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1. Discretization

We discretize the stream function ψi, j and the scalar potential φi, j
onto a regular M×N grid. The energy from Eqs. (9)–(12) of the
main paper is then discretized as:
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where ψ and φ are MN×1 vectors that contain the stream function
scalars and the scalar potential scalars of the entire domain. A is a
2K×2MN matrix, a is a 2K×1 vector, B is a 6MN×2MN matrix,
D is a 2P×2MN matrix and d is a 2P×1 vector.

2. Algorithm Overview

A pseudocode overview of our algorithm is listed in Alg. 1. Each
progressive iteration, K photons are traced, for which a matching
with the target distribution is computed using [GRR∗16]. In each
frame of the animation, a vector field is computed and the pho-
tons are advected. Finally, the photons are added to the image and
rendered using progressive photon mapping.

2.1. Performance

The setup of the linear system is in O(K + p+n) and its solution is
in O(n3), with K being the number of photons, p being the number

Input: directed lines wp, target image Itarget
Output: images I of animation
for it← 1 to numProgressiveIterations do

// Step 1: Photon tracing
ak, φak ← tracePhotons(K)
bk← sampleTarget(Itarget, K)

// Step 2: Photon animation
σ(k)← computeMatching(ak, bk) // Sec. 4.3
ck← ak
for frame← 1 to numFrames do

v[ ]k
′ ← computeGuidance(bσ(k), ck) // Sec. 4.4, 4.5

φ, ψ← computeFlow(ck, wp, v[ ]k
′ ) // Sec. 4.6

u← (1− γ)∇⊥φ+ γ∇ψ // Eq. (4)
ck, φck ←advectPhotons(ck, u, v[ ]k

′ , φak ) // Sec. 4.8

// Step 3: Photon rendering
Iframe← ppm(ck, φck )

end
end

Algorithm 1: Algorithm overview.

Scene Step 1 Step 2 Step 3

BOTTLES (6M) 2 min 6 h 11 h
DARK GLASS (4M) 1 min 5 h 3.5 h
BUNNY (4M) 1 min 9.7 h 3 h

Table 1: Timings in 3 scenes for the caustic tracing (Step 1), the
blending (Step 2) and the rendering of 100 frames for the final
animations (Step 3). The latter uses 4-6 million caustic photons, 35
progressive iterations and a stream function grid ψi, j of 400×400.

of directed line constraints and n being the number of grid points.
Table 1 shows the details of the computational time for our test
scenes in this paper. For all examples, we used an Intel R© CoreTMi5-
4570 CPU @ 3.20GHz processor with 16.0 GB of memory RAM.

2.2. Parameters

Balance between Divergence-Free and Irrotational Flow. Fig. 1
compares the results obtained for different constant γ. We refer to
the video for an animation of this parameter, demonstrating that
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Figure 1: Parameter study for a constant γ, balancing between a
divergence-free solution (γ = 0) and an irrotational solution (γ = 1).

the solution blends continuously when varying γ. When setting γ

too high, the flow contains sinks in which photons cluster, which
becomes a visible artefact. If setting γ too low, particles take a long
time to collapse onto a smaller target due to the incompressibility
of the vector field. In Fig. 2, we show a test with a time-dependent
γ(t) that starts with a divergence-free flow and gradually increases
the compressibility towards the end. This helps photons to collapse
onto the target, since a divergent-free flow avoids this behaviour and
thus is not desired towards the end of the animation.

Grid Resolution. In the main paper, we solve for the stream func-
tion ψ and the scalar potential φ on a discrete regular M×N grid.
For all our examples, we used 400×400. In Fig. 3, we show results
for different resolutions. The higher the resolution, the more fidelity
can be represented by the vector field and thus photons move closer
to their target.

Linear Path Threshold. Fig. 4 shows an example for different
thresholds, where early switch to linear paths results in smoother
animations, whereas late switching (smaller threshold) can result in
fast movements at the end of the animation. We refer to video for
animations of this parameter.
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Figure 2: Varying γ over time with γ(t) = γmax ·(2t3−3t2) allows us
to start with a divergence-free flow which slowly transitions towards
an irrotational flow with a certain maximal irrotational component
γmax. If the irrotational component is too strong (top row), photon
clustering may create visible artifacts.
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Figure 3: Comparison of different grid resolutions of the stream
function discretization ψi, j and scalar potential discretization φi, j.
The higher the resolution, the closer are fine structures transported
to their actual target.
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Figure 4: When photons get closer to their target than a certain
percentage of their total path, we switch to a linear blending and let
them no longer participate in the energy minimization. The earlier
we switch, the less blurry are the final frames (see bottom row).
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