
Interactive Creation of Virtual Worlds
Using Procedural Sketching

R.M. Smelik 1, T. Tutenel 2, K.J. de Kraker 1, R. Bidarra 2

1Modelling, Simulation & Gaming Department, TNO Defence, Security and Safety, The Netherlands
2Computer Graphics & CAD/CAM Group, Delft University of Technology, The Netherlands

Abstract
Procedural modelling is an attractive alternative to cut down the costs of manual content creation for virtual
worlds. We discuss our declarative modelling approach to the creation of 3D virtual worlds, which integrates
a variety of procedural techniques in order to enable a non-specialist user to interactively create a complete
3D virtual world in minutes. In particular, we introduce procedural sketching, a novel paradigm which allows
designers to quickly specify and see the effects of their procedural modelling operations, and describe its main
features as implemented in our prototype system SketchaWorld. Two main interaction modes are described, for
specifying the landscape and terrain features, respectively. Our approach automatically fits all generated terrain
features with their surroundings, for example by smoothing out rough terrain for roads, or creating a bridge
to cross a river. It is concluded that this approach provides designers with the productivity gain of procedural
methods, while still allowing for fine user control and actively supporting iterative modelling.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.4 [Computer Graphics]: Graphics Utilities—Paint systems I.3.6 [Computer Graphics]:
Methodology and Techniques—Interaction techniques

1. Introduction

The use of 3D virtual worlds is widespread: they are found
in entertainment and training games, movies, visualizations,
etc. Modelling systems for virtual worlds typically stem
from entertainment game development. These tools offer de-
signers total control. With skill and dedication, designers can
create literally any world exactly the way they want to. This
level of control also has a clear downside: a designer has
to model every aspect of the virtual world in detail. As vir-
tual worlds become more and more detailed, the workload to
create content this way rapidly increases. Furthermore, these
systems require extensive 3D modelling experience to be ef-
fectively used. However, the community of users of virtual
worlds is diverse, as is their 3D modelling expertise. Poten-
tially, there are many virtual world designers, for instance,
gaming enthusiasts creating new game levels, and training
instructors designing a tailored training curriculum. In prac-
tice, though, only expert 3D designers are currently able to
create them.

There is a need for new modelling alternatives with both
higher productivity and reduced complexity. Automatic pro-
cedural modelling is very promising in this regard. Research
in this area has already resulted in numerous interesting
methods, especially for virtual world modelling, as recently
surveyed in [SdKT∗09]. However, procedural modelling in
itself is not enough: generated results are often too random
to allow for effective modelling and the type of user input
it requires is not intuitive for designers to work with. In re-
cent years, the research direction is shifting to more inter-
active and user controllable procedures. Here we mention
some noteworthy examples of terrain feature generation ei-
ther by means of sketching or interactive editing:

• Schneider et al. [SBW06] introduce a setup in which the
user interactively edits the terrain by painting in greyscale
the base functions of their noise generator;

• Using an efficient GPU-based hydraulic erosion algorithm,
Stava et al. [SBBK08] propose an interactive erosion-
based terrain modelling method;

c© The Eurographics Association 2010.

EUROGRAPHICS 2010 / H. P. A. Lensch and S. Seipel Short Paper

http://www.eg.org
http://diglib.eg.org


R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / Interactive Creation of Virtual Worlds Using Procedural Sketching

• Gain et al. [GMS09] introduce a sketch-based height-map
generation method in which users sketch the silhouette
and bounds of a mountain in a 3D interface, and the gener-
ator creates a matching mountain using noise propagation;

• de Carpentier and Bidarra [dCB09] introduce GPU-based
procedural brushes that allow users to interactively sculpt
a terrain in 3D using several types of noise;

• Chen et al. [CEW∗08] propose interactive modelling of
road networks by the use of tensor fields that can create
common road patterns (grid, radial, along a boundary) and
combine these in a plausible way;

• McCrae and Singh [MS09] present a method for convert-
ing line strokes to 3D roads that are automatically fit in
with the terrain;

• To address the complexity of shape grammar creation for
building generation, Lipp et al. [LWW08] propose a shape
grammar editing system, in which the effects of new rules
are interactively visualised.

The downside of these methods is that they are designed
to generate one specific aspect of 3D virtual worlds, and the
authors do not explore their suitability for other terrain fea-
tures. No method to date provides an integrated framework
that allows one to procedurally model a complete virtual
world, ranging from mountains to man-made structures. We
identified three requirements for such a framework:

1. intuitive controls and an accessible user interface;
2. automatic integration of all generated content into a com-

plete and consistent end result;
3. an interactive workflow with smart editing facilities.

Starting from these requirements, we have proposed a new
virtual world modelling approach [STdB08]. It aims at re-
ducing the complexity of virtual world modelling and in-
creasing designers’ productivity, while still allowing them
to work in an iterative manner and exercise control over
the generation process. User input consists of a 2D digital
sketch: a rough layout map of the virtual world, created us-
ing simple and clear editing tools. Each sketch element is
procedurally expanded to a corresponding terrain feature.
These generated terrain features are placed in logical lay-
ers of the terrain model and are automatically fit with their
surroundings. Once satisfied with the generated results, de-
signers can save the 3D virtual world model and export the
world to other relevant formats, such as GIS data.

This paper focuses on the third requirement mentioned
above: interactivity. We present interactive procedural
sketching facilities for virtual worlds, and discuss many of
its design choices and implementation considerations.

2. Interactive procedural sketching

An interactive workflow that effectively supports creativity
is essential for the usability of a modelling system, be it for
experienced game level designers or for non-expert users.
This kind of workflow requires the system to execute user

Landscape mode Terrain feature mode

3D virtual world

Figure 1: Procedural sketching of virtual worlds.

actions rapidly, to remain responsive even during complex
edit operations, to support undo and redo, to have a clear
user interface and offer a good visualisation of the results.

2.1. User interaction and visualisation

Procedural sketching provides two interaction modes:

Landscape mode Designers paint a top view of the land-
scape by colouring a grid with ecotopes (a small area of
homogeneous terrain and features). These ecotopes en-
compass both elevation information (elevation ranges, ter-
rain roughness) and soil material information (sand, grass,
rock, etc.). The grid size is adjustable and the brushes used
are very similar to typical brushes found in image editing
software, including draw, fill, lasso, magic wand, etc.

Feature mode Designers place elements like rivers, roads,
and cities on the landscape using vector lines and polygon
tools. This resembles the basic tools found in vector draw-
ing software: placing and modifying lines and polygons is
done by manipulating control points.

To directly see the effect of sketch actions on the virtual
world model, users sketch on top of a 2D view of the gener-
ated terrain layers (with familiar options like hiding layers,
zooming, etc.). This view is updated immediately as new
results are generated. Depending on the interaction mode,
an overlay is displayed representing relevant elements of
the user sketch. Figure 1 shows the grid overlay that assists
with painting the landscape (left) and shows the line drawing
overlay for displacing a river (right).

2.2. Asynchronous procedural generation operations

As designers typically model a virtual world in an iterative
manner, we need to provide a short feedback loop between

c© The Eurographics Association 2010.

30



R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / Interactive Creation of Virtual Worlds Using Procedural Sketching

Figure 2: A procedural sketching session and resulting 3D virtual world (insets): a) natural environment mountains, river and
forest. b) the river is rerouted to run through the forest. c) a road is placed across the river. d) city created along the river banks.

sketch action and the visualisation of generated results. To
this end, each sketch action is executed separately and the
results of this partial generation are displayed. This allows
designers to quickly see the effect of their edit operations
and work towards the desired end result.

However, sketch actions may often execute at non-
interactive rates. Although improvements in hardware and
new approaches such as GPU computing significantly alle-
viate this problem, operations affecting large regions or re-
quiring complex algorithms (e.g. city generation) take longer
than desirable and, therefore an asynchronous setup was im-
plemented. Although edits to the sketch itself are made im-
mediately and control is returned to the designer, the corre-
sponding sketch action is placed in a process queue.

Essential to iterative design is the ability to undo and
redo actions. For this, designers are presented with the well-
known history found in many image editing software, with
which they can step through a list of all their editing actions,
undoing or redoing one or more actions. As many editing op-
erations do not have a well-defined inverse operation for un-
doing their results, a common approach is to store a (partial)
state for each editing action, and restoring this state when
undoing the action. Obviously, this approach is demanding
in memory use. For domains as bitmap editing, techniques
as compression and disk paging are enough to ensure that
such memory requirements are not prohibitive. However, for
virtual world modelling, this would quickly lead to an ex-
plosion in memory use. Therefore we opted to implement
undo and redo by partial generation and restoration steps,
executed in a similar way as normal sketching actions. At
the expense of additional computation time, it makes unlim-
ited undo and redo of procedural operations feasible.

The edit history that is manipulated by the designer is a
data structure maintained separate from the process queue,
although sketch actions in the history can be linked to actions
in the queue. This separation is necessary to guarantee ro-
bustness and prevent overwrites (which would leave the ter-
rain model in an inconsistent state) even if time-consuming

sketch actions are, for instance, quickly undone and redone.
The edit history shows the status of sketch actions, deter-
mined by whether a linked action found in the process queue
is executing, waiting for execution, or done.

Special consideration is required for random number se-
quences, as they are used by most procedures in making
their decisions. For instance, a procedure that locally routes
rivers or roads chooses a direction randomly proportional to
its suitability (based on elevation constraints, obstacles, dis-
tance to target location, etc.). To ensure exactly the same re-
sults redoing an undone action, the state of the random num-
ber generator (i.e. its starting seed and position in the random
sequence) must be saved and restored for each sketch action.

2.3. Terrain feature integration and consistency

Terrain features like roads and cities seldom exist in iso-
lation, instead they blend in with their surroundings. Dur-
ing the generation of a terrain feature, the local landscape
and nearby features are taken into account, e.g. to choose a
suitable path for a road or river. After this, integration steps
adapt local terrain features to the newly created feature, for
instance by removing trees on a generated road’s path. Each
time a terrain feature is modified, changes to related fea-
tures are all performed automatically as logical side-effects
of the change. To allow the designer to quickly see the lo-
cal side-effects of sketch actions, these integration steps are
performed and the results are displayed immediately.

For each sketch action, we have identified the local region
and type of terrain features it affects or is affected by and in
what way. When a terrain feature is generated, the identified
adjustments are performed, modifying or (partially) regener-
ating the affected terrain elements. Although this somewhat
increases the execution time of sketch actions, it keeps the
virtual world model in a consistent and usable state.

In traditional modelling systems, large scale changes to
a virtual world typically involve so much manual effort and
editing steps, that a designer will mostly want to avoid it.

c© The Eurographics Association 2010.

31



R.M. Smelik, T. Tutenel, K.J. de Kraker, R. Bidarra / Interactive Creation of Virtual Worlds Using Procedural Sketching

With our approach, designers are free to experiment with dif-
ferent alternatives, as the consistency and integration steps
are taken care of automatically.

3. Results

Interactive procedural sketching was implemented in
SketchaWorld, our prototype virtual world modelling sys-
tem, using C#, C++ and CUDA, and OpenSceneGraph for
3D visualisation. In Figure 2 we illustrate its functionality
with an example session involving several consistency main-
tenance steps. Figure 2.a shows a natural environment with
mountains, a forest and a river. After sketching river’s path,
a suitable course is plotted through the landscape and the
river bed and banks are carved into the terrain. In Figure
2.b the designer has displaced this river to let it run through
the forest. Automatically, the river is locally regenerated and
embedded, removing any tree on the river’s bed and banks.
In Figure 2.c a major road is introduced. To integrate this
road, a bridge is inserted at the crossing with the river, and
the road is integrated into the terrain to form a road embank-
ment. Finally, when the designer outlines a small city, its dis-
tricts and secondary roads form around the river, as shown in
Figure 2.d. If the designer were now, for instance, to move
this river, it would affect the underlying terrain, the cross-
ing road and the city structure. For a better impression of
SketchaWorld and its interactive workflow, we refer to the
accompanying online video with real-time footage.

4. Conclusions

We presented a novel declarative modelling approach to the
creation of 3D virtual worlds that integrates a variety of pro-
cedural techniques. We described several interactivity fea-
tures of SketchaWorld, a prototype system implementing
this approach and, in particular, we introduced procedural
sketching as a powerful paradigm that significantly increases
the usability of procedural modelling techniques. Two main
interaction modes have been described that provide a fast
and intuitive way for both experts and non-specialist design-
ers to declaratively create virtual worlds: landscape mode, in
which a top view of a landscape is painted on a grid of eco-
topes (including e.g. elevation ranges, terrain roughness, and
soil material information); and feature mode, in which ele-
ments like rivers, roads, and cities are placed on the above
landscape (e.g. by manipulating control points on lines and
polygons). The short feedback loop between each sketch ac-
tion and its generated results makes it easier and more intu-
itive to create whole 3D virtual worlds, thus increasing pro-
ductivity and reducing content production costs.

One of our main challenges ahead is to further enhance the
level of control provided to designers, who will often wish to
manually edit and fine-tune entities on a more detailed level
than terrain features, to more precisely fit their requirements.
We are currently investigating possible approaches and con-

straints to the integration of such manual editing facilities
with procedural sketching in our interactive workflow.

The procedural sketching facilities of SketchaWorld de-
scribed here provide designers with the productivity gain of
procedural methods, while still allowing for fine user con-
trol and actively supporting iterative modelling. Therefore,
they represent a small but clear step towards making proce-
dural techniques suitable for a variety of applications, such
as simulations and serious games.

Acknowledgments This research has been supported by
the GATE project, funded by the Netherlands Organization
for Scientific Research (NWO) and the Netherlands ICT Re-
search and Innovation Authority (ICT Regie).

References
[CEW∗08] CHEN G., ESCH G., WONKA P., MÜLLER P.,

ZHANG E.: Interactive Procedural Street Modeling. In SIG-
GRAPH ’08: Proceedings of the 35th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA, 2008), vol. 27, ACM, pp. 1–10. 2

[dCB09] DE CARPENTIER G., BIDARRA R.: Interactive GPU-
based Procedural Heightfield Brushes. In Proceedings of the 4th

International Conference on the Foundations of Digital Games
(Florida, USA, April 2009). 2

[GMS09] GAIN J., MARAIS P., STRASSER W.: Terrain Sketch-
ing. In I3D ’09: Proceedings of the 2009 Symposium on Inter-
active 3D Graphics and Games (New York, NY, USA, 2009),
ACM, pp. 31–38. 2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive Vi-
sual Editing of Grammars for Procedural Architecture. In SIG-
GRAPH ’08: Proceedings of the 35th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA, 2008), ACM, pp. 1–10. 2

[MS09] MCCRAE J., SINGH K.: Sketch-based Path Design. In
GI ’09: Proceedings of Graphics Interface 2009 (Toronto, On-
tario, Canada, 2009), Canadian Information Processing Society,
pp. 95–102. 2

[SBBK08] STAVA O., BENEŠ B., BRISBIN M., KŘIVÁNEK J.:
Interactive Terrain Modeling Using Hydraulic Erosion. In Eu-
rographics / SIGGRAPH Symposium on Computer Animation
(Dublin, Ireland, 2008), Gross M., James D., (Eds.), Eurograph-
ics Association, pp. 201–210. 1

[SBW06] SCHNEIDER J., BOLDTE T., WESTERMANN R.: Real-
Time Editing, Synthesis, and Rendering of Infinite Landscapes
on GPUs. In Vision, Modeling and Visualization 2006 (Novem-
ber 2006). 1

[SdKT∗09] SMELIK R. M., DE KRAKER K. J., TUTENEL T.,
BIDARRA R., GROENEWEGEN S. A.: A Survey of Procedu-
ral Methods for Terrain Modelling. In Proceedings of the CASA
Workshop on 3D Advanced Media In Gaming And Simulation
(3AMIGAS) (Amsterdam, The Netherlands, June 2009). 1

[STdB08] SMELIK R. M., TUTENEL T., DE KRAKER K. J.,
BIDARRA R.: A Proposal for a Procedural Terrain Modelling
Framework. In Poster Proceedings of the 14th Eurographics
Symposium on Virtual Environments EGVE08 (Eindhoven, The
Netherlands, May 2008), pp. 39–42. 2

c© The Eurographics Association 2010.

32


