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Mesh Saliency Analysis via Local Curvature Entropy
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Figure 1: Multi-scale saliency estimation. We can efficiently captures different kinds of salient features, which are then combined into a single
saliency map. Our novel approach is more than an order of magnitude faster than other methods, flexible, effective, and easy to implement.

Abstract
We present a novel approach for estimating mesh saliency. Our method is fast, flexible, and easy to implement. By applying the
well-known concept of Shannon entropy to 3D mesh data, we obtain an efficient method to determine mesh saliency. Comparing
our method to the most recent, state-of-the-art approach, we show that results of at least similar quality can be achieved within
a fraction of the original computation time. We present saliency-guided mesh simplification as a possible application.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems

1. Introduction

The analysis of Mesh Saliency aims at detecting distinctive regions
of a 3D mesh. Applications include saliency-aware simplification,
which strives to preserve the most important features, automated
best viewpoint selection, detection of interest points, and 3D scan
registration, to name a few [LVJ05,FSG09,DCG12,SLMR14]. One
open challenge is the implementation complexity of current meth-
ods, which impedes their integration into existing mesh processing
pipelines. In addition, long computation times may also limit the
applicability of saliency detection in practice.

We present a novel approach towards mesh saliency detection,
based on local curvature entropy. Being based on information the-
ory, our method classifies regions on a 3D surface according to the
amount of information they contain. Compared to the most recent
approach from the field, our method is able to deliver results of
similar quality, while being over one order of magnitude faster.

2. Methods for Mesh Saliency Analysis

Within this section, we briefly summarize the most important work
related to our saliency detection method for 3D meshes. For a more
detailed survey of the state of the art, the interested reader is re-
ferred to the recent work of Song et al. [SLMR14].

The seminal paper of Itti et al. introduced a method to compute
saliency on images [IKN98]. In this context, saliency is defined
as a measure of how strongly a part of an image will draw a hu-
man’s immediate attention. The method incorporates knowledge
about the human visual system, employing a 2D neural network
to simulate the possible movement of a human’s focus of attention.
Lee et al. have transferred the basic concept to the domain of 3D
surface meshes [LVJ05]. One of their key findings is that, within
this domain, curvature is the main source of information. Saliency
is computed at multiple scales from filtered mean curvature values,
using a Difference-of-Gaussians (DoG) method. The authors pro-
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pose a non-linear weighting scheme for the different levels, such
that maps with a few distinctive, high peaks are than promoted
over ones with many similar peaks. Demonstrated applications are
mesh simplification and best viewpoint selection. Like Lee et al.,
we base our method on mean curvature, to measure, at each vertex,
deviations from a local neighborhood. However, our information-
theoretic definition works well even on a single scale. Moreover, it
also prevents us from having to explicitly suppress frequently oc-
curring values inside the saliency maps.

Page et al. introduced the concept of Shape Informa-
tion [PKS∗03]. The aim of the method is to measure how much
information is contained within a 3D surface mesh. The authors
reason that Shannon entropy of discrete surface curvature values
is well-suited for this purpose. Therefore, the method is concep-
tually related to our saliency measure. However, we do not use a
single value to classify the whole surface. Instead, our method is
able to compute per-vertex saliency scores, and it is able to operate
at multiple scales. Leifmann et al. use Spin Images to measure how
different a vertex is from his neighborhood [LST12]. The main ap-
plication is best viewpoint selection. Our method is similar in the
sense that it also uses a local descriptor at each vertex, to measure
local distinctiveness. However, while spin images are more com-
plex than our measure, they fail to detect salient features in some
cases (cf. [SLMR14]). Feixas at el. compute saliency by consider-
ing the information channel between a set of viewpoints and the
polygons of the mesh [FSG09]. The approach is therefore primar-
ily designed for best viewpoint selection, which is demonstrated as
main application. In contrast, our goal is to use mesh saliency as a
geometric tool for a wider variety of tasks, therefore we generally
prefer a view-independent measure.

Recently, Song et al. presented a spectral method for saliency
analysis [SLMR14]. Saliency is determined via deviations from
a local average in the frequency domain, using the log-Laplacian
spectrum. The method is shown to detect most of the typically
salient features on several test meshes. As applications, the authors
present saliency-driven mesh simplification and registration of 3D
scans. Due to the spectral decomposition, the computational costs
of the approach limit its direct application to very small meshes.
However, the authors show that, for many cases, satisfying results
can be obtained using simplified versions. Computed results are
propagated back to the original, high-resolution meshes, using clos-
est point search and a subsequent smoothing step.

3. Algorithm

3.1. Saliency via Local Curvature Entropy

Shannon entropy is defined as the expected value of the information
within a message. More precisely, it allows to compute the number
of bits H(X) that are needed to encode a message X (not necessarily
an integer number), without any loss of information. Assuming that
X is composed using n different kinds of symbols with probabilities
pi, its entropy is defined as H(X) =−∑

n
i pi log2(pi).

Curvature has been found to be the main source of information
on a 3D surface, since a shape can be locally characterized solely
via its principal curvatures [PKS∗03]. Therefore, we can estimate
mesh saliency locally, using the mean curvature at each vertex vi

(cf. [LVJ05]). By considering curvature values within the geodesic
r-neighborhood ϕ = {w0, ...,wm} of vi a discrete message, we are
able to compute the local curvature entropy (LCE). This measure
can directly be regarded as the local amount of information at the
given vertex. Like Page et al., we obtain a discrete range of possi-
ble symbols from the continuous curvature values using a uniform
sampling into a fixed number of n bins, resulting in a discrete range
of possible symbols σ0, ...,σn [PKS∗03]. The local curvature en-
tropy at vertex vi can then be computed as

H(vi) =−
n

∑
j

pϕ(σ j) log2(pϕ(σ j)),

using the local probabilities pϕ(σi) of each symbol.

3.2. Area Weighting

Symbol probabilities could simply be computed with respect to
the amount of vertices within the local neighborhood. However, if
the triangle distribution is irregular, large, possibly stretched trian-
gles might heavily influence distant neighbors, for example. Since
such effects are not desired, we mitigate the problem to a cer-
tain amount by weighting vertices by their area of influence, using
mixed voronoi cells, providing a complete, overlap-free tiling of the
overall mesh surface (see [BKP∗10], for example). Using the area
weights A0, ...,Am of each vertex, the probability of a given symbol
within the local neighborhood ϕ is then defined as

pϕ(σ) =
∑

m
k Ak χk(σ)

∑
m
k Ak

,

χk(σ) =

{
1, if binnedCurvature(wk) = σ,

0, otherwise
.

3.3. Multi-Scale Saliency Detection

With the radius parameter r, we are able to control the size of fea-
tures our algorithm will detect. However, it is usually desirable to
detect features at multiple scales, so that neither small, distinctive
details, nor larger, interesting regions are missed. To achieve this,
we use a multi-scale detection by varying the radius parameter up
to a fixed maximum rmax. Saliency maps are then computed at mul-
tiple levels l0, ..., ln−1, where the radius parameter for each level li
is simply defined as ri = 2−irmax.

4. Results

Throughout our experiments, we have used a maximum radius
parameter of rmax = 0.08

√
AM , where AM is the surface area of

the mesh, and we have computed saliency at five different levels.
Choosing a largest possible feature size is necessary for all feature
detection algorithms, and our particular choice for rmax matches
well with the class of objects we used for our experiments (cf.
Fig 1). The number of bins for discretizing curvature values was al-
ways set to 256. We have also found that using a uniform weighting
scheme to combine these levels into a single, resulting saliency map
provided satisfying results. Figure 1 shows an example. Clearly,
using other weighting schemes is possible. In general, a different
weighting scheme can be used to boost salient features on a certain
scale, if desired.
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(a) Spectral Saliency [SLMR14]

(b) LCE

Figure 2: Results obtained using spectral saliency (top) and using
our method (bottom).

Figure 2 shows a visual comparison of the results for some test
meshes, comparing our method to the spectral approach of Song
et al. [SLMR14]. To visually evaluate the results more in depth,
the interested reader is referred to the supplemental material of this
paper, which contains the results for our test meshes in PLY for-
mat, with saliency values mapped to vertex colors using two differ-
ent transfer functions (including the classicalrainbow color map).
Saliency values are also directly provided as a custom, scalar qual-
ity property.

As can be seen from Fig. 2, our method captures all important
features that would typically be considered salient, such as feet or
facial features. Results for the spectral method have been computed
with the suggested setting of initial simplification to 3,000 faces per
mesh. As can be seen from the inset within the figure, the upsam-
pling of the results from the simplified mesh to the original one,
using closest point correspondences, leads to patch-like structures,
which are also shown and discussed by the authors [SLMR14]. Al-
though we used the original implementation, including a smooth-
ing step, some patch-like structures remain visible. In contrast, our
method operates directly on the high-resolution mesh, hence the
result is free of such artifacts.

4.1. Computation Times

To evaluate the runtime performance of our algorithm, we have
tested it with several meshes from the SHREC 2007 watertight

Figure 3: Runtime performance, using different resolutions of the
Stanford bunny. Our LCE method processes the original mesh
within about 30 seconds.

[SLMR14] LCE
Model #vert. #∆ 3K∆ 5K∆ 3K∆ orig. #∆

Wolf 4,344 8,684 10.26 44.97 0.27 0.82
Woman 5,641 11,278 9.20 37.37 0.21 1.38
Camel 9,757 19,510 10.72 43.84 0.36 3.95
Cup 15,070 30,140 9.73 46.81 0.28 5.40
Bimba 15,516 31,028 10.36 42.81 0.52 9.30
Hippo 23,132 46,202 11.19 44.77 0.53 31.21
M. Planck 27,726 55,448 11.23 44.90 0.22 16.47
Bunny 34,834 69,451 11.28 43.29 0.21 29.29
Horse 48,485 96,966 11.27 44.16 0.22 47.75

Table 1: Computation times, in seconds, for spectral saliency
[SLMR14] and for our method. For the spectral method, each
model has been previously simplified to 3,000 and 5,000 triangles.

track, as well as with a few other popular test meshes. We have
also compared the results with the ones generated using the spec-
tral method. Throughout our experiments, a test machine with 3.4
GHz i7-3770 CPU and 32 GB RAM was used.

Figure 3 shows a comparison of runtime performance for both
evaluated methods, using the Stanford bunny at different resolu-
tions. The spectral method uses an eigenvalue decomposition of
the mesh Laplacian, which is the dominant factor of the compu-
tation and has a runtime behavior of O(n3). Therefore, it can be-
come computationally too expensive if an input a mesh consists
of more than a few thousand vertices. Because of this, the com-
putation times of the spectral method, as shown in Table 1, have
been measured using an initial simplification to 3,000 faces (rec-
ommended default setting), as well as to 5,000 faces. As can be
seen, our method is more than fifty times faster when executed on
the same, simplified meshes. Moreover, for test meshes of moder-
ate size, it even remains more than one order of magnitude faster
when operating on the original mesh.

4.2. Saliency-Aware Simplification

We have evaluated saliency-aware simplification as a possible ap-
plication. Our implementation uses the well-established OpenMesh
library [BSBK02]. In addition to the standard quadric module, we
have used a custom saliency module, using a threshold percentile
to protect the most salient regions of the mesh. When no more col-
lapses are allowed, we iteratively relax the saliency threshold until
the process converges to the desired number of vertices.

Similar to Song et al., we have evaluated the geometric root
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Figure 4: Geometric error (RMSE) between the original meshes
and 50% reduced versions. Saliency-aware simplification trades in
geometric precision for better preservation of important features.

(a) [GH97]
RMSE: 1.17 ·103

(b) [SLMR14]
RMSE: 2.24 ·103

(c) LCE
RMSE: 1.52 ·103

Figure 5: Detail view onto the eye of the hippo model, after simpli-
fication to 50% of the original vertices.

mean square error (RMSE) introduced by our saliency-guided
simplification, compared with the standard quadric-based ap-
proach [SLMR14, GH97]. For direct comparison, we have also in-
cluded results for their spectral approach. For both saliency detec-
tion methods, the same simplification framework was used.

Figure 4 shows the results on our test data sets, using a reduction
to 50% of the original vertices. As can be seen, both of the saliency-
based methods perform mostly equally well. For some cases, our
method performs slightly better. One reason for this is that we can
use the vertex budget more efficiently in small, isolated salient re-
gions, such as the eye of the hippo mesh, as shown in Fig. 5. The
spectral approach uses values propagated from a simplified mesh,
hence the classification is more blurry. This leads to an unneces-
sary high amount of vertices around small, isolated features. For
the bimba mesh, however, using the spectral method resulted in a
lower RMSE. This is due to the many fine, small-scale structures
within the hair of the character, which are more dominant in the
high-resolution mesh used by our algorithm. Preserving that many
details consumes most of the vertex budget, therefore the overall
geometric error of the mesh suffers more in this case. If desired,
this could be changed using a different weighting scheme, boost-
ing large-scale features (cp. Fig. 1). Another approach would be to
smooth the saliency map. Similarly, since our method is applied to
the unmodified mesh, small geometric changes, such as noise, will
directly impact the result. However, we have found that a smooth-
ing step helps to overcome this sensitivity.

5. Conclusion

We have presented a novel method for estimation of mesh saliency,
entitled Local Curvature Entropy (LCE). Our approach computes

per-vertex entropy scores from binned curvature values within a
geodesic neighborhood. We perform the analysis at multiple scales
and combine the results into a single saliency map.

We have compared our results to the most recent approach,
which is based on spectral decomposition. During our experiments,
we found that our method is able to significantly outperform this
approach in terms of computation time (more than an order of mag-
nitude). We have also compared the results of both methods in a
saliency-aware simplification application, demonstrating that LCE
provides competitive results. Specifically, operating on the original
mesh allows us to detect arbitrarily small features, if desired.

There are several promising directions for future work. We have
used a simple implementation of Dijkstra’s algorithm for geodesic
neighborhood search, which is currently dominating the overall
computational effort (> 90% of time). As more optimized meth-
ods exist, we expect a significant speedup by improving this part of
our algorithm. Furthermore, the saliency computation of each ver-
tex happens independently from the others, therefore a parallelized
implementation also seems promising. Finally, we also would like
to explore other possible applications of our method, such as detec-
tion of feature points for shape matching and registration.
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