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Abstract
Real-time visibility test is an attractive feature for Virtual Environment (VE) applications where large datasets
should be interactively explored. In such scenes most of the objects are usually occluded by other ones, and
their omission from rendering can significantly accelerate the graphical performance. In this paper we present
our novel approach for occlusion culling and its implementation in VE system Avango1. Visibility test module
performs real-time update of the list of visible objects by means of color labeling and either hardware or software
histogramming of corresponding color buffer. Exploiting the distribution capabilities of Avango, the main draw
and visibility test processes are parallelized to different computers running Irix or Linux. Being applied to an
architectural model containing 260,000 textured triangles, our method accelerates the graphical performance
from 8 to 32 stereoimages/sec.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Bitmap and framebuffer
operations, Display and viewing algorithms; I.3.7 [Computer Graphics]: Virtual reality.

1. Introduction

To create the sense of presence in virtual environments, high
level of scene detailization is needed. Increasing size of
datasets intensifies the graphical load, requiring new meth-
ods for graphics acceleration. Depth complexity, the number
of layers of geometry underneath each pixel, is a characteris-
tics, measuring the wasted effort of graphics spent on render-
ing of invisible objects. Common techniques, implemented
on most of available graphical hardware, such as viewing
frustum culling, backface culling and level-of-detail switch-
ing, do not reduce significantly the depth complexity. Occlu-
sion culling is aimed to reduce the depth complexity ideally
to one, and can considerably accelerate the rendering pro-
cess. The occlusion culling algorithms are implemented only
in certain graphical systems.

This paper is organized as follows. The next section
briefly reviews the existing occlusion culling techniques.
The following section introduces created at our laboratory
software framework Avango, used for the development of in-
teractive VE applications. Then we describe the implementa-
tion of occlusion culling in Avango, present its quantitative

characteristics, and make comparison with other available
methods.

2. Related work

A lot of efficient techniques have been developed in the
area of visibility test and occlusion culling. Specially de-
signed for indoor architectural models cells and portals
method2 subdivides the building to rooms or cells, only vis-
ible through small doorways or windows, also known as
portals. The visibility data for each cell are pre-computed
and then used on-line for occlusion culling. Other technique
with intensive pre-processing stage, prioritized-layered pro-
jection algorithm3 estimates the probability for each cell of
the object space to be occluded by other objects, from a
given viewpoint, and either discards unlikely visible cells or
iteratively refines information on their visibility using on-
line queries. Visibility queries are also used in octree-based
technique 4. The object space is subdivided by 23-cubes hi-
erarchy, associating each primitive to the smallest cube con-
taining it. Cubes are rendered recursively in front-to-back
order, each time determining whether the faces of the cube
are visible or hidden by already displayed primitives (this
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is done using either stencil-buffer or HP-occlusion test flag
based techniques, described below). If the cube is visible,
associated primitives are drawn and the recursion is con-
tinued. The other technique, oftenly used in combination
with the object-space octree, is image-space Z-pyramid 4.
The original Z-buffer is taken as the finest level in the pyra-
mid and then four Z-values at each level are combined into
one Z-value at the next coarser level by choosing the far-
thest Z from the observer (using e.g. texture maps5). Each
polygon is projected to the screen, then one finds its 2D
bounding box, smallest square of subdivision containing it
and the level of Z-pyramid, where this square corresponds
to one pixel. If the nearest Z-value of the polygon is farther
away than Z-value at this pixel, the polygon is hidden. Oth-
erwise the polygon is rendered and Z-pyramid is updated.
In HP-hardware supported algorithm6 the feedback loop is
added to the graphical hardware, able to check, whether an
attempt is made to write in Z-buffer during rendering of a
given primitive, without actual change of Z and color buffers
content. This feature allows to check whether the bound-
ing box of the object is hidden, and in this case discard the
object from further drawing. The method becomes effective
only after front-back sorting of the objects, done e.g. in oc-
tree technique. Like all other bounding box based methods
it is excessively conservative, because the hidden objects,
whose bounding box is visible, are rendered. Similar to HP-
algorithm, but implementable in other hardware by means
of standard OpenGL, visibility testing in stencil-buffer7 sug-
gests to send the bounding box of the object to the stencil-
buffer with Z-test but without write to Z-buffer. If the bound-
ing box does not leave a footprint in the stencil-buffer, then
it is hidden and the object is not drawn. A bottleneck of
this method is a slow reading of the stencil-buffer content,
which is resolved in7 by the buffer sampling. Histogramming
techniques3 can be also used to resolve analogous problem
in color buffer reading. Several other techniques are referred
in the survey paper 8 describing much of the previous work
done on visibility based graphical acceleration.

Some of the described techniques are hardware imple-
mented in HP, ATI and Nvidia graphical systems and
have support in OpenGL Optimizer9, OpenSG Plus10 and
Jupiter11 software. Most of widely used scene-graph pro-
gramming software such as IRIS/OpenGL Performer do not
support the occlusion culling. The major problem is that
the existing techniques of the occlusion culling require to
receive and analyze the feedback from graphics after ren-
dering of each primitive. This can be easily implemented
in OpenGL, but does not well suite to the concepts of Per-
former.

Occlusion culling techniques can benefit from imple-
mentation in server-client architectures and multi-processing
systems. It was stressed in12 that certain techniques of visi-
bility test allow their parallel execution with draw process
without frame-to-frame synchronization. Moreover, at ap-
propriate scheduling the main draw can achieve higher fram-

erates than the testing process, preserving visual quality of
the output. In particular,12 used parallel scheme with effec-
tive 2.5D visibility algorithm for urban walkthrough. Our
preference is more general method applicable for arbitrary
3D scenes.

In this paper we describe the implementation of occlu-
sion culling in Performer-based Avango VE framework. The
method does not use special hardware features and is im-
plemented by means of standard OpenGL on Irix and Linux
platforms. Parallel execution of rendering and visibility test-
ing processes is used to achieve greater speedups. The re-
sulting graphical acceleration is sufficient for the real-time
walkthroughs in large Virtual Environments.

3. Avango

is a programming framework 1 for building distributed, in-
teractive VE applications. It uses the C++ programming lan-
guage to define two categories of object classes. Nodes pro-
vide an object-oriented scene graph API which allows the
representation and rendering of complex geometry. Sensors
provide Avango with an interface to the real world and they
are used to import external device data into the application.
All Avango objects are fieldcontainers, representing object
state information as a collection of fields. Avango uses con-
nections between fields to build a dataflow graph which is
conceptually orthogonal to the scene graph, and it is used to
specify additional relationships between nodes, which can-
not be expressed in terms of the standard scene graph. This
facilitates the implementation of interactive behavior and the
import of real world data into the scene graph.

Avango supports a generic streaming interface, which al-
lows objects and their state information to be written to
a stream, and the subsequent reconstruction of the object
from that stream. This interface is one of the basic building
blocks used for the implementation of object distribution.
Distributed Avango objects are allocated from distributed
segments of shared memory, which are kept synchronized
via underlying network layer infrastructure. This model pro-
vides the required network transparency for the objects to be
visible by all participating processes and to interact with the
same efficiency as they are located in a single computer.

In addition to the C++ API, Avango features a complete
language binding to the interpreted language Scheme 13. All
high level Avango objects can be created and manipulated
from Scheme. The Avango is originally based on IRIS Per-
former to achieve the maximum possible performance for an
application and addresses the special needs involved in ap-
plication development of Virtual Environments. Whenever
the underlying hardware allows, Performer utilizes multiple
processors and multiple graphics pipelines. Currently we use
Avango implementations on SGI computers and Linux-PCs.

Specially for the design of interactive VE applications
Avango provides interfaces and interaction metaphors, used
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for navigation in virtual spaces and manipulation of virtual
objects. Particularly, walkthroughs in virtual scenes are sup-
ported by av-mover, which can be attached to various inter-
action devices (mouse, joystick, stylus) and configured for
various navigation modes, including unconstraint flying and
ground following.

Fig.1. Distributed setup for occlusion culling.

4. Implementation of occlusion culling

Our approach is based on real-time visibility testing. To de-
fine, which objects in the scene are visible, we perform pre-
rendering of all objects in a separate frame buffer, referred
further as control view, using simplified graphical modes and
labeling the objects by color. Then we perform histogram-
ming of color buffer to determine which colors are visible,
and draw the corresponding objects in main view, using nec-
essary time-consuming draw modes.

To implement this approach, the following scheme is used
(fig.1). Main and control applications are running on sepa-
rate computers (members of Unix cluster) and are commu-
nicating via network. The scene graph for main view repre-
sents the original model, while the control view renders the
copy of the scene graph with simplified geostates and mate-
rials used for color coding of the objects. The navigation is
performed on the side of main view, and the viewpoint data
(the matrix, describing camera position and orientation) are
transmitted to the other side. The control view then produces
visibility data for the given viewpoint and returns them to the
main view. The latter one switches off invisible objects in its
scene graph and renders only visible ones.

To accelerate the control view draw process, we disable
unnecessary graphical modes, such as texturing, enlight-
ening and antialiasing. Available view frustum and back-
face culling techniques are enabled. Additionally, in stereo-
setups, used to support virtual environments, one control
view can perform visibility testing for left and right view-
points.

Histogramming operation, a counting of pixels of each
color, present in the frame-buffer, is supported by most
of graphical hardware and can be enabled by OpenGL

call glHistogram. This operation fills four separate one-
dimensional histograms, corresponding to RGBA channels,
giving possibility to assign color codes to maximum 255×
4 = 1020 objects (the background color is not used for cod-
ing). The hardware histogramming operation of full screen
image is usually time-consuming, see Table 1.

Table 1: time of histogramming operation

1024×768 screen 512×384 screen
hardware software hardware software

Onyx2 195MHz
InfiniteReality2 41ms 36ms 17ms 15ms

Athlon 1.3GHz
GeForce 86ms 87ms 17ms 25ms
Quadro2Pro

Other possibility is to copy the content of color buffer to
main memory and perform its software histogramming. In
this way higher-dimensional (2D...4D) histograms can be
filled, giving maximum 2564 − 1 ≈ 4billion color codes,
enough for the applications. However, the software based
histogramming of full screen is time-consuming as well.

Higher framerates can be achieved, if we reduce the res-
olution of the control window. Particularly, a quarter of the
full screen is processed at acceptable rate (see Table 1). The
reduction of the control window leads to the following prob-
lem. One pixel on the reduced control window corresponds
to four pixels on main window. Small objects will have non-
stable visibility test, resulting to flickering of their counter-
parts on main window. We suppress this effect applying to
visibility data a low-pass filter (LPF-box on fig.1).

Low-pass filter averages the input data Sin
n (number of pix-

els of each color at n-th frame, found in histogramming op-
eration) during a given number of frames N:

Sout
n =

1
N

N−1

∑
k=0

Sin
n−k.

As a result of averaging, high frequency flickering is re-
moved. Besides, in the formula above we actually perform
statistical improvement of input data found in N measure-
ments from closely placed viewpoint positions. As a result,
the output data Sout

n are equal to the areas occupied by the
objects on the control view, known at subpixel precision
(mean square error of Sout

n ∼ 1/
√

N). This statistical mech-
anism is similar to antialiasing techniques, effectively en-
hancing the window resolution. The price for that is slightly
increased conservatism of the method: some of already in-
visible objects will be rendered.

Parallelization of main draw and visibility test processes
requires to take care on their synchronization. The major
problem is that visibility data for a given viewpoint are re-
turned to main process at the delayed time. To compensate
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these delays, we pass the viewpoint data through a predicting
filter (PF-box on fig.1).
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Fig.2. Precision of prediction as a function of prediction advance.

Predicting filters are extensively used in applications,
particularly for motion tracking, autonomous or assisted
navigation14. Predicting strategies are integrated in modern
microprocessors design to speedup the instructions execu-
tion pipeline15. Similar approaches are also exploited for
stabilization of various numerical methods in theory of dy-
namical systems16, 17. In our case, predicting filter is used
to extrapolate the viewpoint matrix for k future frames. For
this purpose we construct n-th order polynomial, approxi-
mating p last viewpoints by the least square method, and
continue it to the nearest future. For sufficiently smooth
motion, such as generated by av-mover, the method pro-
duces good prediction at n = 2, p = 20. The precision
characteristics of the method are presented on fig.2. Here
dq = |qmeasured −qpredicted| is precision of rotational com-
ponent of the viewpoint matrix in quaternionic space, aver-
aged by N ∼ 104 frames during 5 min walkthrough in a vir-
tual model, dx is similarly defined precision of translational
component in world coordinates, k is the number of future
frames (prediction advance). The measured values are well
described by exponential dependence. For k ≤ 10 the preci-
sion of the method is sufficient for our purposes.

Finally, the decision on a visibility of the object is taken
using logical or operation on the data, coming from the low-
pass filter:

(Sout
last > Sthreshold) ‖ (Sout

next > Sthreshold),

where Sout
last are the nearest available visibility data in the

past, and Sout
next are the nearest available visibility data in the

future, with respect to the present moment of time. As a re-
sult, on the camera path, connecting the points, where the
visibility data are available, the object is decided to be visi-
ble, if it is visible at least in one of the end points. This so-
lution also leads to small increase of the conservatism of the
method, involving to draw process some of yet invisible ob-
jects. Besides, in the case, if the object becomes visible only
for a short period of time between two consecutive control
points, it will not be rendered at all. This situation, however,
appears quite rarely and due to short interval between control
points (∼ 1/30 sec) is not visually perceivable.

Note: As an additional method for control view draw ac-
celeration one can use the level-of-detail algorithm to ex-

clude faraway objects occupying too small area on the screen
(e.g. S < 0.01px2) from the control view, and consequently
from the main view draw processes. Semi-transparent ob-
jects, if present in the scene, can be easily incorporated in
our scheme by exclusion from the control view scene-graph
and unconditional draw in the main view. Dynamical objects
can be handled analogously. One can also introduce for the
dynamical objects necessary advanced phase shifts and in-
clude them to control draw process, particularly if the ob-
jects move along pre-defined trajectories or their motion is
sufficiently regular to be effectively predicted.

Depth complexity measurement, performed to verify the
effectiveness of the method, is implemented as follows. All
objects are drawn in white color, with alpha-value set to a
given constant α. The scene is rendered in additive trans-
parency mode. After that, the color buffer contains values
αD, where D is the depth complexity.

5. The results

For test we perform walkthrough in a model of ancient city
Colonia Ulpia Trajana18, created by students of Civil Engi-
neering Department at University of Dortmund. The model
contains 260,000 textured triangles in 1,200 geosets, and
without acceleration is rendered on Onyx2 at the frame rate
8 fps. The appearance of this model in main and control
views is presented on fig.3. Fig.4 illustrates the results of oc-
clusion culling, performed for the viewpoint located in the
left bottom corner of the image. The scene is shown from
a different viewpoint to display the occluded objects, omit-
ted by culling, while the images from the original viewpoint
are identical. The left scene on fig.4 is subjected only to
view frustum culling and contains 86,000 triangles, while the
right scene after the view frustum and occlusion culling con-
tains 4,000 triangles. The depth complexity pattern is dis-
played on fig.5. Without the occlusion culling this pattern is
concentrated in a narrow band along the horizon, where it
reaches values 30...46. With the occlusion culling, the depth
complexity becomes almost uniformly distributed over the
screen, everywhere not exceeding value 9. Fig.6 presents the
framerates for a given camera path, passing nearby a com-
plex object. Without occlusion culling the framerate is con-
siderably changed, revealing the graphics overload, while
occlusion culling makes this dependence almost flat.

The acceleration factors, measured for this model in var-
ious hardware setups, are given in Table 2. Maximum value
of acceleration strongly depends on the model composition
and graphical hardware used. Particularly, one can hide very
complex object by a single wall, and reduce the depth com-
plexity by several orders of magnitude. The draw time in this
case will be defined by the filling time of graphics card, i.e.
the time, needed to draw one polygon, projected to the full
screen (about 0.3ms for 1024x768 screen on InfiniteReal-
ity2). The scene with depth complexity one everywhere on
the screen cannot be drawn faster.
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Fig.3. Architectural model, used for the test of the algorithm. On the left – the main view image (identical images are produced with and
without occlusion culling). On the right – the control view image, encoding the objects by color.

Fig.4. The same model, displayed from the other view point: on the left – without occlusion culling, on the right – with occlusion culling.
The occlusion culling algorithm was applied for the viewpoint location, marked by a circle on the left bottom.

Fig.5. Depth complexity pattern: on the left – without occlusion culling, on the right – with occlusion culling.
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Fig.6. Framerate for the camera path.

Table 2: acceleration factors

main window control window acceleration factor
2x1024x768 512x384 min avg max

Onyx2 300MHz Onyx2 195MHz 1.7 4 52*
InfiniteReality2 InfiniteReality2

active stereo Athlon 1.3GHz 1.7 4 52*
GeForce Quadro2Pro

HP 2GHz Athlon 1.3GHz
Fire GL4 GeForce Quadro2Pro 1.3 2.5 10*

passive stereo

* limited by filling time of the graphics card.
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Comparison with other techniques. At first, we empha-
size that the acceleration factor for a given technique of oc-
clusion culling strongly depends on the model used for test-
ing. More dense environments, highly populated by occlud-
ers, demonstrate better characteristics. The following figures
give broad estimate of capabilities for several available tech-
niques, obtained on different models. The paper10 gives the
estimation of acceleration factors for three techniques, ap-
plied for a 750,000 polygonal model at 6fps: stencil test
(1.12), Z-buffer test (1.148), HP-occlusion test (1.338). In
the paper11 the acceleration factors 1.5...4 are obtained us-
ing HP-occlusion test for models with 600,000...11mln tri-
angles at 1..12fps. The paper7 presents acceleration factors
2.6...7 for stencil test technique obtained for a set of mod-
els with 450,000...5mln triangles at 1...2fps framerate. In
the paper5 Z-pyramid test produced acceleration factor 5 for
300,000...1mln polygonal models at 8..12fps. The paper3 re-
ports acceleration factor 12 for 1mln triangles model at 12fps
obtained with prioritized-layered projection algorithm us-
ing direct scan of 512×512 color buffer, and twice lower
characteristics for its hardware histogramming. The paper12

demonstrates the acceleration factor 28 at 60fps for 2mln
polygons urban environment, obtained in distributed setup
with 2.5D visibility testing technique.

6. Conclusion

In this paper we described our implementation of visibil-
ity test and occlusion culling in Avango VE framework.
The approach uses determination of visibility in arbitrary
3D scenes by means of pre-rendering, color coding of the
objects and histogramming of the color buffer, statistical
improvement of visibility data to subpixel precision, dis-
tributed setup for parallelization of main draw and visibility
test processes, and prediction of the viewpoint position for
compensation of hardware and software delays. The method
has been tested for large architectural model, accelerating
the graphical performance of walkthrough VE application to
real-time speeds.
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