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Figure 1: (a) Computer generated scene. (b) Depth ground truth of the generated scene. (c) Generated plenoptic image. (d) Closeup of the

generated plenoptic image. (e) Depth estimation of our algorithm.

Abstract

Light field cameras capture a scene’s multi-directional light field with one image, allowing the estimation of depth. In this paper,
we introduce a fully automatic method for depth estimation from a single plenoptic image running a RANSAC-like algorithm
for feature matching. The novelty about our method is the use of different focal-length lenses for multiple depth map refining,
generating a dense depth map for future all-in-focus renders. We also present a plenoptic simulator which produces a plenoptic
dataset from a 3D computer rendered scene. This simulator, which is unique, as far as we known, allows testing of plenoptic
oriented algorithms since it can reproduce datasets with desired scene characteristics, providing the depth ground truth for
error measurement. This work is a on-going project with promising results.

Categories and Subject Descriptors (according to ACM CCS): 1.4.1 [Image Processing and Computer Vision]: Digitization and
image capture—; 1.4.8 [Image Processing and Computer Vision]: Scene analysis—

1. Introduction

Plenoptic or light field cameras (PLF) are cameras that acquire the
plenoptic function, that is to say that they know, for each pixel, the
amount of light traveling in all directions. These cameras have re-
ceived a lot of interest in the few last years since they inherently al-
low for multiple view geometry. Although formalized earlier (about
100 years ago), PLF cameras were commercially built only in the
last one or two decades. These cameras are built by placing a micro-
lens array behind the major optical lens of the system. This con-
struction allows for the formation of an array of smaller images
that compose the 4D light field and by easily sampling it. It is then
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straightforward to estimate the depth of the scene due to the re-
dundancy created by the same point being imaged several times.
The resolution of the images sampled is limited to the resolution
of the CCD and this is the reason why only with nowadays CCDs
resolutions we have medium to high quality PLF cameras (HD).

In 1908 Lippmann addressed the concept of plenoptic
camera, suggesting the placement of an array of lenses between
the camera’s main lens and the film. This allows the capture of the
light field of a scene. Now with digital image sensors we are able
to extract information from the plenoptic images. This technology
has several applications which can be divided into two major areas:
depth estimation and image rendering.

With a raw plenoptic image we can achieve the scene depth,
which is essential for image render. Dansearau and Bruton [DBO4|
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Figure 2: (a) Plenoptic camera projection model where f is the micro-lens focal distance, D the micro-lens aperture, a is the distance from the
micro-lens plane (MLP) to the main virtual image (VI), b distance from the MLP to main VI projected through the micro-lenses, B distance
from the MLP to image plane (IP), f7 main lens focal distance, Dy main lens aperture and By, the distance from the main lens plane to image
plane. The point X| is projected through the main lens, obtaining the V1] (b) top image shows the hexagonal layout of different type lenses.
The lens type is identified by number, while the bottom image is a sample from Raytrix dataset with different blurs in different lens types.

propose a depth estimation using 2D gradient operations. They
were able to define the light field direction using a two plane
parametrization (s,u) and (¢,v), thus achieving the depth of the
scene. Bishop and Favaro tried to compensate present
aliasing since plenoptic cameras are not immune to spatial alias-
ing. Wanner and Goldluecke used dominant directions on
epipolar plane images to estimate the scene depth, claiming to have
obtained results that surpassed the ones from Raytrix.

Most recently Fleischmann and Koch approached the
depth estimation paradigm with disparity between neighbor lenses.
Using several types of regularization they achieve a per-lens dense
map well suited for volumetric surface reconstruction techniques.

On the other hand, image rendering consists in converting the
plenoptic image into a focused image, the same way a conven-
tional camera would see the world. RenNg proposed
that each micro-lens contributes with only one pixel for the final
rendered image. This is a fast processing method but produces low
resolution images. Lumsdaine suggested that each micro-
lens contributes with a small patch of pixels for the final rendered
image. This increases the final image resolution but generates arti-
facts. Perwass achieves a final image with good resolution
and low artifacts by back tracing each pixel to the image plane.

2. Multi-focus plenoptic cameras

The plenoptic 2.0 or multi-focus plenoptic camera has an array of
multi-focal length micro-lens where each micro-lens have a differ-
ent focal length from its neighbor lenses. There are at least three
different focal lengths and each one is called a type. This construc-
tion allows to obtain a large depth of field and a rendered image
with higher resolution. The most common lens type arrangement
is hexagonal, as illustrated by the top image of figure 2b] Lenses
with different focal lengths will present different blurs for the same
plane and will be in focus for different depth ranges. The image
on the bottom of figure 2b]shows a sample of a scene at a constant
depth. An object in front of the main lens will be projected through

the main lens and then projected through the micro-lens array into
the image plane, as show in figure 2a]

3. Feature detection and depth estimation

Our algorithm to estimate a dense depth map is based on photomet-
ric similarities between pairs of micro-lens images. We use SIFT
descriptor to search for salient points. This method allows us to
obtain the most significant points like corners, edges and contrast
points only by adjusting threshold parameters. Salient points are
then searched for in neighboring lenses to obtain correspondences,
by relying on stereo epipolar geometry. Since we are provided a
big number of salient points and their correspondences, we apply a
RANSAC-method to obtain the best 3D point cloud. Our method is
based on the back projection model presented by [PW12]. We es-
timate the depth for different micro-lens configurations instead of
selecting micro-lens based on the effective resolution ratio (ERR)
at the given virtual depth. We summarize our method as follows:

e Step 1 - Selection of a subset of three lines For each corre-
spondence, a subset of three lines is considered. The central line
is defined by the salient point and the test correspondence. For
each central line two adjacent parallel lines are incorporated in
the model, representing a one pixel error tolerance.

e Step 2 - Estimation of the 3D virtual points The previous de-
fined lines are grouped two by two and for each pair it is com-
puted the 3D point that minimizes the distance between them.
The final 3D point has the median of their coordinates.

e Step 3 - Testing the model Having an hypothetical 3D point
obtained in the previous step, we now need to test the hypoth-
esis for this virtual point. The chosen error measurement is the
distance of the virtual candidate point to all the correspondence
lines obtained in the previous step.

e Step 4 - Assessment of the model A threshold is defined so we
can distinguish the good from the bad estimations. This allows
to assume which lines are suited to add to the model (labeled as
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Figure 3: Illustration of the lens neighborhood, with every group
labeled from Ry to Rs, and lens type from O to 2. The lower value
in the micro-lens illustration is the lens type.

inliers). If there is more than one outlier, the model is discarded
and we go back to the first step. If not, we advance to Step 5.

e Step 5 - Re-estimations of the 3D virtual point This step is
similar to Step 2. We re-estimate the 3D virtual point using only
the inliers. These lines are again grouped two by two and the
3D point for every combination is the point that minimizes the
distance between them. The final 3D point is the median coordi-
nates of all points generated by every line combination.

e Step 6 - Error metrics In this step we evaluate the model in
terms of error. It is a mean error from the inliers’s distances ob-
tained in Step 3.

e Step 7 - Repeat steps 1-6 for every correspondence

The output of the previous algorithm is a 3D point cloud of vir-
tual points as projected by the main lens of the camera to their
virtual image. At a final stage, a coarse regularization method will
reproject the 3D points of the cloud to the micro-lens images and,
thus, attribute an average depth value for every micro-lens. The fi-
nal dense depth map is build by weighting the 3D point cloud depth
and the coarse depth map. The main contribution of this algorithm
is a smart mixture of neighboring micro-lenses of different type
that, although with different blurs, are able to improve the depth
estimation of the sparse point cloud and of the dense map.

As for the lens pattern used in Step 1 (where neighbor lenses
are searched for replications of a given salient point) we use dis-
tinct combinations of lenses, generating different depth maps for
this step. Knowing that for a multi-focus plenoptic camera there
are lenses with different types, we define lens groups based on the
lens type and the distance to the central lens. Figure 3] shows these
configurations. We do a smart mixture of lens groups that, even
mixing different blurs, is able to optimize the depth estimated, con-
sidering different depth ranges for the differently generated depth
maps. Notice that the depth accuracy depends on the stereo base-
line, which is smaller for higher scene depths. Our smart adaptive
mixture of micro-lens is able to adjust baseline and range.

4. Plenoptic simulator
To test our algorithm to estimate the depth of a scene, we built a

simulator of plenoptic images for a multi-focus plenoptic camera.
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Each produced dataset must have a depth scene converted into
gray-scale image, a micro-lens RGB image (plenoptic image) and
a calibration file. The calibration file includes the simulated camera
parameters used to generate the dataset.

4.1. 3D scene

Using OpenGL we are able to create a 3D world and access the
depth buffer. For each scene we generate an RGB image of the
scene and a gray-scale image with the depth values.

We created several scenarios to assess different characteristics
of our algorithm. One of them, the "bolt" dataset, replicates the
Raytrix "watch" dataset. It consists of a back plane with a watch
image, two side planes, a floor plane and several cylinders repre-
senting the bolts. To replicate a silhouette with high detail, we cre-
ated another dataset using the Stanford Bunny (figure[Ta). We use
the Bunny because it is a landmark within the world of computer
vision and computer graphics.

For every dataset, textures are needed so that the depth estima-
tion algorithm would find features. Textures are based on normal-
ized images and are indexed to surface corners over the final scene
rendering so that the surface will be filled with texture image.

We introduced lighting to the object for the shadows to be no-
ticed and thus the surface too, considering the presence of two dif-
ferent illumination types: ambient and diffuse. We opted to omit
specular illumination since it removes detail in the object’s texture,
thus making feature recognition more difficult.

4.2. Micro-lens array projection

Having the 3D world, the next step is to project it into a plenop-
tic image. A plenoptic camera is constituted of a main lens, a mi-
cro lens array and a sensor. The main lens setting used mimics the
100mm Zeiss Planar because it is the main lens used by Raytrix
cameras in their datasets. However the structure can be configured
for different lenses. The micro lens array can also be fully con-
figured by setting all focal distances, the distance from the sensor
(image plane) to micro-lens array, lens diameters and pixel size.

First, the world scene is projected through the main lens creating
a virtual image. This virtual image is then projected through the
micro lenses. The following steps describe this process.

e Step 1 - Determine the central lens to which a point P belongs.
Project the point P to the image plane (figure[Fa). If the projected
point falls into the gab between micro-lenses, the lens selected is
the one with the nearest center.

o Step 2 - Determine the radius R,,. Knowing this radius (equa-
tion (1)), we discard all lenses for which the distance from the
center to point P exceeds Ryax. This step is illustrated in figure
B where Ry is drawn as a red boarder.

e Step 3 - Lenses selection. The calibration data provides the
depth range for each lens and, from the previously selected lens
group, we remove every lens with a different depth range (lens
type) from the lens containing the projection of point P.

e Step 4 - Compute the blur diameter for the virtual point pro-
jection. A given virtual point projected through the micro lenses
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Figure 4: [llustration of a few steps of the synthesization algorithm. The first step illustrated by (a) determines the central micro-lens to which
point P belongs. Second step, illustrated by (b), is the Riuqx projection to determine which lenses project the virtual point P. Finally for the
forth step, figure (c) illustrates the backtrace of P onto the image plane through the lenses within the R4y radius.

will have an associated blur. The blur diameter (circle of confu-
sion) is given by s = fD/z, where s is the blur diameter, f is the
focal length, D the aperture and z the virtual point’s depth.

e Step 5 - Apply the pixel value and the blur circle to the image.

max = ~ 5 o (1)

The full dataset is composed of a plenoptic image, a depth ground
truth image and a ".xml" file with its configurations.

5. Results and conclusions

Figures [Ta] [Th] and [Ic| show the generated dataset for the Stanford
Bunny where a closeup on the rendered plenoptic image is shown
in figure[Td] As for the depth estimation, figure[Te]shows our depth
estimation for the Stanford Bunny dataset. We also tested our algo-
rithm on Raytrix datasets as shown in figure 5]

The results presented show that our algorithm is able to accu-
rately estimate the depth of a scene and to improve the results in
specially difficult areas such as the background and the silhouette
of the foreground objects. This improvement is due to our mixture
of lenses of different focal-lengths. Additionally, our algorithm is
fully automatic with no human intervention.

This work is part of an on-going project with promising results
and we intend to improve the algorithm and to extensively compare
it against other methods.
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