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Abstract
This paper presents a multi-phase algorithm to solve the global illumination problem. In the first phase dependent
tests are applied, i.e. the random walks of different pixels are built from the same random numbers. The result of the
first phase is used to identify homogeneous pixel groups in the image. The criterion of the formation of such groups
is that averaging the color inside these groups should result in less error than handling the pixels independently.
The second phase of the algorithm is a conventional random walk method that uses independent random samples
in different pixels. The final result is calculated as the average of the results of the dependent tests and the low-
pass filtered version of the independent tests. This low-pass filter averages the pixel values inside the homogenous
groups. The algorithm takes advantage of the fact that the image can contain larger homogeneous regions that
can be calculated from much less number of samples. Thus we can focus on those pixels where significant changes
happen.

Keywords: Monte-Carlo integration, random walks, depen-
dent tests.

1. Introduction

When attacking the global illumination problem, a compli-
cated integral equation, called the rendering equation must
be solved for each pixel. Monte-Carlo techniques trace back
the solution of the integral equation to the computation of
high-dimensional integrals that are estimated using random
samples.

If we obtain the solution pixel-by-pixel, the computational
burden will be enormous, which can hardly be justified in
many scenes and applications. Assume that we are facing a
large homogeneous wall that has quite homogenous illumi-
nation. The image then is also homogenous. If this image
is rendered with random walks23, nearly the same compu-
tational effort should be paid as if in all pixels completely
different scenes were visible. Random walks do not exploit
the coherence of the image and the scene and thus repeat
the same calculations in an inefficient way. Furthermore, the
results of the different pixels are usually uncorrelated since

we use different random numbers for their calculation. Thus
the computational error appears as a random noise which
is quite embarrassing for the human observer. Obviously, a
low-pass image filter would be great help to improve the im-
age of the homogeneous wall. It would reduce the noise and
would force the pixels to get closer to their common mean.

The objective of this paper is to extend this simple idea
for practical cases as well, when the image is not just a single
homogenous block, but smaller homogeneous regions can be
identified. These homogenous regions should be automati-
cally identified and their filtering automatically controlled
by the algorithm. We want to keep the asymptotic accuracy
of random walks, thus as the number of samples goes to in-
finity all filtering artifacts should disappear.

A key point of this method is the recognition of the ho-
mogeneous regions. Obviously, those pixels should belong
to the same region, whose colors will be almost identical
asymptotically, thus filtering cannot smear edges and intro-
duce other artifacts. However, if we use classical random
walk algorithms that compute the pixels using independent
random numbers, then it is very difficult to tell whether or
not two pixels converge to similar colors. The color differ-
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ence in a given stage of the algorithm can come from two
sources. It can happen that the illumination environment of
the two pixels are different (e.g. two different objects are
seen in them), thus their limiting colors will also be far from
each other. On the other hand, the difference can also stem
from the random noise as well. It means that the limiting
values are similar, thus it would be worth computing the av-
erage of the two pixels and replace their colors with the av-
erage. In the first case, averaging would result in artifacts,
thus should be avoided, while in the second case averaging
is highly beneficial.

In order to robustly choose between the two cases, we
decompose the random simulation into two phases. Both
phases aim at the solution of the rendering problem, but in
the first phase the random variations of the color of neighbor-
ing pixels are tried to be minimized. Thus this phase not only
provides a partial solution, but can also be used to form ho-
mogeneous pixel regions. In the second phase, the result of
the first phase is refined by a normal random walk algorithm.
The only difference is that when the final or partial image is
displayed, an averaging operation is also carried out based
on the results of the first step. We have to emphasize that
the averaging operation does not use a constant kernel, but it
also takes into account the number of samples computed in
the second phase, aiming to minimize the total error of the
random simulation and the averaging itself.

In the following sections we first review the previous work
on function approximation for the global illumination, then
the proposed multi-phase algorithm is introduced, including
the phases of dependent and independent tests.

2. Previous work

In the solution of the global illumination problem two ba-
sic mathematical techniques have critical role: integration
and function approximation. Integration is responsible for
the evaluation of the light transport operator while function
approximation has to provide representation for the final and
temporary results. In both cases we have to take into ac-
count that the underlying function is high-dimensional, high-
variation and very costly to sample.

Significant research efforts have been devoted to the ef-
ficient integration and most of the global illumination al-
gorithms optimize this task. Monte-Carlo global illumina-
tion algorithms can be improved by variance reduction tech-
niques, and particularly by importance sampling. Impor-
tance sampling places more samples where the integrand
is large19. Efficient function approximation has been just of
secondary importance. In the global illumination setting two
kinds of functions are dealt with: the 2D image function and
the 4D radiance or importance function (2 dimensions are
needed to identify a surface point and another two dimen-
sions for the direction). When the problem is restricted to
the diffuse case, the radiance or importance becomes 2 di-
mensional.

A good function approximation approach would use just a
few samples where the function is flat or constant and would
concentrate the samples where the function becomes “wild”,
i.e. of high variation. Note that this results in different sam-
pling densities as would be generated by importance sam-
pling which concentrates on regions where the function is
large.

Function approximation in rendering was investigated
first of all in the context of image processing and
compression11. The function approximation problem also
appeared in global illumination, although under different
names. In order to approximate the radiance, a popular tech-
nique is the finite-element method, which approximates the
radiance as a finite function series of predefined basis func-
tions. Piece-wise constant basis functions are simple to use
but an accurate approximation might require too many of
them3, 5, 20. Higher order basis functions27 and wavelets2 pro-
vide more compact representation but are more difficult to
use22. Another interesting approach is followed by the pho-
ton map6, where the radiance is represented by point samples
from where the radiance function is approximated from the
values nearby15. The main problem of all of these techniques
is that they can never be accurate enough, thus artifacts can
appear where the radiance changes quickly. These artifacts
include, for example, light leaks, smeared shadows and in-
correct highlights17. Taking into account the requirements of
good function approximation, the data used by the approxi-
mation would be devoted to those regions where the radiance
is not trivial. Adaptive tessellation in the radiosity method,
also called substructuring16, hierarchical radiosity1, 25, dis-
continuity meshing4, and wavelet radiosity2 all aim at this
goal. Adaptive sampling13, 24, on the other hand, is an exam-
ple of optimized image space approximation. In order to im-
prove the approximation in the image space, several filtering
methods have been published9, 14, 21.

The global illumination problem as an approximation
problem in the image space got attention in7 and was also
discussed at the closing section of the Dagstuhl Seminar on
Monte-Carlo Methods8. The method of dependent tests18,
also called correlated sampling, showed up in these papers,
which inspired our approach as well.

3. The method of dependent tests

In Monte-Carlo random walk algorithms the rendering equa-
tion is solved separately for each pixel, that is, we solve as
many high-dimensional integration problems as the number
of pixels in the screen. From another point of view, the ren-
dering is an approximation problem, where the image func-
tion is approximated at the pixel locations. Current random
walk algorithms use different random or quasi-random num-
bers for the computation of different pixels, thus their er-
rors are independent (up to the degree on which the pseudo-
random series can be assumed to generate independent val-
ues). Do we really need such an independent approxima-

c© The Eurographics Association 2002.



Csonka, Szirmay-Kalos, Kelemen, Antal / Dependent Tests Driven Filtering in Monte-Carlo Global Illumination

16 independent samples per pixel 16 dependent samples per pixel

64 independent samples per pixel 64 dependent samples per pixel

Figure 1: Comparison of images rendered by path tracing with independent (left) and with dependent (right) tests

tion? This independent approximation has both advantages
and disadvantages. The primary advantage is that if we look
at larger homogeneous regions (as the human eye does), the
average color in these regions will be more accurate as the
pixels themselves. The primary disadvantage is that when
we look at the image, the dot noise on the image is rather
disturbing.

In order to remove the dot noise, the method of dependent
tests use exactly the same random numbers for the compu-
tation of all pixels. Obviously, the asymptotic result and the
RMS error from the converged image are the same for both
the dependent and independent sampling. However, now the
pixel colors are highly correlated. This is advantageous since
the dot noises disappear, but this is also bad since aliasing
and higher level artifacts may occur. The method of depen-
dent tests distributes the same error differently as the normal

method using independent samples. This might be better or
worse for the human visual system for different scenes and
sample numbers (figure 1).

We do not intend to decide now whether dependent tests
or independent tests are better in pure random walk render-
ing. For us, the important recognition is that dependent tests
introduce a strong correlation between pixel colors, thus the
difference of the colors will be a low variance random vari-
able. Thus even if we have just a few samples, the large color
difference would likely mean that the colors of two pixels
converge to different values, thus averaging them is harm-
ful. However, if the color difference is small, we can believe
that these pixels are worth averaging because their converged
values will also be similar.

Let us thus suppose that the first phase of the new algo-
rithm is a random walk phase applying the method of de-
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pendent tests. Suppose thatn random walks are computed in
each pixel and the variance of the pixel color is computed,
from theC1, . . . ,Cn contributions of the walks:

σ2 =
n

∑
i=1

(Ci −C̃)2

n
≈ D2 [C] ,

whereC̃ is the average color:

C̃ = ∑n
i=1Ci

n
≈ E [C] .

The variance of the pixel colors will be used for two dif-
ferent purposes. On the one hand, they can determine how
many additional samples should be computed in the differ-
ent pixels. Brutal force random walk algorithms would use
the same number of samples in each pixel, but it is obvi-
ously not optimal. Using the estimated variance, the goal is
to compute all pixels with roughly the same relative error.
The application of relative rather than absolute error is justi-
fied by the fact that the human visual system is sensitive to
relative errors12, 10. From the value of the available time, or
of the total number of samples to be computed, the number
of samples in a pixel is set to be proportional to the vari-
ance, i.e. the square of the standard deviation, divided by the
mean value of the pixel color. On the other hand, the vari-
ance of the pixel colors will also determine whether or not
two pixels can be considered as similar and be included in
the same group. We assume that significantly different vari-
ances mean that the two pixels are associated with different
objects or illumination conditions, thus their averaging is not
recommended. It also means that the pixels in a group will
have similar variance value, which will be exploited in the
error optimization.

Let us define a neighborhood ofM pixels around each
pixel. This neighborhood may contain only the given pixel,
also called theprimary pixel, 4 pixels that form a2× 2
square around the pixel (called 4-neighborhood),3×3pixels
(called 9-neighborhood), etc. Pixels in theM-neighborhood
of pixel p will be denoted byNM[p].

The neighborhoods are defined to include pixels whose
color average and variance are similar after the dependent
tests. In order to decide whether or not the neighborhood
is homogenous, color differences∆q = ‖Cd[p]−Cd[q]‖ are
computed between each pixel in the neighborhood and the
given pixel. A pixel has a homogenous neighborhood if these
∆q values are small. It means that the new samples of the
pixels in the neighborhood are also good estimates for the
pixel itself. The precise definition of what “small” means is
given in the following section.

4. Error driven adaptive filtering in the phase of
independent tests

We concluded that if a pixel has homogenous neighborhood,
then the samples corresponding to the pixels of the neigh-
borhood are worth including in the given pixel as well. Thus

the proposed filtering operation applies weighted averaging
of the pixel colors of theM-neighborhood of the pixel:

Cf [p] = ∑
q∈NM[p]

f [q− p] ·C[q], (1)

whereC[q] is a pixel color in the neighborhood including
the pixel p itself, and f [q− p] is the filter kernel. Note that
p and q are 2D vectors, thus the filter kernel is also two-
dimensional. The filter preserves the total energy, i.e. the av-
erage brightness remains the same if

∑
q∈NM[p]

f [q− p] = 1.

The first question is how the filter should be set. In order
to answer this question, the error of the phase of independent
samples is minimized. Having carried out sampling withN
samples, the standard deviation of the pixel color isσ/

√
N.

Three times the standard deviation is a probabilistic error
bound with 97% confidence level, thus the Monte-Carlo er-
ror of the color is

ε(C[p]) =
3σ√

N
.

When the filtering operation is also used, the error comes
from two terms, i.e. from the Monte-Carlo error of the pix-
els and from the distortion of assuming that the colors of
different pixels are similar. When computing the variance of
the filtered color in equation 1, we can assume that the col-
ors of different pixels are statistically independent, thus we
obtain:

D2 [
Cf [p]

]
= D2


 ∑

q∈NM[p]

C[q] · f [q− p]


 =

∑
q∈NM[p]

f 2[q− p] ·D2 [C[q]] = ∑
q∈NM[p]

f 2[q− p] · σ2

N
.

In the last equation we exploited that the pixels in a group
have similar variance value. The Monte-Carlo error is thus
its square root (standard deviation) multiplied by three. On
the other hand, when a neighboring pixelq is used to es-
timate the given pixelp, a distortion of f [q− p]∆q is also
added to the error. Adding the Monte-Carlo error and the
distortion (or bias) in the sense of worst-case error analysis,
we obtain the following error formula:

ε(Cf [p]) =
3σ√

N
·
√

∑
q∈NM[p]

f 2[q− p]+ ∑
q∈NM[p]

f [q− p]∆q.

Let us minimize this error formula by setting the filter coef-
ficients f appropriately, but also taking into account the re-
quirement of energy conservation. Using the Lagrange mul-
tiplier method, according tof [q− p] andλ the partial deriva-
tives of

ε(Cf [p])−λ · ( ∑
q∈NM[p]

f [q− p]−1)
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should be made equal to zero, that is:

∂ε
∂ f [q− p]

=
3σ√

N
· f [q− p]√

∑r∈NM[p]
f 2[r− p]

+∆q−λ = 0,

∂ε
∂λ

= ∑
q∈NM[p]

f [q− p]−1 = 0.

In order to simplify this system of equations, the quadratic
mean is approximated by the arithmetic mean:

√
∑r f 2[r− p]

M
≈ ∑r f [r− p]

M
=

1
M

.

This allows to express the filter coefficients in a closed form:

f [q− p] =
1
M

+
√

N

3σ
√

M
·
(

∑r ∆r

M
−∆q

)
.

In the practical implementation we modify the theoretical
results a little bit to include also those factors that have not
been taken into account during the theoretical analysis. For
example, the proposed weight can be negative for small vari-
ance pixels. However, we want to use only a low-pass fil-
ter, thus these negative weights are replaced by zero. On the
other hand, we do not have the same confidence in pixels
of different distances from the primary pixel even if their
color difference turns out to be similar. Thus a conventional
pyramid filter is also included that decreases the computed
weight of distant pixels. In the simplest case this pyramid
filter would multiply the weights by

d(p−q) = M/
√

2−‖p−q‖,
that is, a linear function is used which is maximal for the pri-
mary pixel and decreases with the distance from the primary
pixel. An even better solution would be the application of a
spline or Gaussian filter.

Having dropped the negative weights and multiplied
them by the distance function, the weights have to be re-
normalized since their sum is not necessarily 1 anymore.
Thus the final form of the filter kernel is:

f ∗[q− p] =
f +[q− p] ·d(q− p)

∑r f +[r− p] ·d(r− p)

where f + means that negative values are replaced by zero:

f + =

{
f if f > 0,

0 otherwise.

Let us examine this filter. Ifq is identical to the primary
pixel p, then∆q is zero, thus the weight of the primary pixel
will always be maximum and higher than1/M. The weights
of the neighboring pixels are characterized by

d(q− p) ·
(

1
M

+
√

N

3σ
√

M
·
(

∑r ∆r

M
−∆q

))
.

A neighboring pixel may have relevant weight if

• it is not far from the primary pixel, i.e.d(q− p) is large,
• the Monte-Carlo error3σ√

N
is large compared to the color

differences,
• there are not too many pixels in the neighborhood, i.e.M

is small,
• its color difference∆q is small.

This means that the algorithm automatically locates high-
variance pixels in homogeneous neighborhoods and ap-
plies low-pass filtering only here. The requirement that the
Monte-Carlo error should be large also means that this fil-
tering disappears for large sample numbers and the result
is unbiased asymptotically. If the Monte-Carlo error is small
compared to the color differences, then the weight of the pri-
mary pixel is significantly larger than those of neighboring
pixels, thus other pixels in the neighborhood are not allowed
to have relevant effect on the primary pixel. Such neighbor-
hoods are not worth forming, since they just increase the
computation time but the modification coming from their
corresponding filters is negligible.

However, when the Monte-Carlo error is large, the pixels
of the neighborhood can have considerable weight. Since the
relationship between the weight of a pixel and its color dif-
ference from the primary pixel is linear with negative scal-
ing, those pixels that have larger color difference will get
smaller weight. This eliminates bad pixels in the neighbor-
hood, thus the neighborhood may contain a few very differ-
ent pixels, that are ignored.

Since this method will automatically eliminate those pix-
els that are not similar to the primary pixel by setting their
weights close to zero, in theory we can expand the neigh-
borhoods without any limits. More precisely, only the sim-
ilarity of the variance values would limit the regions. How-
ever, larger neighborhood means higher computational time,
which is wasted if the weights of the majority of the pixels
are very small. Thus the neighborhood building algorithm
will keep trace of the weights of newly introduced pixels.
When these weights drop below a predefined limit, the ex-
pansion of the neighborhood is stopped. An easy way to de-
tect whether or not newly taken neighborhood pixels have
sufficient contribution is to check whether the decrease of
f [0], that is the decrease of the weight of the primary pixel in
itself, is greater than a predefined threshold as we expanded
the neighborhood. The minimally required decrease is de-
noted by∆ f [0]min.

Finally, we should note that we have assumed so far that
the sampled and the approximated function value is scalar.
In global illumination, however, this function value is a vec-
tor of radiances at different wavelengths. This problem can
be easily solved if the absolute values of color differences
are replaced by appropriate norms, for example, by the sum
of the absolute values of the color components of different
wavelengths. It means thatσ will be an estimate of the extent
of the variance ellipsoid.

c© The Eurographics Association 2002.



Csonka, Szirmay-Kalos, Kelemen, Antal / Dependent Tests Driven Filtering in Monte-Carlo Global Illumination

5. The algorithm

In this section the algorithmic details of the proposed method
are presented. Each phase is defined by its pseudo-code.
On the other hand, to demonstrate the features of the given
phase, we took an example of a Cornell box-like scene and
the temporary images of each phase are included in figure 2.
In order to build random light-paths, we used bi-directional
path tracing26.

The proposed algorithm starts with the phase of dependent
tests, which can be summarized by the following pseudo-
code:

for each pixelp do // phase of dependent tests
for s= 1 to n do

C[s] = Dependent light path samplescrossing this pixel
endfor
Cd[p] = ∑n

s=1C[s]/n
σ2[p] = ∑n

s=1‖C[s]−Cd[p]‖2/(n−1)
endfor

The result of the first phase obtained withn = 50 depen-
dent samples per pixel is shown by the first image of figure
2. Note that dependent tests could get rid of the usual dot
noises but characteristic stripes and other artifacts appear.
For each pixel, this step results in aCd value, which repre-
sents its average color and a variance valueσ2. If we have
to obtain the results with at least a prescribed relative error
εr , then the number of additional samples per pixelN can be
determined as:

N =
(

3σ
εr · ‖Cd‖

)2

−n.

This value is also used for characterizing the similarity of the
neighboring pixels. ThusN is not precisely computed, but is
only classified according to a few categories, e.g. 1, 10, 20,
50, 100, etc.

The phase of independent tests is like a conventional ran-
dom walk algorithm except for the fact that we use different
number of samples in different pixels according to the re-
sults of the first phase. The second step writes the average
color into theCi variable of each pixel:

for each pixelp do // phase of independent tests
Ci [p] = 0
for s=1 to N[p] do

C = independent light path samplescrossing this pixel
Ci [p] += C/N[p]

endfor
endfor

The image obtained with independent tests is the second
in figure 2. When this image was rendered, the prescribed
relative errorεr has been set to 0.03.

The third step of the algorithm is to form homogeneous
regions based on the similarity of colors and variances ob-
tained in the phase of dependent tests. According to the
previous section, for each pixelp, the following algorithm
should be executed:

f ∗[0] = 1
for m= 2 to m = mmax do // form regions for pixel p

// calculation of unnormalized filter coefficients
M[p] = m2

for each pixelq in theM[p]-neighborhood ofp do
if N[p] <> N[q] then stop for pixel p
∆q = ‖Cd[p]−Cd[q]‖
f [q− p] = 1

M +
√

N
3σ
√

M
·
(

∑r ∆r
M −∆q

)

endfor

// the normalized filter coefficient of pixel p

f ∗new[0] = f +[0]·d(0)
∑r f +[r−p]·d(r−p)

// if the new normalized filter coefficient of pixel p is not
// changed ”too much”, the region forming for this pixel is
// stopped; otherwise the others are also computed
if f ∗[0]− f ∗new[0] < ∆ f [0]min then

M[p] = (m−1)2

stop for pixel p
else

for each pixelq in theM[p]-neighborhood ofp do

f ∗[q− p] = f +[q−p]·d(q−p)
∑r f +[r−p]·d(r−p)

endfor
endif

endfor

Note that in the real implementation it can be exploited
that larger neighborhoods include smaller ones, thus∑r ∆r

and∑r f +[r− p] ·d(r− p) can be computed incrementally.

The final step is the display of the result. The displayed
color of a pixel is computed from its dependent colorCd and
from independent colors of those pixels that belong to the
homogeneous neighborhood of the given pixel, that is:

for each pixelp do // display of the results
Ci = 0
for each pixelq in theM[p]-neighborhooddo

Ci += f ∗[q− p] ·Ci [q]
endfor
C = (Cd[p] ·n+Ci ·N[p])/(n+N[p])
DisplayC in p

endfor

This last step corresponds to the third and the fourth im-
ages in figure 2. The third image shows the filtered result of
the phase of independent tests and the fourth the combina-
tion of the images obtained with dependent tests and with
independent tests followed by filtering.
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dependent tests independent tests

filtered combined

Figure 2: Evolution of the final image in the proposed algorithm
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Figure 3: Images rendered with our new method using 45 dependent tests and in average 43 independent tests per pixel (left,
94 min.) and with the original bi-directional path tracing using 150 samples per pixel (right, 159 min.)

6. Analysis of the algorithm and simulation results

The presented algorithm has been implemented in C++ in
OpenGL environment. The images have been rendered with
600×600resolution on a PC with 1.5 GHz Pentium 4 pro-
cessor. In order to evaluate the proposed method, we com-
pared it first with bi-directional path tracing26 in a kitchen
scene (figure 3), which has 9143 patches included 2 emitters,
and concluded that the new method provides better images
in shorter computational time.

The proposed algorithm depends on four critical parame-
ters including the number of dependent test samplesn, the
prescribed relative errorεr , the maximum size of a neigh-
borhoodmmax and the minimally required decrease of the
weight of the primary pixel∆ f [0]min. These parameters
should be carefully set. For example, if we use too many
samples in the dependent test, the artifacts of dependent tests
remain visible in the final image. On the other hand, if the
number of dependent tests is small, the mean color and vari-
ance estimates are not accurate, which may result in not opti-
mal region forming. According to our practical experiences,
it is not worth using larger filter kernels (mmax) than4× 4
pixels. Although, the calculation method would guarantee
the optimal determination of the coefficients of even larger
kernels, the uncertainty of the results of the dependent tests
can still result in excessive low-pass filtering.

In order to highlight the difference of wrongly and well
tuned parameters, figure 4 shows the same part of the kitchen
scene rendered with different settings. The left image was
obtained with allowing maximum3× 3 regions to form

(mmax = 3 and∆ f [0]min = 0.1). The RMS and the percep-
tual errors in this case were 17.1 and 63733, respectively (as
a perceptual measure we counted the number of those pixels
where the relative error of the color exceeded five percent12).

However, as we can see in the middle image, a much bet-
ter result is generated if we allow the neighborhoods to ex-
tend to4×4 regions, i.e. we usedmmax= 4 and the threshold
∆ f [0]min was decreased to 0.01 to allow farther pixels also
to contribute. This modification reduced the RMS and the
perceptual errors by about 15 percent.

In addition to the filter size and the threshold parame-
ter, the algorithm can also be controlled by the prescribed
relative error. Figure 5 shows the rendered images with
0.6. . .0.03 prescribed relative errors. Note that the filtering
and dependent test artifacts gradually disappear.

Another indoor scene (figure 6), which has 18134 patches
included 1 emitter, is also rendered with the new method.
Note that the floor is a bit mirror-like, because the specular
component of the floor is set to 0.6 and the shininess is 15.

7. Conclusions

This paper presented an adaptive sampling and filtering ap-
proach to reduce the computational time spent on homoge-
neous regions. In order to find these homogeneous regions,
we used Monte-Carlo sampling with dependent tests. This
allows to minimize the effect of the Monte-Carlo noise on
the decision whether or not two pixels belong to the same
region. Based on the result of the dependent tests, the vari-
ance of the pixel colors are also estimated, and the number
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mmax=3, ∆ f [0]min=0.1 mmax=4, ∆ f [0]min=0.01 reference image

Figure 4: Images of the side of the oven that compare the effects of different neighborhood size and threshold parameters

εr = 0.6 εr = 0.1 εr = 0.03

Figure 5: Comparison of images rendered with different prescribed relative errors

of additional samples are computed. The second phase of the
algorithm is a classical random walk. The only difference is
the final display of the color, since we also use a filtering
operation. The domain of the filters are the homogeneous
regions and the filter kernels are set to minimize the total er-
ror composed of the Monte-Carlo error and the bias of the
filtering.

The computational overhead of the method is negligible
and is really effective when the scene contains larger homo-
geneous regions (this is quite typical in architectural scenes)
and the resolution of the image is high. So far we exploited
the coherence in the image space. As a future development
we intend to extend this idea for higher order reflections as
well.

Looking at the method from another perspective, we can
note that it is based on trading noise with bias in a way that
the total error is minimized and the unbiasedness is still kept

in the asymptotic case. We believe that such approaches have
great potential to improve Monte-Carlo global illumination
algorithms.
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