
In the 3D case, a 3D IQM component is a maximal sub-
complex formed by tetrahedra in which the link of every
vertex is homeomorphic to a 2D manifold. The class of IQM
3-complexes is thus a superclass of 3-manifolds including
shapes such as the pinched-pie shown in Figure 1(b) and (c).
The decomposition can be computed by splitting the star of
each non-manifold edge e into manifold components, fol-
lowed by splitting the star of each non-manifold vertex in
the same way (see [DMMP03]).

c© The Eurographics Association 2007.

83

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

In the DLD data structure, an indexed data structure with
adjacencies is used to encode each IQM component. An h-
dimensional IQM (h = 1,2,3) can be effectively described
by an indexed data structure with adjacencies, since the star
of each vertex in any IQM can be traversed by using relations
R∗

0,h plus Rh,h.

The connection among components is described through
the vertices bounding the k-simplexes, which are shared by
more than one IQM component. A simplex σ of Σ, which
is shared by several IQM components, is called a split sim-
plex, which can be either a non-manifold vertex or a non-
manifold edge. The copy of split simplex σ in a compo-
nent Ci, to which simplex σ belongs, is denoted as σi and
it is called a simplex copy. The relations among the compo-
nents in an IQM decomposition of a complex described by
the split simplexes is represented as a hypergraph H, called
the decomposition graphin which the nodes correspond to
IQM components and each hyperarc corresponds to a split
simplex σ and it connects all components Ci sharing v. In
the example shown in Figure 18, vertex v in Figure 18(a) is
split into vertices v1, v2 and v3 in the decomposition shown
in Figure 18(b). In the hypergraph shown in Figure 18(c), a
hyperarc associates v with the three components C1, C2 and
C3 through the three vertex copies.

we

df 2df 1
1t

e

v

w

v1C1 v2

1w

C2

C32w

v3

e1 e2

C2

w ev
w2

w1

C3

e 1

e 2v3

v2
v1

C1

(a) (b) (c)

Figure 18: IQM decomposition of a complex

The decomposition graph is encoded in the following data
structure:

• for each component Ci: a reference to the IA data structure
describing component Ci;

• for each hyperarc: the corresponding split simplex σ and
the simplex copies of σ;

• for every simplex copy vi corresponding to split simplex
σ:

– the component containing σi;
– a reference to its hyperarc, i.e., σ.

The decomposition graph supports both a vertex-based
and an edge-based traversal among components connected
through the same hyperarc. Given a simplex copy σi from
any component Ci, we can follow the reference to its hyper-
arc and find all other simplex copies σ j connected with σ, as
well as all other components sharing σ.

The DLD data structure encodes only the top simplexes,
the vertices and the non-manifold edges. It is adjacency-
based, since it encodes the adjacency relation among top
simplexes as the IA data structure and its extensions.

The IQM decomposition approach taken by the DLD
data structure differs from the stratification approach
of the HC representation in the following two aspects.
First, the HC representation is based a decomposition for
cell 2-complexes, approach while the IQM decomposition
is dimension-independent. Also, unlike the combinatorial
stratification, an IQM decomposition is unique. The DLD
representation is specific for simplicial 3-complexes, and is
thus highly optimized for compactness and scalability.

We compare the DLD data structure with the NMIA data
structure, which also extends the IA data structure to the
non-manifold case. It has been shown experimentally in
[HVD06] that the storage costs of the DLD and the NMIA
data structures are comparable. Both the DLD and the NMIA
data structures encode only vertices and top simplexes. Their
primary difference is that the DLD data structure encodes the
complex as an IQM decomposition, thus allowing the non-
manifold singularities to be explicitly represented, while the
NMIA data structure encodes the complex as a single piece
with non-manifold singularities distributed inside the com-
plex. Both the NMIA and the DLD data structure are com-
parable to the IA when the domain is manifold, and thus they
are highly scalable. Also, both data structures support an ef-
ficient retrieval of topological relations.

9. Concluding Remarks
In this state-of-the-art report, we have reviewed, analyzed
and compared representations for simplicial and cell com-
plexes, with a special emphasis on data structures for simpli-
cial complexes. We have classified the data structures in each
group according to the basic kinds of the topological enti-
ties they represent. We have described each data structure
in terms of the entities and topological relations it encodes,
and we have evaluated it based on its expressive power, on
its storage cost, on the efficiency in supporting navigation
inside the complex. We have also discuss a decomposition
approach to modeling non-manifold shapes, which has led
to powerful and highly scalable representations.

The algorithms for extracting topological relations from
a complex are the basis for performing update operations
on the complex. There is a vast literature on update and
construction operators. Updating a manifold 2D cell com-
plex describing the boundary of a 3D object has been ex-
tensively studied in the solid modeling literature for more
than twenty years, and several proposals exist for primi-
tive update operators which maintain the validity of Eu-
ler’ formula, the so-called Euler operators (see, for in-
stance, [Man87]). Such operators have also been defined
for non-manifold two-dimensional complexes (see, for in-
stance, [LL01, LL91, YK95, Wei88]) by considering differ-
ent variants of Euler’ formula. In both the manifold and
non-manifold cases, the effect of any other operation on the
complex is then expressed as a suitable sequence of Euler
operators. Higher-level operators based on the Handle-body

c© The Eurographics Association 2007.

84

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

theory have been proposed [PTL04]. The Handle-body the-
ory studies the topological changes generated by attaching
handles to a manifold without boundary. Handle body oper-
ators change also the topological type of the domain of the
complex.

Primitives for updating simplicial complexes have been
proposed in the literature, mainly for triangle and tetrahe-
dral meshes (see, for instance, [DM02, VG00]). Some of
them do not affect the topology of the domain of the com-
plex, but only the combinatorial structure of the subdivision
(see, for instance, [VG00]). The most common update oper-
ators for simplicial complexes are those applied in the mesh
simplification algorithms. The problem of simplification of
simplicial complexes has been extensively studied in com-
puter graphics for triangle meshes (see, e.g., [DM02, Gar99,
LRC∗02], for a survey), and, more recently, some algo-
rithms have been developed for tetrahedral meshes, mostly
based on edge collapse. These approaches are based on con-
tracting one edge to one of its extreme vertices or to a
new vertex [CM02, CCM∗00, GS98, HC94, RO96, THJ99].
In [PH97], the problem of applying a vertex-pair contrac-
tion (which consists of contracting a pair of vertices to a
new vertex) on a d-dimensional simplicial complex is ad-
dressed. The complex is represented as an Incidence Graph.
In [DMPS04], we have developed algorithms for perform-
ing vertex-pair contraction and its inverse, vertex split, on a
two-dimensional simplicial complex described as a TS data
structure [DMPS04], and in [DH04] for three-dimensional
simplicial complexes described as an NMIA data structure.

Specific simplification algorithms have been developed
for finite element mesh generation from CAD mod-
els [CDM04, FRL00, VL97, VL01]. In this case, the ideal-
ization of a simplicial complex is performed through a set
of geometrical and topological transformations [VL01], in-
volving detail removal operators (e.g., vertex removal and
re-meshing), which change the shape of a component with-
out modifying its topology, topological detail removal op-
erators (e.g., hole removal), which change the topology of
the complex while preserving the dimension of the part, and
dimension-reduction operators, which reduce the dimension
of a part, by contacting, for instance, a tubular part to a wire.

Acknowledgments

This work has been partially supported by the European
Network of Excellence AIMSHAPE under contract num-
ber 506766, by the National Science Foundation under grant
CCF-0541032, by the MIUR-FIRB project SHALOM un-
der contract number RBIN04HWR8 and by the MIUR-PRIN
project on “Multi-resolution modeling of scalar fields and
digital shapes”.

References

[Ago05] AGOSTON M.: Computer Graphics and Geomet-
ric Modelling. Springer, 2005. 2

[Bau72] BAUMGART B. G.: Winged-edge polyhedron
representation. Technical Report CS-TR-72-320, Stan-
ford University, Department of Computer Science, Octo-
ber 1972. 1, 7

[Bau75] BAUMGART B. G.: A polyhedron representa-
tion for computer vision. In Proceedings AFIPS National
Computer Conference (1975), vol. 44, pp. 589–596. 7

[Bri89] BRISSON E.: Representing geometric structures
in D dimensions: topology and order. In Proceedings
5th ACM Symposium on Computational Geometry (1989),
ACM Press, pp. 218–227. 4

[CCM∗00] CIGNONI P., COSTANZA D., MONTANI C.,
ROCCHINI C., SCOPIGNO R.: Simplification of tetra-
hedral volume data with accurate error evaluation. In
Proceedings IEEE Visualization 2000 (2000), IEEE Com-
puter Society, pp. 85–92. 23

[CDM04] CUTLER B., DORSEY J., MCMILLAN L.: Sim-
plification and improvement of tetrahedral models for
simulation. In Proceedings Second ACM/Eurographics
Symposium on Geometry Processing (Nice, France, July
2004). 23

[CKS98] CAMPAGNA S., KOBBELT L., SEIDEL H.-P.:
Directed edges - a scalable representation for triangle
meshes. Journal of Graphics Tools 3, 4 (1998), 1–12. 11,
13, 14

[CM02] CHOPRA P., MEYER J.: TetFusion: an algorithm
for rapid tetrahedral mesh simplification. In Proceedings
IEEE Visualization 2002 (October 2002), IEEE Computer
Society, pp. 133–140. 23

[DGH04] DE FLORIANI L., GREENFIELDBOYCE D.,
HUI A.: A data structure for non-manifold simplicial d-
complexes. In Proceedings of the 2nd ACM/Eurographics
Symposium on Geometry Processing (Nice (France), 8–
10 July 2004), Kobbelt L., Schroder P., Hoppe H., (Eds.),
pp. 83–92. 6

[DH03] DE FLORIANI L., HUI A.: A scalable data struc-
ture for three-dimensional non-manifold objects. In Pro-
ceedings of the 1st ACM/Eurographics Symposium on
Geometry Processing (Aachen (Germany), 23–25 June
2003), Kobbelt L., Schroder P., Hoppe H., (Eds.), pp. 72–
82. 15, 18, 19

[DH04] DE FLORIANI L., HUI A.: Update operations on
3D simplicial decompositions of non-manifold objects. In
Proceedings of the 9th ACM Symposium on Solid Model-
ing and Applications (Genova (Italy), 9–11 June 2004),
Fellner D., (Ed.), pp. 169–180. 19, 23

[DH06] DE FLORIANI L., HUI A.: A Dimension-
Independent Simplicial Data Structure for Non-manifold

c© The Eurographics Association 2007.

85

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

Shapes. Tech. Rep. CS-TR-4794, University of Maryland,
College Park, April 2006. 4, 6

[DL89] DOBKIN D., LASZLO M.: Primitives for the ma-
nipulation of three-dimensional subdivisions. Algorith-
mica 5, 4 (1989), 3–32. 15, 16

[DM02] DE FLORIANI L., MAGILLO P.: Multi-resolution
mesh representation: models and data structures. In Prin-
ciples of Multi-resolution Geometric Modeling (Berlin,
2002), Floater M., Iske A., Quak E., (Eds.), Lecture Notes
in Mathematics, Springer Verlag, pp. 364–418. 23

[DMMP03] DE FLORIANI L., MESMOUDI M. M.,
MORANDO F., PUPPO E.: Decomposing non-manifold
objects in arbitrary dimension. CVGIP: Graphical Mod-
els 65, 1/3 (January 2003), 2–22. 21

[DMPS04] DE FLORIANI L., MAGILLO P., PUPPO E.,
SOBRERO D.: A multi-resolution topological represen-
tation for non-manifold meshes. Computer-Aided Design
Journal 36, 2 (February 2004), 141–159. 11, 14, 23

[Ede87] EDELSBRUNNER H.: Algorithms in Combinato-
rial Geometry. Springer Verlag, Berlin, 1987. 4, 5

[FR92] FALCIDIENO B., RATTO O.: Two-manifold cell-
decomposition of R-sets. In Proceedings Computer
Graphics Forum (September 1992), Kilgour A., Kjelldahl
L., (Eds.), vol. 11, pp. 391–404. 20

[FRL00] FINE L., REMONDINI L., LÉON J.-C.: Auto-
mated generation of FEA models through idealization op-
erators. International Journal for Numerical Methods in
Engineering 49 (2000), 83–108. 23

[Gar99] GARLAND M.: Multi-resolution modeling: sur-
vey and future opportunities. In Eurographics ’99 –
State of the Art Reports (1999), Eurographics Association,
pp. 111–131. 23

[GCP90] GURSOZ E. L., CHOI Y., PRINZ F. B.: Vertex-
based representation of non-manifold boundaries. In Ge-
ometric Modeling for Product Engineering, Wozny M. J.,
Turner J. U., Preiss K., (Eds.). Elsevier Science Publishers
B. V., North Holland, 1990, pp. 107–130. 10, 12

[GS85] GUIBAS L., STOLFI J.: Primitives for the manipu-
lation of general subdivisions and computation of Voronoi
diagrams. ACM Transactions on Graphics 4, 2 (April
1985), 74–123. 7, 8

[GS98] GROSS M. H., STAADT O. G.: Progressive tetra-
hedralizations. In Proceedings IEEE Visualization’98
(Research Triangle Park, NC, 1998), IEEE Computer So-
ciety, pp. 397–402. 23

[GTLH98] GUEZIEC A., TAUBIN G., LAZARUS F.,
HORN W.: Converting sets of polygons to manifold
surfaces by cutting and stitching. In Conference ab-
stracts and applications: SIGGRAPH 98 (1998), Com-
puter Graphics, ACM Press, pp. 245–245. 20

[HC94] HAMANN B., CHEN J. L.: Data point selection

for piecewise trilinear approximation. Computer-Aided
Geometric Design 11 (1994), 477–489. 23

[HF04] HUI A., FLORIANI L. D.: Notes on Compact
Data Structrures for Finite Elements Applications. Tech.
rep., Department of Computer Science, University of
Maryland, College Park, September 2004. 14

[HVD06] HUI A., VACZLAVIK L., DE FLORIANI L.:
A decomposition-based representation for 3d simplicial
complexes. In Proceedings of the 4th Eurographics Sym-
posium on Geometry Processing (Cagliari (Italy), June
2006), pp. 101–110. 21, 22

[JLM02] JOY K. I., LEGAKIS J., MACCRACKEN: Data
structures for multi-resolution representation of unstruc-
tured meshes. In Hierarchical Approximation and Geo-
metric Methods for Scientific Visualization, Farin G., Ha-
gen H., Hamann B., (Eds.). Springer Verlag, Heidelberg,
2002. 7, 8

[KT01] KALLMANN M., THALMANN D.: Star vertices: a
compact representation for planar meshes with adjacency
information. Journal of Graphics Tools 6, 1 (2001), 7–18.
7, 9

[Lie94] LIENHARDT P.: N-dimensional generalized com-
binatorial maps and cellular quasi-manifolds. Interna-
tional Journal of Computational Geometry and Applica-
tions 4, 3 (1994), 275–324. 4

[LL91] LUO Y., LUKÁCS G.: A boundary representa-
tion of form features and non-manifold solid objects. In
Solid Modeling Foundations and CAD/CAM Applications
(Austin, TX, June 1991), ACM Press. 22

[LL01] LEE S. H., LEE K.: Partial-entity structure: a fast
and compact non-manifold boundary representation based
on partial topological entities. In Proceedings Sixth ACM
Symposium on Solid Modeling and Applications (Ann Ar-
bor, Michigan, June 2001), ACM Press, pp. 159–170. 10,
12, 13, 22

[LLLV05] LAGE M., LEWINER T., LOPES H., VELHO
L.: CHF: a scalable topological data structure for tetra-
hedral teshes. In 18th Brazilian Symposium on Com-
puter Graphics and Image Processing (Sibgrapi 2005)
(Oct 2005), pp. 349–356. 15, 18

[LRC∗02] LUEBKE D., REDDY M., COHEN J., VARSH-
NEY A., WATSON B., HUEBNER R.: Level of Detail for
3D Graphics. Morgan-Kaufmann, San Francisco, 2002.
23

[LT97] LOPES H., TAVARES G.: Structural operators for
modeling 3-manifolds. In Proceedings Fourth ACM Sym-
posium on Solid Modeling and Applications (May 1997),
ACM Press, pp. 10–18. 15, 17

[Man87] MANTYLA M.: An Introduction to Solid Model-
ing. Computer Science Press, 1987. 1, 7, 8, 13, 22

[MH01] MCMAINS S., HELLERSTEIN C. S. J.: Out-of-
core building of a topological data structure from a poly-

c© The Eurographics Association 2007.

86

L. De Floriani & A. Hui / Shape Representations Based on Simplicial and Cell Complexes

gon soup. In Proceedings Sixth ACM Symposium on Solid
Modeling and Applications (2001), pp. 171–182. 10

[MP78] MULLER D. E., PREPARATA F. P.: Finding the
intersection of two convex polyhedra. Theoretical Com-
puter Science 7 (1978), 217–236. 7

[Muc93] MUCKE E.: Shapes and Implementations in
Three-Dimensional Geometry. PhD thesis, Department
of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, 1993. 15, 17

[Nab96] NABUTOVSKY A.: Geometry of the space of tri-
angulations of a compact manifold. Commun. Math. Phys.
181 (1996), 303–330. 21

[NE04] NATARAJAN V., EDELSBRUNNER H.: Simplifi-
cation of three-dimensional density maps. IEEE Trans-
actions on Visualization and Computer Graphics 10, 5
(2004), 587–597. 17

[Nie97] NIELSON G. M.: Tools for triangulations and
tetrahedralizations and constructing functions defined
over them. In Scientific Visualization: overviews, Method-
ologies and Techniques, Nielson G. M., Hagen H., Müller
H., (Eds.). IEEE Computer Society, Silver Spring, MD,
1997, ch. 20, pp. 429–525. 4, 6

[PBCF93] PAOLUZZI A., BERNARDINI F., CATTANI C.,
FERRUCCI V.: Dimension-independent modeling with
simplicial complexes. ACM Transactions on Graphics 12,
1 (January 1993), 56–102. 4, 6

[PH97] POPOVIC J., HOPPE H.: Progressive simplicial
complexes. In ACM Computer Graphics Proceedings An-
nual Conference Series, (SIGGRAPH ’97) (1997), ACM
Press, pp. 217–224. 23

[PTL04] PESCO S., TAVARES G., LOPES H.: A stratifi-
cation approach for modeling two-dimensional cell com-
plexes. Computers and Graphics 28 (2004), 235–247. 20,
23

[RC99] ROSSIGNAC J., CARDOZE D.: Matchmaker:
manifold BReps for non-manifold R-sets. In Proceed-
ings Fifth Symposium on Solid Modeling and Applications
(New York (USA), 9–11 June 1999), Bronsvoort W. F.,
Anderson D. C., (Eds.), ACM Press, pp. 31–41. 20

[RO89] ROSSIGNAC J. R., O’CONNOR M. A.: SGC: a
dimension-independent model for point-sets with inter-
nal structures and incomplete boundaries. In Geometric
Modeling for Product Engineering, Wozny M. J., Turner
J. U., Preiss K., (Eds.). Elsevier Science Publishers B. V.
(North–Holland), Amsterdam, 1989, pp. 145–180. 20

[RO96] RENZE K. J., OLIVER J. H.: Generalized un-
structured decimation. IEEE Computational Geometry
and Applications 16, 6 (1996), 24–32. 23

[RSS01] ROSSIGNAC J., SAFONOVA A., SZYMCZAK A.:
3D compression made simple: Edge-Breaker on a Corner
Table. In Proceedings Shape Modeling International 2001
(Genova, Italy, May 2001), IEEE Computer Society. 7, 9

[Sam06] SAMET H.: Foundations of Multi-Dimensional
Data Structures. Morgan-Kaufmann, August 2006. 7, 8

[THJ99] TROTTS I. J., HAMANN B., JOY K. I.: Simpli-
fication of tetrahedral meshes with error bounds. IEEE
Transactions on Visualization and Computer Graphics 5,
3 (1999), 224–237. 23

[VG00] VELHO L., GOMES J.: Variable resolution 4-k
meshes: concepts and applications. Computer Graphics
Forum 19, 4 (2000), 195–214. 23

[VL97] VÉRON P., LÉON J. C.: Static polyhedron simpli-
fication using error measurements. Computer-Aided De-
sign 29, 4 (1997), 287–298. 11, 14, 23

[VL01] VÉRON P., LÉON J.-C.: Using polyhedral models
to authomatically sketch idealized geometry for structural
analysis. Engineering with Computers 17 (2001), 373–
385. 23

[Wei88] WEILER K.: The radial-edge data structure:
a topological representation for non-manifold geometric
boundary modeling. In Geometric Modeling for CAD
Applications: Selected and Expanded Papers from the
IFIP WG5.2 Working Conference, Rensselaerville, NY,
USA, 12-16 May 1986, Encarnacao J. L., Wozny M. J.,
McLaughlin H. W., (Eds.). Elsevier Science Publishers B.
V. (North–Holland), Amsterdam, 1988, pp. 3–36. ISBN:
0444704167. 10, 11, 22

[Whi65] WHITNEY H.: Local properties of analytic vari-
eties. In Differential and Combinatorial topology, A Sym-
posium in Honor of Marston Morse (1965), Cairns S. S.,
(Ed.), Princeton University Press, pp. 205–244. 20

[YK95] YAMAGUCHI Y., KIMURA F.: Non-manifold
topology based on coupling entities. IEEE Computer
Graphics and Applications 15, 1 (January 1995), 42–50.
10, 12, 22

c© The Eurographics Association 2007.

87

