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Abstract
In this paper we consider 3D object surfaces which can be represented as scalar functions defined on the sphere.
These objects can be modeled as series of spherical harmonic functions. A simple progressive transmission scheme
could be implemented which transmits the expansion coefficients one by one and thus implements a coarse to fine
reconstruction. The buildup of the object according to this scheme is not completely smooth: Wavy patterns appear
which disappear in subsequent stages and are replaced by finer spurious patterns and so on. We propose a remedy
for this behavior which is based on the simulation of a reversed diffusion process on the sphere.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations

1. Introduction

Compression of 3D surface data (geometry compression)
and especially schemes which allow for progressive trans-
mission of such compressed data are of crucial importance
for the efficient transmission of 3D surfaces, e.g. over the
Internet. Solutions have been developed, based mainly on
surfaces represented as triangular meshes13; 8; 10; 9.

In this paper we will consider a different surface model
which is valid for all surfaces which can be described as
functions on the sphere. These functions can be expressed
as series of spherical harmonic functions which corresponds
to the Fourier expansion of a function on the plane.

In earlier work the favorable properties of spherical har-
monics (SH’s) (orthonormality, completeness, coarse-to-fine
hierarchy) have been exploited for the representation of 3D
object surfaces. The use of spherical harmonics was first pro-
posed by Schudy and Ballard12; 1. They model the dynamic
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heart volume by SH’s with periodically time-varying coeffi-
cients. Later SH’s have been used to compress coarse scale
head models7. SH’s can be combined with spherical Ga-
bor filters in order to take care of fine detail locally3 or with
other surface harmonics like cylindrical or elliptical harmon-
ics to account for global shape appropriately11.

A simple progressive transmission scheme can be imag-
ined that transmits the spherical harmonic coefficients of
a given surface starting with the low frequency compo-
nents and continuing with increasingly fine detail (higher
frequency). However, as we will show, this leads to the inter-
mediate introduction of wavy patterns in smooth areas of the
object. These artefacts are due to the global support of spher-
ical harmonics and vanish as higher frequency components
are added. In this paper we propose a method for blending
in the coefficients which leads to a smooth buildup of the
object without intermediate artefacts.

Recently, it has been shown that for surfaces defined as
functions on the sphere a linear scale space can be intro-
duced via the diffusion equation on the sphere2. The analogy
between the Fourier transform in the image plane and the
spherical harmonic expansion carries quite far: The spher-
ical diffusion equation can easily be solved in the spectral
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domain. Furthermore the Green’s function of the spherical
diffusion equation can be interpreted as the spherical Gaus-
sian. Linear diffusion on the sphere can thus be preformed
by convolution with a spherical Gaussian (smoothing) filter.
The method proposed in this paper is based on the reversion
of this diffusion process.

The structure of this paper is as follows. In Sect.2 the
necessary mathematical tools will be provided. In Sect.3
we briefly outline the surface smoothing process based on
spherical diffusion. The smooth buildup scheme based on
reverse diffusion will be described in Sect.4 before we close
with a conclusion in Sect.5.

2. Mathematical Preliminaries

We will use the standard spherical coordinates to parameter-
ize the unit sphere

S
2=

8<:η(ϕ; ϑ) :=

0@ cos(ϕ)sin(ϑ)
sin(ϕ)sin(ϑ)

cos(ϑ)

1A9=; ; (1)

with ϕ 2 [0;2π);ϑ 2 [0;π]. The spherical harmonic func-
tions Ylm : S2 ! C are defined as the everywhere regular
eigenfunctions of the spherical Laplace operator5. These
functions constitute a complete orthonormal system of the
space of square integrable functions on the sphereL2(S2).
In spherical coordinates theYlm are given by

Ylm(η) =

s
2l +1

4π
(l �m)!
(l +m)!

Pm
l (cos(ϑ))eimϕ

; (2)

with l 2 N andjmj � l . HerePm
l denote the associated Leg-

endre polynomials4. Spherical harmonics are orthogonal
Z
S2

Ylm(η)Y�l 0m0 (η)dη = δll 0δmm0 : (3)

and complete inL2(S2) such that anyf 2 L2(S2) can be
expanded into spherical harmonics:

f = ∑
l2N

∑
jmj�l

f̂lmYlm with f̂lm =

Z
S2

f (η)Y�lm(η) dη;

(4)
where�� denotes complex conjugation. For the surface el-
ement on the sphere we use the shorthand notationdη :=
sin(ϑ)dϑdϕ. The set of coefficientŝflm is called thespher-
ical Fourier transformor thespectrumof f .

Spherical harmonics are eigenfunctions of the Laplace op-
erator restricted to the sphere∆S2 as well as of the derivative
operator with respect to the azimuthal angleϕ:

∆S2Ylm =�l(l +1)Ylm; ∂ϕYlm = imYlm: (5)

We are going to apply this filter to a given surface by corre-
lation. We make use of the following theorem. For functions
f ;h2 L2(S2) with ĥlm = 0 for m 6= 0 (i.e. for arotationally

symmetric filter h) the spectrum of the correlation is a point-
wise product of the spectra off andh

(df ?h)lm =

r
4π

2l +1
f̂lmĥl0: (6)

A similar result starting from another definition of convolu-
tion has been proven by Driscoll and Healy6.

3. Spherical Diffusion Smoothing

Using (4) and (5) it can be easily verified that the spherical
functionG given by its spectrum as

\G(�; t)lm =

( q
2l+1
4π e�l(l+1)t if m= 0

0 else:
(7)

solves the spherical diffusion equation∆S2u= ∂tu. The func-
tionG is known as the Gauss-Weierstrass kernel or the spher-
ical Gaussian function. A derivation of this result can be
found in 2. Combination of (7) and (6) shows that the co-
efficients of the smoothed surface can be obtained from the
original coefficients by

f̂lm 7! f̂lme�l(l+1)t =: ( f̂ t)lm: (8)

Here, f t is the result of linear spherical diffusion applied to
the function f with diffusion timet. Figure1 shows an ex-
ample of an object undergoing a spherical diffusion process.

4. Reverse Diffusion

Assume a progressive transmission of 3D surface data is per-
formed by transmission of spherical harmonic coefficients
f̂lm. First the coefficientf̂00 with l = 0 is transmitted, fol-
lowed by the three coefficients withl = 1 and so on. Due to
the observation that the indexl can be considered as a fre-
quency, the described scheme transmits the surface data in
a coarse to fine manner. An example for a different number
of transmitted coefficients is shown in Fig.2. We have not
applied any quantization scheme to the coefficients nor any
subsequent coding. If the coefficients are transmitted at 4
Bytes per coefficient the reconstructions shown in Fig.2 re-
quire 4L2 Bytes, i.e. 14400 Bytes for the most detailed level
Fig. 2(f). These reconstructions can be considered as results
of ideal bandpass filtering of the original object.

Figure2 reveals an undesirable effect of this reconstruc-
tion method. Spherical harmonic functions are of global sup-
port. Thus, adding fine detail in some places leads to ringing
effect in smooth regions of the object (see e.g. the top of
the head in Fig.2(c)). This wavy appearance is only later
canceled out as more coefficients are added. Thus, spurious
detail is introduced at some stages which vanishes later in
the reconstruction process.

It would be visually much more pleasing to build up the
object as shown in Fig.1 but in reverse order. This would
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(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) Original data.(b) Smoothed with t= 10�4. (c)
t = 10�3. (d) t = 5 �10�3. (e) t = 0:03. (f) t = 0:3.

correspond to a reverse diffusion process. The scale space
properties of the hierarchy generated by spherical diffusion
smoothing would guarantee that no spurious detail is intro-
duced at any stage of the reconstruction process.

Equation (8) shows that any coefficient̂flm of the original
function f will contribute to f̂ t

lm for any givent � 0

f̂lm 6= 0 ) f̂ t
lm 6= 0 8 t � 0: (9)

Thus, in order to build upf via reverse diffusion we would
need to wait for all coefficients to be available before even
the very coarse structure could be expressed. This clearly
contradicts our aim to use each incoming coefficient to im-
prove the reconstruction.

There is however still hope if we settle for a compromise.
Assume we want to construct the smoothed version

f t = ∑
lm

f̂lmYlme�l(l+1)t
: (10)

Since this requires knowledge of all coefficientsf̂lm we de-
cide to approximatef t by the finite sum containing only
those coefficients which have not been strongly attenuated.
To be concrete, we only use the coefficientsf̂lm with l such

(a) (b)

(c) (d)

(e) (f)

Figure 2: Progressive reconstruction of an object from the
first L2 spherical harmonic coefficients.(a) L = 10. (b) L =
20. (c) L = 30. (d) L = 40. (e) L = 50. (f) L = 60.

that

e�l(l+1)t � ε; ε 2 (0;1): (11)

This will still lead to a ringing effect, but much less so than
in the case of the ideal low-pass results shown in Fig.2.

Assume we have received all coefficients up tol = L. For
a givenε we determinet = tε;L such that (11) is fulfilled as
equality forl = L

tε;L =�
ln(ε)

L(L+1)
: (12)

Thus, we propose, given coefficientsf̂lm up to l = L, to re-
construct

f ε
L =

L

∑
l=0

∑
jmj�l

f̂lmYlme�l(l+1)tε;L
: (13)

Figures3 - 5 show results for different values ofε.

It can be seen that building the reconstruction up by re-
verse diffusion results in a smoother development. However,
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Progressive reconstruction from the first L2 spher-
ical harmonic coefficients using (13) with ε = 0:1. (a) L =
10. (b) L = 20. (c) L = 30. (d) L = 40. (e)L = 50. (f) L = 60.

this has to be paid for by a slower appearance of fine de-
tail. In a practical application situation the parameterε can
be chosen according to the preferences. A smallε will lead
to a very smooth buildup, very close to actual reverse dif-
fusion whereasε = 1 corresponds to taking each received
coefficient immediately into account in full.

5. Conclusion

In this paper we have considered a progressive geometry
transmission scheme based on the transmission of a series of
spherical harmonic expansion coefficients. Just adding each
new incoming coefficient to the reconstruction yields unde-
sirable ringing effects. We have proposed a method which is
based on the approximation of a reverse diffusion process.
This leads to a “blending in” of the newly received expan-
sion coefficients which in result in a smooth buildup of the
reconstruction.

Future work will have to concentrate on the development

(a) (b)

(c) (d)

(e) (f)

Figure 4: Progressive reconstruction from the first L2 spher-
ical harmonic coefficients using (13) with ε = 0:3. (a) L =
10. (b) L = 20. (c) L = 30. (d) L = 40. (e)L = 50. (f) L = 60.

of an actual compression scheme based on spherical har-
monic coefficients to make this means of progressive trans-
mission competitive.
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