Laplacian Mesh Processing

Olga Sorkine†
School of Computer Science, Tel Aviv University, Israel

Abstract
Surface representation and processing is one of the key topics in computer graphics and geometric modeling, since it greatly affects the range of possible applications. In this paper we will present recent advances in geometry processing that are related to the Laplacian processing framework. This framework is based on linear operators defined on polygonal meshes, and furnishes a variety of processing applications, such as shape approximation and compact representation, mesh editing, filtering, watermarking and morphing. The core of the framework is the mesh Laplacian operator, which allows to define differential coordinates and new bases for efficient mesh geometry representation.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Boundary representations

1. Introduction
Surface representation and processing is one of the key topics in computer graphics, geometric modeling and computer-aided design. To put it simply, the way a 3D object is defined greatly affects the range of things one can do with it. Different object representations may reveal different geometric, combinatorial or even perceptive properties of the shape at hand. For instance, the very popular piecewise-linear surface representation (triangular meshes) provides immediate means to display the surface, learn about its topological properties (through Euler’s characteristic) and, with some effort, differential properties of the smooth surface it approximates. On the other hand, many modeling tasks are difficult to perform on meshes. Moreover, the nowadays common scanned surfaces usually come as very detailed, complex and at times noisy meshes that require geometry processing, such as filtering, resampling and compression for efficient storage and streaming.

In this paper, we describe recent work on mesh processing and modeling that is based on the Laplacian framework. In this framework, surface meshes are studied through their differential properties, derived from certain linear operators defined on the mesh. These operators are different variants of the mesh Laplacian, and they provide means to represent a surface by new bases that benefit various processing applications. In contrast to the traditional global Cartesian coordinates, which can only tell the spatial location of each point, a differential surface representation carries information about the local shape of the surface, the size and orientation of local details. Therefore, defining operations on surfaces that strive to preserve such a differential representation, results in detail-preserving operations. The linearity of the processing framework makes it very efficient, and it has become an attractive and promising research direction, as is evident from the amount of recent publications on the subject.

In the following section we will closely look into the Laplacian operator, the differential representation and the associated surface reconstruction problem. We will then review some results and applications that benefit from the Laplacian framework, such as shape approximation, geometry compression and watermarking (Section 3), and interactive mesh editing (Section 4).

2. Laplacian operator and differential surface representation
In the following, we review the definition of differential coordinates (δ-coordinates), the associated mesh Laplacian operator, describe the surface reconstruction framework and discuss various properties of the Laplacian operator.
2.1. Basic definitions

Let $\mathcal{M} = (V, E, F)$ be a given triangular mesh with n vertices. V denotes the set of vertices, E denotes the set of edges and F – the set of faces. Each vertex $i \in \mathcal{M}$ is conventionally represented using absolute Cartesian coordinates, denoted by $v_i = (x_i, y_i, z_i)$. We first define the differential or δ-coordinates of v_i, to be the difference between the absolute coordinates of v_i and the center of mass of its immediate neighbors in the mesh,

$$\delta_i = (\delta_i^x, \delta_i^y, \delta_i^z) = v_i - \frac{1}{d_i} \sum_{j \in N(i)} v_j,$$

where $N(i) = \{ j \mid (i, j) \in E \}$ and $d_i = |N(i)|$ is the number of immediate neighbors of i (the degree or valence of i).

The transformation of the vector of absolute Cartesian coordinates to the vector of δ-coordinates can be represented in matrix form. Let A be the adjacency (connectivity) matrix of the mesh:

$$A_{ij} = \begin{cases} 1 & (i, j) \in E \\ 0 & \text{otherwise}, \end{cases}$$

and let D be the diagonal matrix such that $D_{ii} = d_i$. Then the matrix transforming the absolute coordinates to relative coordinates is

$$L = I - D^{-1}A.$$

It is often more convenient to consider the symmetric version of the L matrix, defined by $L_s = DL = D - A$.

$$(L_s)_{ij} = \begin{cases} d_i & i = j \\ -1 & (i, j) \in E \\ 0 & \text{otherwise}. \end{cases}$$

That is, $L_s x = D\delta^{(x)}$, $L_s y = D\delta^{(y)}$, and $L_s z = D\delta^{(z)}$, where x is an n-vector containing the x absolute coordinates of all the vertices and so on. See Figure 2 for an example of a mesh and its associated matrices.

The matrix L_s (or L) is called the topological Laplacian of the mesh [Fie73]. Graph Laplacians have been extensively studied in algebra and graph theory [Chu97], primarily because their algebraic properties are related to the combinatorial properties of the graphs they represent. We shall look into some of these properties later on, in Sections 2.2 and 3.

From a differential geometry perspective, the δ-coordinates can be viewed as a discretization of the continuous Laplace-Beltrami operator [dC76], if we assume that our mesh \mathcal{M} is a piecewise-linear approximation of a smooth surface. We can write the differential coordinate vector at vertex v_i as

$$\delta_i = \frac{1}{d_i} \sum_{j \in N(i)} (v_i - v_j).$$

Figure 1: The vector of the differential coordinates at a vertex approximates the local shape characteristics of the surface: the normal direction and the mean curvature.

The sum above is a discretization of the following curvilinear integral: $\frac{1}{|\gamma|} \int_{\gamma} (v_i - v) d\ell(v) = H(v_i) n_i$, where $H(v_i)$ is the mean curvature at v_i and n_i is the surface normal. Therefore, the direction of the differential coordinate vector approximates the local normal direction and the magnitude approximates a quantity proportional to the local mean curvature [Tau95]. Intuitively, this means that the δ-coordinates encapsulate the local surface shape (see Figure 1). It should be noted that geometric discretization of the Laplacian has better approximation qualities. Meyer et al. [MDS02] propose to use the cotangent weights instead of uniform weights:

$$\delta_i^\gamma = \frac{1}{|\Omega_i|} \sum_{j \in N(i)} \frac{1}{2} (\cot \alpha_{ij} + \cot \beta_{ij})(v_i - v_j),$$

where $|\Omega_i|$ is the size of the Voronoi cell of i and α_{ij}, β_{ij} denote the two angles opposite of edge (i, j). These geometry-dependent weights lead to vectors δ_i^γ with normal components only, unlike the previously defined δ_i which also have tangential components. Therefore, this discretization is beneficial for applications where the mesh geometry is always known, such as mesh filtering and editing. However, in compression applications we will define effective bases for geometry representation based on the topological Laplacian, so that the bases are implicitly encoded in the mesh connectivity and no extra information is required to store them.

2.2. Surface reconstruction from δ-coordinates

In the following, we will be working with the above defined differential surface representation. We will perform different operations on the δ-coordinates, depending on the task at hand. The final step of any such manipulation must be surface reconstruction, or, in other words, we need to recover the Cartesian coordinates of \mathcal{M}’s vertices.

Given a set of δ-coordinates, can we uniquely restore the global coordinates? The immediate answer is no, because the matrix L (or L_s) that we use to transform from global to
more than one constraint on spatial locations of vertices. Denote by i the coordinates of vertex i. We need to solve a full-rank linear system. Assuming the analytical least-squares solution is expressed in terms of the rectangular $(n+m) \times n$ system matrix L from Eq. 2:

$$
\hat{x} = (L^T L)^{-1} L^T b,
$$

where $b = (\delta, \omega c_1, \ldots, \omega c_m)^T$ is the right-hand side vector of the linear system. See Figure 2 for an example of a small mesh and its associated matrix L.

It is interesting to note that the least-squares system (3) is in fact a discretized version of a well-known PDE: the Poisson equation with Dirichlet boundary conditions

$$
\nabla^2 f = \nabla \cdot w, \quad f|_{\partial \Omega} = c|_{\partial \Omega},
$$

where f is an unknown scalar function (one of the x, y or z coordinate functions defined on the mesh in our case), w is a vector (gradient) field defined on the mesh, c is some known scalar function and $\partial \Omega$ denotes the domain boundary (the location of the spatial constraints). The linear operator L is a finite-differencing scheme for the continuous Laplacian

$$
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.
$$

Gradient field manipulation and subsequent reconstruction of the signal via the Poisson equation has been recently practiced in the image domain. For example, Fattal et al. [FLW02] use such framework for dynamic range reduction of images; Pérez et al. [PGB03] perform various image editing operations, such as seamlessly compositing a part of one image into another; Drori et al. [DLF04] use this framework on a volume of images – a video. We will be using this framework in an irregular grid setting, and operating on 2D domains embedded in 3D makes things more challenging, as discussed in Section 4.

An important practical aspect of surface reconstruction from δ-coordinates is the availability of efficient and accurate numerical methods for solving the least-squares problem (3). A recent comparative study [BK04b] shows that direct methods prove to be superior for these types of problems. The system (3) can be solved by applying Cholesky factorization to the associated normal equations

$$
(L^T L)x = L^T \delta.
$$

The matrix L is sparse, and $M = L^T L$ is also sparse (although not as sparse as L) and positive definite. By using
fill-reducing reordering, it is possible to compute a sparse Cholesky factorization of M:

$$M = R^T R,$$

where R is an upper-triangular sparse matrix. The factorization is computed once, and we can solve for several mesh functions (x, y, z) by back substitution:

$$R^T \xi = \tilde{L}^T \delta^{(k)}$$

$$Rx = \xi.$$

The factorization takes the bulk of the computation time, and the back-substitution step is usually very fast. Using advanced linear solvers, such as TAUCS library [Tol03], makes the computations very efficient. See Table 1 for timing data on several typical meshes.

Note that the accuracy of the solution is highly dependent on the conditioning of the linear system. The Laplacian matrix is notoriously ill-conditioned: when we add only one anchor, the largest singular value of \tilde{L} is proportional to the maximal degree in the mesh, while a good estimate for the smallest singular value is one over the product of the maximum topological distance of a vertex from the single anchor vertex, and the number of vertices in the mesh [BH01, GM00]. For a typical n-vertex 3D mesh, the condition number is therefore likely to be $\Theta(n^{1.5})$, and it is squared when we consider the normal equations. However, adding anchors to the system improves its conditioning and makes the factorization of the normal equations stable. A rigorous way to bound the smallest singular value of \tilde{L} from below is shown in [CCOST04]; the bound depends on the number of anchors and their spacing across the mesh.

In summary, the transition from the global Cartesian representation to differential representation is performed by a linear operator with local support: the mesh Laplacian. And vice versa: in order to recover the Cartesian coordinates from the differential representation, one needs to solve a sparse linear least-squares problem. This provides a powerful framework for surface manipulation: we will apply different modifications to the differential coordinates (such as quantization for compression purposes) and/or pose additional modeling constraints, and then reconstruct the surface by solving the least-squares problem. The advantages of this framework can be summarized as follows:

- It strives to preserve local surface detail as much as possible under the constraints
- The least-squares solution smoothly distributes the error across the entire domain, providing a graceful reconstruction
- Sparse linear systems can be solved very efficiently

2.3. Spectral properties

Let us consider the L_e matrix, since it is symmetric and thus simpler to analyze. The matrix L_e is symmetric positive semi-definite and thus has an orthonormal eigenbasis

$$E = \{e_1, e_2, \ldots, e_n\}.$$

Denote the eigenvalues by λ_i,

$$0 = \lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_n.$$

It is known that the first non-zero λ_i are very small, and the largest eigenvalue λ_n is bounded by the largest vertex valence in \mathcal{O} times 2. The first eigenvectors (corresponding to small eigenvalues) are smooth, slowly varying functions on the mesh, and the last eigenvectors have high frequency (rapid oscillations). For example, the first eigenvector e_1 is the constant vector, that is, the “smoothest” mesh function that does not vary at all. In fact, the Laplacian eigenbasis is an extension of the discrete Fourier basis to irregular domains [Tau95]. The eigenvalues are considered as mesh frequencies. We will see in the following how this fact is exploited for signal processing on meshes, compact geometry representation, watermarking and more. See also [Tau00] for an earlier state-of-the-art report on this subject.

3. Efficient shape representation

In this section we review several methods for efficient and compact geometry representation that benefit from the mesh Laplacian operator and the framework presented in Section 2. For an extensive recent survey on general compression methods, we refer the reader to [AG05].

3.1. Efficient bases for geometry representation

Finding a good basis for compact shape representation means that one can use only a fraction of the basis functions to approximate a given geometry well. This idea is extensively used in signal processing and in the image domain, by defining Fourier or wavelet bases. The regular 1D and 2D settings are well studied in both continuous and discrete settings, and the sampling theorem tells us...
the number of basis functions we need to use for perfect signal reconstruction. Things are more involved for the irregular setting of arbitrary triangular meshes. One possible approach of direct application of the signal processing theory on meshes is to first perform semi-regular remeshing by parameterizing the mesh over a simple base complex, and then apply variations of 2D signal processing methods [EDD’95, ZSS97, LSS’98, GSS99, KSS00]. Another possibility is, instead of altering the mesh, to work directly on the irregular mesh and develop generalizations of the methods from regular settings.

Karni and Gotsman [KG00] introduce a spectral method where the mesh is approximated by reconstructing its geometry using a linear combination of a number of basis vectors. The basis is the spectral basis E of the L_s matrix, which can be regarded as a generalization of the discrete Fourier basis (see Section 2.3). Similarly to JPEG compression of images, the mesh geometry functions x, y, z are decomposed in the basis E:

$$x = \alpha_1 e_1 + \alpha_2 e_2 + \ldots + \alpha_n e_n,$$

and the high-frequency components (coefficients of the last eigenvectors) are truncated. The coefficients α_i are quantized and subsequently entropy-coded. It is assumed that the mesh connectivity is known to the decoder prior to receiving the geometry coefficients, so that the decoder first computes the spectral basis and then reconstructs the geometry by combining the coefficients. Note that this method is readily-made for progressive streaming, since if one sends the α_i coefficients in ascending order of i, the decoder can first reconstruct a coarse (very smooth) approximation of the geometry, and then gradually add high-frequency detail, as more coefficients become available.

An example of the progressive encoding of [KG00] is shown in Figure 3. The geometry of the Horse model is first approximated using only a few of the first eigenvectors e_i, and the resulting approximation is very smooth. As more and more eigenvectors participate in the approximation, the obtained surface receives more high-frequency detail.

The spectral method of [KG00] provides high compression ratios, since most of the energy is concentrated in the low-frequency coefficients (the first α_i), and the high-frequency components add negligible weight. However, computing even the first few eigenvectors of typical meshes (with tens of thousands of vertices) is an extremely com-
oblivious, since the basis vectors are functions of the con-

n
nectivity alone. In contrast, the new geometry-aware method derives the basis both from the mesh connectivity and geometry. The basis vectors in [SCOIT05] are centered around selected “geometrically important” anchor vertices. This allows a terse capturing of important features of the surface and leads to compact and efficient representation of the mesh geometry. Figure 4 illustrates the reconstruction using such basis vectors on a 2D curve example. The bottom row shows the meshes reconstructed using geometry-aware bases. The locations of the anchors are marked by small dots. The re-

constructed mesh passes close to the original locations of the anchor points, which enables good approximation of such features as the tips of the bird’s wings and tail. For compar-

ison, reconstruction of this mesh using an analogous number of spectral basis vectors misses out the features. This behav-

ior is evident in large as well as in small scale.

It should be noted that explicit computation of the ba-

sis vectors is, generally speaking, too expensive for large meshes. The method in [SCOIT05] avoids explicit computa-

tion of the underlying basis. Instead of directly representing the geometry by the coefficients of the linear combination of the basis vectors, the reconstruction problem is reduced to solving a sparse linear least-squares system of the type (2). Each basis function is selected so that it fulfills the following conditions in the least-squares sense: it attains the value 1 at one of the anchors and 0 at the other anchors, and it is the smoothest among all the functions that satisfy these require-

ments (a slightly different definition for strictly interpolatory anchors is also proposed, but the principle is the same). The smoothness of a function is defined in a discrete manner using the Laplacian of the mesh. Specifically, the basis func-

tions are defined as follows: Given a set of k anchor vertex

indices 1 ≤ a_1, a_2, ..., a_k ≤ n, the fth function f_i in the basis minimizes

\[|\mathbf{L} \mathbf{f}_i|^2 + \left(\sum_{j \neq i} \omega_j \left(f_i(a_j) - f_i(a) \right)^2 \right) \]
the algorithm in [SCOIT05] does not require the bases explicitly. The definition results in smooth basis functions that are easy to combine into an approximation that attains specific values at the anchors. The compact geometry representation thus consists of the indices of the anchor vertices and the coefficients associated with the basis functions. To recover the surface geometry, we simply need to solve the system (3), where instead of δ we put zero:

$$\hat{x} = \sum_{i=1}^{k} c_i f_i = \arg\min_{x} \left\{ ||Lx||^2 + \sum_{i=1}^{k} \omega^2 |x_{ai} - c_i|^2 \right\}.$$

Taking a sufficiently large value for ω (in the order of n) makes the reconstruction effectively interpolatory at the anchors. Figure 6 demonstrates an example of shape approximation obtained with these basis functions.

3.2. High-pass quantization

One of the main ways to reduce floating-point data, such as mesh geometry, is by quantization. Quantization necessarily introduces errors and causes a certain loss of data. Loosely speaking, quantizing the Cartesian coordinates of the mesh produces high-frequency errors across the surface. This especially damages the fine-sampled areas, since the relative error is greater when the polygons are smaller. Aggressive quantization significantly alters the surface normals, causing the irritating “jaggies” effect. Thus, only mild quantization of Cartesian coordinates is possible without causing visible artifacts (usually between 10 and 16 bits per coordinate).

In [SCOT03], a different approach to geometry quantization is proposed. Instead of directly quantizing the Cartesian coordinates, the quantization is applied to the δ-coordinates, and the geometry of the mesh can be restored on the decoder side by solving a linear least-squares system defined by the extended Laplacian matrix (discussed in Section 2.2). Introducing high-frequency errors by quantizing the δ-coordinates results in low-frequency errors in the reconstructed Cartesian coordinates. By considering a visual error metric between meshes, that takes into account not only the Euclidean distance between corresponding vertices (or the “Metro” distance [CRS98]) but also the smoothness error, it can be argued that low-frequency displacements in the surface geometry are less noticeable than high-frequency displacements which modify the local characteristics of the surface such as normals and curvature. Consequently, strong quantization of the δ-coordinates yields a small visual error, in contrast to standard Cartesian coordinate quantization.

The strategy of [SCOT03] is called high-pass quantization, to emphasize the fact that it tends to concentrate the quantization error at the low-frequency end of the spectrum, in contrast to the spectral method of [KG00]. Mesh frequencies are defined as in Section 2.3. Let us look what happens to quantization errors. The δ-coordinates are obtained by applying the mesh Laplacian, $\delta = L_\delta x$. When the δ-coordinates are quantized, an error ϵ (with small norm) is added. To reconstruct the mesh function x from $\delta + \epsilon$, we write:

$$x' = L_\delta^{-1} (\delta + \epsilon) = L_\delta^{-1} \delta + L_\delta^{-1} \epsilon = x + L_\delta^{-1} \epsilon.$$

(We assume a non-singular L_δ by adding one anchor.) Thus, the quantization error is $q_\epsilon = L_\delta^{-1} \epsilon$, and its norm is no longer small. In fact, if we look at q_ϵ in the spectral basis, we will see that its low-frequency component is amplified:

$$\epsilon = c_1 e_1 + c_2 e_2 + \ldots + c_n e_n,$$

$$q_\epsilon = L_\delta^{-1} \epsilon = \frac{1}{\lambda_1} c_1 e_1 + \frac{1}{\lambda_2} c_2 e_2 + \ldots + \frac{1}{\lambda_n} c_n e_n.$$

The last statement holds since a matrix and its inverse share the same set of eigenvectors, and the corresponding eigenvalues are inverted. The first λ_i are very small, thus the first $\frac{1}{\lambda_i}$ are large. This means that q_ϵ has very strong components in the direction of the first e_i, i.e. low-frequencies. The high-frequency components are damped, because the last λ_i are relatively large, so for large i, $\frac{1}{\lambda_i} < 1$. Thus we can conclude that when quantizing δ-coordinates, we get mostly low-frequency errors. Note that the eigendecomposition is used solely for analysis purposes; the quantization method only requires linearly computing the δ-coordinates and linear surface reconstruction on the decoder side.

To reduce the low-frequency error, more anchor vertices, whose spatial location is known, can be added to the representation. These vertices “nail” the geometry in place and prevent large shifts or rotations. Algebraically, anchors im-
Figure 8: Visualization of the visual error across the mesh surface. The surface was reconstructed from δ-coordinates quantized to 7 bits/coordinate using 2 anchors (a), 4 anchors (b) and 20 anchors (c). The anchor points are shown as small red spheres. Each vertex v is colored according to its visual error value $E_{\text{vis}}(v)$. We have also added a sign to these values, so that vertices that move outside of the surface have positive error values (colored by red), and vertices that move inwards have negative error values (colored by blue). In (d), the visual error of direct quantization of the Cartesian coordinates is shown.

prove the conditioning of the Laplacian matrix by making the smallest singular value larger. Adding anchors requires more storage space, and therefore their placement needs to be optimized so as to minimize the error. A greedy placement technique is given in [SCOT03], where the anchors are chosen one by one, each new anchor is placed at the vertex that achieved highest reconstruction error in the previous iteration. A different placement strategy that conforms with provable upper bounds on the geometry error is introduced in [CCOST04].

Figures 7 and 8 show some quantization results from [SCOT03].

3.3. Mesh watermarking

The visual properties of low-frequency errors in geometry prove to be useful not only for geometry compression. The fact that the human visual system is less sensitive to low-frequency errors (such as smooth shifts or rotations of parts of the surface) is exploited in mesh watermarking techniques [PHF99, OTMM01, OMT02]. Mesh watermarking, similar to image watermarking, is essential for copyright protection and ownership authentication of geometric data. The goal is to embed an invisible bit string into the geometric representation of the object, so that the actual owner of the authentic digital object would be able to robustly compare the marked copy with the real (unmodified) version of the 3D object and to verify the presence of the correct watermark.

The idea of Ohbuchi et al. [OTMM01, OMT02] was to embed a watermark bit string into the spectral representation of the 3D mesh at hand, by slightly modifying the low-frequency coefficients of the spectral decomposition (4). As previously discussed, small changes in the low-frequency component of the surface geometry, or low-frequency errors, do not alter the local surface appearance, and thus they are less apparent to the human eye. Therefore, in applications where the 3D meshes are used primarily for display, such approach to watermarking is definitely plausible. In brief, the watermarking algorithm works as follows: the input mesh is partitioned into balanced patches to reduce the cost of spectral decomposition, and then the eigendecomposition of the symmetric topological Laplacian matrix is computed for each patch (see Eq. 4). Next, the low-frequency coefficients (the first α_i) are modulated by the selected watermark bit string, and the mesh geometry is reassembled by summing up the right-hand side of (4) with the modified coefficients. This completes the watermarking process. To extract the watermark from a “suspect” mesh, it is first aligned with the original mesh and remeshed so that it has the same connectivity as the original mesh. Then, spectral analysis is performed, and the spectral coefficients of the suspect mesh are subtracted from the original (unmodified) coefficients, so that the watermark bit string can be retrieved.

Recently, the above watermarking scheme was extended to point-set data where explicit connectivity is not present (see [CWPG04]).

4. Mesh editing and shape interpolation

Manipulating and modifying a surface while preserving the geometric details is important for various surface editing operations, including free-form deformations [SP86, Coq90], cut and paste [RIKM93, KK99, BMBZ02], fusion [KSMK99], morphing [Ale03], and others. Note that the absolute position of the vertices in a mesh is not important for these operations; what is needed is a local description of the shape which is not dependent on the particular placement of the shape in the Euclidean space. In the following we will describe several such types of local surface representation that employ the Laplacian framework, and show how they are used for mesh editing.
4.1. The modeling metaphor

Let us first briefly describe the traditional way of direct surface manipulation. The modeling metaphor is very simple from the user’s point of view [KCVS98]. First, the user marks the desired region of interest (ROI) on the mesh that is to be modified. The rest of the mesh will remain unchanged (and thus does not participate in the calculations). Next, the user selects a group of vertices that will serve as the manipulation handle. The user can then drag the handle around and apply arbitrary transformations to it (such as rotation, scaling, etc.), and the surface of the ROI is modified on the fly, following the handle manipulation.

From the algorithmic standpoint, the handle vertices function as boundary conditions for the calculation of the edited surface. These conditions change every time the user manipulates the handle. An additional set of boundary constraints expresses the static parts of the surface that remain unchanged during the editing process. Usually, this set of constraints consists of some padding belt of vertices around the ROI boundary, and it ensures a gradual transition between the ROI and the rest of the mesh (which, as mentioned above, is completely static and is usually not included in the editing process at all for efficiency reasons). Thus, if we denote the group of constrained vertices (those that belong to the handle and the static ones) by \(U \), the boundary constraints are written simply as

\[
\mathbf{v}_i = \mathbf{u}_i, \quad \forall i \in U, \tag{5}
\]

where \(\mathbf{u}_i \) are the desired positions for the constrained vertices.

Any editing algorithm in fact changes the shape of the ROI so as to satisfy the constraints (5) while striving to give the modified surface a natural shape. Here, we will concentrate on one particular definition of natural deformation, namely: a deformation that preserves the local details of the original surface. In the next sections we will see how the above modeling metaphor is implemented using various surface representations.

4.2. Multi-resolution mesh editing

Partially intrinsic surface mesh representations are given by multi-resolution decompositions [FB88, ZSS97, KCVS98] [GSS99, KVS99, Lee99, BK04a]. In a multi-resolution mesh, the geometry is encoded as a base mesh and several levels of refinement. The refinement is typically described locally, so that the geometric details are mostly captured in a discrete set of translation- and rotation-invariant coordinates. Using this representation, modeling operations can be performed on an appropriate user-specified level-of-detail. The multi-resolution hierarchy can be constructed for both the connectivity and the geometry (as in e.g. [ZSS97, GSS99]), or the geometry only (as in e.g. [KCVS98, Lee99, BK04a]), where the connectivity of the mesh remains full and unchanged in all the levels of detail in the hierarchy. Different levels of refinement are usually obtained by gradual smoothing of the mesh.

We will outline the editing mechanism of the multi-resolution framework of Kobbelt and colleagues [KCVS98] [KVS99, BK04a] as an exemplary multi-resolution technique that also uses the Laplacian framework. For simplicity, let us assume that the mesh hierarchy consists of two levels only, sharing the same connectivity: the smooth base mesh and the detailed mesh. The detailed level is encoded with respect to the base level by computing the offset of each vertex and representing this offset in the local frame of the corresponding vertex in the base mesh. The choice of the local frames is rotation- and translation-invariant, and therefore the representation of the offsets (which are, in fact, the surface details in this case) is independent of the location of the mesh in space. Mesh editing is performed as follows: first, the smooth base mesh is deformed according to the constraints (5); then the local frames are recomputed on the deformed base mesh, and finally, the original detail offsets (in their local frame representation) are added to the base mesh. This way, the local details are reproduced correctly in the deformed mesh: for example, if the surface was bent, the local frames of the smooth base mesh rotate, and thus so do
the offsets. This key concept of invariance in local representation is illustrated in Figure 9.

How is the base mesh deformed? It is assumed that the base mesh is smooth enough and does not contain local details that need to be preserved. Therefore, the base mesh is deformed by solving an optimization problem with two objectives: (i) satisfying the user constraints (5) and (ii) keeping the surface of the base mesh smooth. The latter goal is achieved by describing smoothness via the mesh Laplacian operator, as we already saw in Section 3.1. Botsch and Kobbelt [BK04a] propose different orders of smoothness, obtained via different orders of the Laplacian operator. The optimization is formulated as

$$L^k x = 0,$$

leading to C^{k-1} smoothness of the resulting surface. Probably the most common value is $k = 2$, producing the so-called “thin-plate” surface. The equations (5) are incorporated as hard constraints into the above system by substitution, securing its non-trivial solution. When $k = 2$, this optimization is equivalent to solving the least-squares problem (3) where all the δ-coordinates are set to zero and sufficiently large weight is put on the positional constraints, to effectively make them hard constraints. Note that the factorization of the system matrix can be computed once per choice of ROI and handle vertices; each time the user changes the handle, only the right-hand side of the system changes and thus only a back-substitution step is required. This allows interactive response of the editing mechanism for fairly large ROIs (up to several tens of thousands of vertices, refer to Table 1).

The multi-resolution approach is probably the most intuitive method for mesh editing, and its advantage is the straightforward representation of the details of the shape in a manner that is invariant to the global coordinate system. On the other hand, this approach defines details explicitly, or in other words, one may need to explicitly set the required amount of smoothing to create a satisfactory base mesh. In meshes with complex details, many levels of multi-resolution hierarchy may be required in order to handle the details correctly.

4.3. Single-resolution local representations for mesh editing

Local details can be defined in a more implicit way with a single-resolution mesh, by using differential coordinates. Mesh editing using this representation was pioneered by Alexa [Ale01]. The basic idea is simply to add the positional constraints (5) to the system that reconstructs the Cartesian coordinates of the mesh from the differential coordinates (Eq. 3). Once again, note that the system matrix needs to be constructed and factored only once per choice of ROI and handle; during user manipulation one only needs to solve the linear system by back-substitution, which is very efficient.

The above idea for surface representation and reconstruction was further elaborated in [LSCO’04, SLCO’04, YZX’04]. Yu et al. [YZX’04] introduce a technique called Poisson Editing, formulated by manipulation of the gradients of the coordinate functions (x, y, z) of the mesh. The surface is reconstructed by solving the least-squares system resulting from discretizing the Poisson equation

$$\nabla^2 f = \nabla \cdot w$$

with Dirichlet boundary conditions. Here, f is an unknown scalar function on the mesh, that is, one of the coordinate functions x, y, z of the deformed mesh. The vector field w is the gradient field of the corresponding original coordinate function (recall Section 2.2). The set of boundary constraints consists of both positional constraints of the form (5) and constraints on the gradients of the handle vertices, directly expressed by the desired linear transformation on the handle. The spatial Laplacian operator Δ, restricted to the mesh, is discretized using the cotangent weights. By inspecting Eq. 7, we can see that it has the same form of the Laplacian surface reconstruction system (3).

In [LSCO’04], the surface is reconstructed from the Laplacian δ-coordinates of the mesh and spatial boundary conditions by solving (3). Both Lipman et al. [LSCO’04] and Yu et al. [YZX’04] point out the main problem of the above approach: the need to rotate the local frames that define the the Laplacians, or the gradients, to correctly handle the orientation of the local details. If this issue is not properly addressed, the system in (3) or equivalently, in (7), tries to preserve the Laplacian vectors (or the gradients) in their original orientation with respect to the global coordinate system. Therefore a result in the spirit of the sketch in Figure 9(c) would be obtained.

Yu et al. and Lipman et al. propose to remedy this problem by explicit assignment of the local rotations. Lipman et al. [LSCO’04] estimate the local rotations of the frames on the underlying smooth surface by smoothing the “naive” solution of (3); then the original Laplacians are rotated by these estimated rotations and the reconstruction system is solved again. This heuristic achieves good results on meshes with relatively small details; applying it to complex meshes where the details are far from being height-fields above a smooth base surface would require a lot of smoothing iterations.

Yu et al. [YZX’04] propagate the rotation (or any other linear transformation) of the editing handle, defined by the user, to all the gradient vectors of the region of interest. The propagated transformations are interpolated with the identity, where the interpolation weight for each triangle is proportional to the geodesic distance of the triangle from the handle. As pointed out in [LSLC05], this solution may also produce unexpected results for meshes with complex features protruding from the smooth base surface. This is because the tip of a protruding feature is geodesically further from the handle than the vertices around the feature’s
base, and thus the tip receives a smaller share of the deformation than the base (whereas for a natural result, it should be roughly the same amount of deformation). A different interpolation scheme for deformation propagation was recently proposed by Zayer et al. [ZRKS05]: it avoids geodesics computation, creating a harmonic scalar field on the mesh instead. The harmonic field attains the value of 1 at the handle vertices and 0 at the boundary of the ROI, and varies monotonically on the rest of the ROI, thus providing a valid alternative to the geodesic weights. The harmonic field is obtained by solving (2), only the 1 and 0 constraints are substituted into the system rather than added in least-squares sense. An additional advantage of this approach is that it uses the same system matrix both for the computation of the weights and for the actual editing (only with different right-hand sides), thus the factorization of the matrix serves both tasks at once. As a side note, we mention that the mesh Laplacian operator is tightly coupled with Hodge theory and computation of globally conformal (harmonic) parameterizations for arbitrary topology. This topic is outside of the scope of this paper; the reader is kindly referred to recent publications [PP93, GY03, NGH04, DKG05] for further information.

It is important to note that all the above-mentioned methods [LSCO04, YZX04, ZRKS05] are fast: the size of the system matrices involved in the reconstruction is \(n \times n \), where \(n \) is the number of vertices in the ROI. This size will grow in the follow-up works, as we shall see shortly.

Subsequent research continued to look for truly rotation-invariant representation suitable for mesh editing. Sheffer and Kraevoy [SK04] introduced the so-called pyramid coordinates: at each vertex \(v \) of the mesh, the normal and the tangential components of the local frame are stored, independently of the global coordinate frame. To construct this representation, a local projection plane is fitted to the vertices of the 1-ring by averaging the face normals of the 1-ring. The normal component of the center vertex \(v \) is its distance to the projection plane, whereas the tangential component is encoded as the edge lengths and the angles between the edges of the 1-ring, projected onto the plane. Since this representation is evidently rotation-invariant, it allows performing natural and large deformations on meshes, as well as linear blend between different shapes (given the correspondence between them). However, the reconstruction of the Cartesian coordinates from the pyramid coordinates is clearly a non-linear optimization (involving cross-product and norm computations to construct the projection planes), which makes it time consuming.

In [SLCO04], the Laplacian editing method that implicitly transforms the differential \(\delta \)-coordinates is proposed, based on finding an optimal transform for each vertex. The transform is defined by comparing 1-rings in the original mesh and the unknown deformed mesh, and is formulated as a linear expression in the vertices of the unknown mesh.
editing constraints, this would lead to scaling artifacts. To rectify the anisotropy, [SLCO’04] propose to remove this anisotropic scaling in postprocessing (by scaling the transformed differential coordinates back to their original size) and reconstruct again using the basic Eq. 3. Note that this repair step also handles the isotropic scaling that may have been caused due to the scale-invariance of (8). Also note that the size of the linear system that corresponds to (8) is $3n \times 3n$ because the in the expressions for T_i’s there is a dependence between the x, y and z coordinates of the mesh, and thus we can no longer solve the system separately for each coordinate. Figure 10 shows an example of editing with this method.

A two-dimensional variant of the editing algorithm of [SLCO’04] was successfully applied to textured 2D shapes with meshed interior in the work of Igarashi et al. [IMH05]. As mentioned, the 2D version of the linear reconstruction problem (8) contains exact linear expressions for transformations T_i that consist of rotations, isotropic scale and translations only. Igarashi et al. propose a different solution to the elimination of isotropic scale in the deformed shape: after the initial solution to (8) given the user constraints, each triangle of the original shape is fitted into its corresponding triangle in the deformed shape, mimicking the new orientation and translation but retaining the original size of the triangle. Then, another linear system is solved to consolidate all these fitted triangles together, similar to the approaches in [ACOL00, SP04]. Since the 2D editing method works on a “volumetric” representation (meshed area of the interior of the shape in the 2D case), the deformations exhibit realistic rigidity and shape preservation. Additional important contribution of this work is the integration of new input devices for direct interaction with the shapes, such as two-handed mouse devices and touch-pads.

The 3D Laplacian editing [SLCO’04] has been recently extended and adapted for advanced modeling metaphors. Nealen et al. [NSACO05] employ the Laplacian framework for sketch-based editing that provides an intuitive yet powerful interface for the user. The main building block of the interface is manipulation of sketched curves: the user can edit silhouette curves or any other paths on the mesh via direct sketching of the new shape for the curves. The underlying machinery is an adaptation of (8), where the positional constraints are weighted differently according to the intention of the user: strong weighting if the intention is to closely follow the sketch, or weak weighting for approximate sketching. See Figure 11 for an example of such approximate silhouette sketching. In addition, the new editing system allows to create sharp or smooth ridges and ravines over the sketched curves, by constraining the Laplacians to specific values (attained by user-controlled scaling). Finally, suggestive contours (see [DFRS03]) can be created by assigning specific rotations to the Laplacians in the region of interest around the sketched curve.

The pursuit after a local differential representation that is invariant to rigid transformations and enables linear reconstruction mechanism achieved a significant progress in the work of Lipman et al. [LSLCO05]. In this paper, a new differential representation is proposed, that bares similarity to the classical differential geometry notions of the first and the second fundamental forms. Assuming a normal to the tangent plane is given at each vertex of the mesh, Lipman et al. define two discrete forms: the first represents a scalar product in the tangent plane of each vertex, and is represented by edge lengths and the angles between the edges of the 1-ring, projected onto the tangent plane. The second form is linear and expresses the height function of the mesh with respect to the tangent plane. It is represented by the signed distance of the 1-ring vertices to the tangent plane. Clearly, such a representation is invariant to the global coordinate frame, because it consists solely of distances and angles (similarly to the pyramid coordinates [SK04]).

Lipman et al. [LSLCO05] prove that, given the values of the discrete forms that were taken from an existing mesh, the mesh Cartesian geometry can be uniquely restored up to global translation and rotation. The linear reconstruction process is the key issue: to achieve it, two decoupled steps are needed. First, the local frames of each vertex are reconstructed. This can be done by constructing and solving a linear system of equations that encodes the changes between the local frames of adjacent vertices. For each mesh edge (i, j) we need an equation that expresses the difference be-
Here, the right-hand side is known: the coefficients β are completely rotation-invariant, and the reconstruction process lies in the fact that the proposed geometry representation is linear. By adding modeling constraints on the local frames we arrive at a least-squares system whose normal equation matrix is of size $3n \times 3n$. The next step is to reconstruct the actual vertex positions from the local frames. This is done by solving a second linear system of equations, which simply encodes the edge vectors in the coordinates of the local frames:

$$v_j - v_i = \beta_{ij}^1 b_1^i + \beta_{ij}^2 b_2^i + \beta_{ij}^3 N_i^i, \quad \forall (i,j) \in E$$

Here, the right-hand side is known: the coefficients β_{ij} are defined by the discrete forms and the local frame vectors were already computed from the previous system. It is possible to add positional modeling constraints to this system and to solve it in the least-squares sense (it is an $n \times n$ system).

The coefficients α_{km}^{ij} of this equation can be completely deduced from the discrete forms representation. Note that since at each vertex we have three local frames vectors, and the system of equations is separable in the three coordinates, the width of the matrix is 3n. By adding modeling constraints on the local frames we arrive at a least-squares system whose normal equation matrix is of size $3n \times 3n$. The next step is to reconstruct the actual vertex positions from the local frames.

The price is solving linear systems, and it remains un-coupled (as in the Poisson editing method of [YZX04]) and the user must adjust the transformation of the handle frame to the transformation of the handle position. Sole translation of the handle will not affect the local frames of the mesh here, unlike in Laplacian editing, for instance, where the needed local rotations are automatically deduced from the handle translation.

4.4. Shape interpolation using differential representations

For a recent survey on morphing techniques the reader is referred to [Ale02]; below we summarize the newest approaches related to the Laplacian framework.

Local differential representations described above allow basic mesh manipulation, as well as advanced editing operations. By mixing and interpolating the differential representations of several meshes, it is possible to blend between different shapes, perform detail transfer from one shape onto another, transplant parts of meshes onto other meshes, etc. Local shape morphing with differential δ-coordinates was first proposed by Alexa [Ale01] (see also the extended paper [Ale03]). When simple linear interpolation of Laplacians is performed, the result is identical to linear interpolation of Cartesian coordinates, which is known for its artifacts [SGWM93, ACOL00]. However, Alexa proposed to use varying interpolation weights, which lead to better results. For example, when attaching one mesh part to another, the weighting can vary proportionally to the distance from the line of merge, which leads to a more natural, gradual blend. This idea was further explored in [SLCO04], where the “coating transfer” tool was introduced: by “peeling” another mesh detail via smoothing, one can transfer the details onto another mesh. The peeled coating is represented by differential coordinates; their orientation is adapted to the orientation of the corresponding local frames on the target mesh, and then they are added to the differential coordinates of the target mesh. Finally, the target mesh with the new coating is reconstructed via Eq. 3. Figure 13 shows some coating transfer results and mesh transplanting results from [SLCO04].

When interpolating between different shapes (given they have the same connectivity in full correspondence), correct handling of rotations is extremely important. In the simplest case, when the target shape is a rigid transformation of the source shape (say, rotation by 90 degrees about some axis),
we expect the blending between the two shapes to be gradual rotation of the source shape towards the target. This does not happen if we linearly blend the Cartesian (or the differential) coordinates of the two shapes. We need a correct interpolation of the orientation of the shape. In general, naturally-looking shape interpolation exhibits rigidity and minimizes elastic distortion of the in-between shapes \[ACOL00\].

As mentioned, the Laplacians (or the gradients \[YZX'04\]) are linear functions of the Cartesian coordinates and thus their linear interpolation is equivalent to simple Cartesian interpolation. Xu et al. \[XZWB05\] propose to handle this interpolation by factoring out the rotational part of the local transformations between the source and the target mesh. For each pair of source and target triangles, the affine transformation between their local frames is computed by considering the triangles’ edges and normals (this transformation is in fact the so-called deformation gradient, see \[SP04\]). This affine transformation \(H_i\) is factored using the polar decomposition: \(H_i = R_i S_i\), where \(R_i\) is a rotation and \(S_i\) is symmetric and represents the elastic (scaling) part of \(H_i\). To interpolate between the identity and \(H_i\), \(R_i\) is interpolated in the Lie algebra (using e.g. quaternions) and \(S_i\) is linearly interpolated. Therefore, for a given interpolation parameter \(t\), for each triangle \(i\) we have a local transformation

\[
H_i(t) = \text{LiE}_\text{INTERP}(R_i, I, t) \cdot ((1-t)S_i + tI).
\]

(9)

This transformation \(H_i(t)\) is applied to the gradients of the source triangle \(i\), and the intermediate mesh is reconstructed from the transformed gradients as in \[YZX'04\]. This approach results in a more natural interpolation of rotations of surface meshes. It should be noted that the interpolation method \(9\) was previously used by Alexa et al. \[ACOL00\] for shape morphing between compatible volumetric meshes (or 2D triangulations); it was also employed by Sumner and Popović \[SP04\] to transfer local deformations from one mesh animation sequence onto another.

Observe that in order to correctly interpolate representations that are linear functions of Cartesian geometry, we have to perform non-linear interpolation. This is due to the fact that those representations are not rotation-invariant. The importance of having a linear interpolation method is evident in the work of Sumner et al. \[SZGP05\]. Sumner et al. propose a new algorithm for mesh editing, that relies on a space of example edits. This idea enables easy creation of naturally-behaving shapes when we have an input data base (e.g. key frames of a manually-designed animation or key-frame output of a simulator). Roughly speaking, given a rest shape \(M_0\), the example space is a span of some deformations \(M_1, \ldots, M_k\) of the mesh \(M_0\). The example shapes should be in some local representation, such as Laplacian coordinates or deformation gradients (which was the choice of Sumner et al.). When the user interactively edits \(M_0\), he poses positional modeling constraints of the form \(5\). The algorithm searches for a shape that (i) satisfies the modeling constraints and (ii) is as close as possible to the example space. In other words, the algorithm computes a mesh \(M\) and a set of scalar weights \(w_1, \ldots, w_k\) that minimize the following:

\[
\|M - \text{INTERP}_{w_1, \ldots, w_k}(M_1, \ldots, M_k)\|^2 + \sum_{i \in U} \|v_i - u_i\|^2.
\]

(10)

When the example space is very rich (i.e., when a dense set of example edits is available), it is enough to assume that it is a linear space, i.e.

\[
\text{INTERP}_{w_1, \ldots, w_k}(M_1, \ldots, M_k) = w_1 M_1 + \ldots + w_k M_k.
\]

However, when this is not the case, a non-linear interpolation is required, so that the generated shapes include correct rotations and extrapolate well. Sumner et al. \[SZGP05\] employ the interpolation method \(9\), which turns the above optimization problem \(10\) non-linear and thus more expensive.

As mentioned by the authors of \[SZGP05\], a valid alternative for representation of the example space could be the pyramid coordinates \[SK04\]. Since they are rotation-invariant, they can be simply linearly interpolated in \(10\). However, the optimization problem would be still non-linear because the reconstruction of Cartesian coordinates from pyramid coordinates is not linear.
The discrete forms [LSLCO05] provide an especially powerful representation for shape interpolation. They are rotation-invariant and can thus be linearly interpolated, and the reconstruction process requires solving two linear systems. In the context of morphing, this representation can be viewed as an extension of the 2D representation of Sederberg et al. [SGWM93]: they represented polygonal curves by their edge lengths and angles between successive edges, whereas Lipman et al. [LSLCO05] represent 3D meshes by edge lengths and angles, projected onto the tangent plane, plus the additional height component. Both methods produce natural (and in some sense “as rigid as possible”) shape interpolations. Figure 14 demonstrates a morphing sequence from [LSLCO05].

5. Conclusions

In this paper, we have described the Laplacian mesh processing framework and reviewed its recent applications. The advantages of this framework are its capability for local differential shape description and definition of effective bases for geometry representation. This framework is useful for applications in geometric modeling where surface details are important, especially when processing complex scanned surfaces with abundant detail. The power of the framework stems from its linearity, coupled with the availability of advanced linear solvers. We hope that our report will help familiarizing researchers with this area of study and believe that similar approaches will lead to new useful tools in geometric modeling yet to be discovered.

About the author

Olga Sorkine received the BSc degree in mathematics and computer science from Tel Aviv University in 2000. Currently, she is a PhD student at the School of Computer Science at Tel Aviv University. Her research interests are in computer graphics and include shape modeling, mesh processing and approximation. She has worked in the area of using Laplacian transforms for mesh processing and will submit a PhD thesis on this topic.

Acknowledgements

I would like to express my deepest gratitude to my colleagues and co-authors, whose work constitutes the core of this report: Marc Alexa, Daniel Cohen-Or, Doron Chen, Dror Irony, David Levin, Yaron Lipman, Andrew Nealen, Christian Rössl, Hans-Peter Seidel and Sivan Toledo. This work was supported in part by grants from the Israel Science Foundation (founded by the Israel Academy of Sciences and Humanities) and the Israeli Ministry of Science.

References

Toledo S.: TAUCS: A Library of Sparse Linear Solvers, version 2.2. Tel-Aviv University, Available online at http://www.tau.ac.il/~stoledo/taucs/, Sept. 2003. 56

