
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Data driven motion transitions for interactive games

M. Mizuguchi1, J. Buchanan1, T. Calvert2

1Electronic Arts (Canada), Inc. Burnaby, B.C., Canada
2Technical University of B.C., Surrey, B.C., Canada

Abstract
In 3D video games that employ human characters, a series of animations is required to display a character’s
motion. The current approach is to use stored animation sequences, either motion captured or hand animated,
and play them back as required. Unlike a sequence for film or video the motion needs to change according to the
user’s interaction with the game. There are constant unpredictable transitions from one animation into another.
This paper presents the design and analysis of a framework for supporting data driven transitions that have
been pre-specified by animators. This approach frees the programmers from having to determine the details of
each transition and gives control to the animators. This takes advantage of the animators’ skill at evaluating and
tweaking the motion to produce better aesthetic results and lets the animators and programmers work in parallel.

1. Introduction

Producing convincing animation sequences for articulated
figures such as human characters remains a difficult task in
computer graphics. One method of simplifying the process
is to create longer animations by sequencing together a se-
ries of base animations from a motion library. The order in
which the animations are sequenced can be varied so that
given a sufficiently large motion library a rich variety of mo-
tions can be achieved. Using motion capture technology the
motion of a real actor can be recorded and an extensive li-
brary of realistic motions can be created fairly easily.

1.1. Motivation

When sequencing motions together extra care needs to be
taken with the transitions between them. The pose of the
figure may not be aligned in the source and target anima-
tions and the rate of change may also differ. Significant dif-
ferences in the pose or speed will result in a discontinuous
motion. Simple interpolation of the poses can smooth out the
transition but may not produce a natural or physically realis-
tic motion 7.

Techniques from recent motion editing research can be
used to modify the base motions to produce believable tran-
sitions 3� 4� 5� 8� 9. Although these techniques are effective, they
focus on easing the task of creating animations for traditional
sequential play back such as in video or film. Many of these

techniques are not applicable to highly interactive environ-
ments such as games.

The difficulty in working with games is that performance
is always a concern, since the characters need to react
quickly. The first priority is that the characters have fast reac-
tions and the second is that the reactions look realistic. Inten-
sive calculations to provide smoother more natural blending
are not possible if they result in slow reaction times. While
the motion editing techniques referenced above are effective
they are too slow to be applied in a real-time environment.

1.2. Approach

By predefining the allowable transitions and storing data
about them, realistic blends between animations are achiev-
able without great computational overhead. The simpler
techniques can be employed according to the data thus
avoiding poor blends. The blending parameters can be spec-
ified and tuned during development of the game.

Possibly the best benefit of this approach is that with well
designed tools the animators can specify how the transitions
are to occur. It is the animators who fine tune the individual
motion clips but currently they have no way to specify how
they are to flow together during game play. This responsi-
bility falls on the programmers. The programmers are able
to apply various techniques to blend the motions by making
changes to the source code. Unfortunately, most program-

c� The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Mizuguchi, Buchanan, Calvert / Data driven motion transitions for interactive games

mers do not have the skill or training that animators have in
evaluating and creating figure motion. Due to the lack of a
proper framework, programmers are required to perform a
task that is better suited for animators.

2. Transition Framework

If an animator is to take on the job of specifying the tran-
sitions, a framework needs to be developed for supporting
the added communication between the animator and the pro-
grammer. The central component of the framework is the
data on how to perform the transitions. Additional support-
ing components are required to allow the animator to create
this data and the programmer to subsequently use it.

The actual data used in the game needs to be in a platform
specific compact binary format so it will not be legible or
flexible. Instead of reading and writing directly to this for-
mat, the editing tool could write in a flexible intermediate
format. A platform specific binary file could then be com-
piled by the tool at a later stage. The transition data would
be the same but this separation would allow data for sev-
eral platforms to be generated from a single intermediate file.
The intermediate file can be stored as text to allow changes
to be tracked using a source code control system.

The animator needs a way of generating and viewing the
transition data. The animators could use a text editor to edit
the data directly. The resulting transitions could then be
viewed when they are played back in the game. This pro-
vides a means with which to define transitions but it is not
sufficient to meet the demands of a production environment.
An easy to use tool is required so that the animators can
work productively. A prototype tool was developed and is
described in more detail later.

On the other end, an Application Programming Interface
(API) was developed to allow the programmer to easily ac-
cess the transition data and apply it accordingly. Given the
current motion state all the programmer needs to specify
is an ID of a transition. The API then looks up the data
recorded for that ID and applies the transition according to
what the animator set.

2.1. Pipeline

If the transitions are to be specified during game develop-
ment then this process must fit into the production pipeline.
A pipeline is the series of steps that need to be followed
to get artistic content such as models and animations into a
form usable by the game programmer. For a game that uses
motion captured data the pipeline steps for getting animation
into the game are:

1. Motion capture session.
2. Motion tracking and clean-up.
3. Tweaking by animators.
4. Export and compile into game format.

The first two steps are generally done once but the tweak-
ing of the animations is an ongoing process that continues
throughout development. As long as the tweaking does not
drastically change the animation it can be done in parallel
with animation programming tasks. Once the modified ani-
mation is re-exported it can be dropped seamlessly into the
game in place of the original.

A similar pipeline is required to get transition data into a
game ready state. The initial steps of the pipeline require that
the programmer and animator agree on a set of transitions
to be supported in the game. Once this set of transitions is
created the animators can tweak the parameters to perfect
the resulting motion. As with the component animations the
programmers do not need to make any code changes to get
the modified transitions.

3. Specifying Transitions

The framework developed supports several transition tech-
niques and a wide variety of parameters for those techniques.
This sections discusses some of these techniques.

3.1. Parameters

Simply concatenating two animations together will rarely
produce a smooth transition since the poses will not be lined
up. Figure 1(a) graphs a joint angle over time for two con-
catenated animations. There is a pronounced discontinuity at
the transition time which results in a pop in the motion.

If the initial source animation has not run to completion,
then a simple way to smooth the motion is to blend the re-
mainder of the source with the target as in Perlin 7. The end
of the source animation is overlapped with the the target and
the target is progressively blended into the source over the
interval. The interpolation is controlled by a weight func-
tion that progresses from 1 to 0 over the blending time. Fig-
ure 1(b) shows the result of a blend with a linear weight
function. The blend removes the harsh discontinuity at the
transition.

Blend Length

When using a blending technique the length of the blend
must be decided upon. Longer blends produce smoother
transitions but they also water down the target animation.
A rather exuberant kick may become a shallow one. The op-
timal blend length depends on how much the poses are out
of alignment. If the poses and tempo are matched exactly
then the blend length can be 0. If the poses are seriously
out of alignment, then a longer blend time will be needed to
smooth them together.

As a general guideline, 10 frames provides a good start-
ing point for 30 frame per second animations. At 5 frames
the transition becomes discontinuous for most cases and 20
frames is generally more than enough.

c� The Eurographics Association 2001.



Mizuguchi, Buchanan, Calvert / Data driven motion transitions for interactive games

(a)

(b)

Figure 1: Graphs of a joint angle over time: (a) two anima-
tions are concatenated resulting in a discontinuity, (b) the
same animations are blended with a fall-off.

Start Frame

When blending from one animation into another the blend
does not need to start at the first frame of the target ani-
mation. An internal frame in the target motion may corre-
spond better to the current pose in the source motion. If a
target frame is selected where the character is supported by
the opposite leg an undesirable attenuated step results. The
correspondence of leg poses can be based on which leg is
supporting the figure and the angle between the legs. This
value is called the leg phase 1.

Figure 3 illustrates the results of 3 transitions from a jog
to a run with only the target frame varied between them. In
(a) there is a strong correspondence in the phase. The feet
strike the ground properly and the legs move in a believable
cycle. In (b) the start frame is set to one with a different sup-
port leg. The resulting motion contains a short hop midway
through the blend. In (c) the correspondence is improved but
the motion still contains an undesirable loop at one of the
foot contact points.

When specifying a transition, the animator can manually
select a target frame or select that the target frame be auto-
matically selected by matching the phase angle at runtime.

Modification and Correction

The blending technique only takes into consideration the
current motion state of the figure. The result of the transition
does not take into account additional state data that can be
supplied during game play. It may be desirable to incorporate
additional runtime data such as the position of the ball. For
example when transitioning from a run to a kick, allowing
the ball contact position to be specified gives the program-
mer greater control over how the transition is to look.

Currently the framework supports modification of the data
using inverse kinematics (IK) and motion warping 2� 10. To
use this technique the animator must supply additional data
about the how the IK and warping are to be performed.

Motion warping can also be used to correct constraint vi-
olations introduced by the motion blending such as the feet
penetrating the floor. Automatically detecting all possible
violations is extremely expensive. As part of the transition
specification process the animator could flag which viola-
tions can potentially occur for a given transition thus greatly
reducing the detection costs.

Some of the main transition techniques and parameters
have been discussed here but there are too many to go into
detail for all of them so the reader is referred to 6 for a com-
plete description of all of the parameters.

3.2. Interactive Editor

If the time taken to define a transition is excessive then the
animators will not have the time to fully fine-tune the transi-
tions to the point that they desire. The resulting transitions
will simply be made “good enough” because of the time
constraints. This then diminishes the benefit of having the
animators specify the transitions in the first place. As well,
waiting until the transitions are incorporated into the game
to view them simply takes too long. The process of editing
and testing the transition should be a tight interactive cycle.

A prototype transition editor was developed to ease the
specification process. The editor gives the user a graphi-
cal way of setting transitions and interactively playing them
back for testing. The editor supports a variety of techniques
including the parameters outlined above. The system also
allows for multiple transitions to be viewed concurrently to
allow for comparisons.

Figure 2 shows the diagrammatic representation of a tran-
sition used by the editor. The bar on the left with the arrows
coming from it is the source animation. The column of bars
on the right are the possible target animations. The length
of the bars corresponds to the length of the animations. The
source animation is divided into 3 ranges. A single set of

c� The Eurographics Association 2001.



Mizuguchi, Buchanan, Calvert / Data driven motion transitions for interactive games

right low kick

run

left low kick

left low kick

Figure 2: Diagrammatic representation of a motion transi-
tion used by the editor.

transition parameters may not apply to the entire animation.
The user can divide the animation into ranges with differing
parameters. A different target animation can also be speci-
fied for a range. In most cases 3 or fewer ranges is adequate.

The line at the tip of the arrow shows the frame at which
to start the blend. The user can drag this line to change the
frame or have it automatically set according to the leg phase.
The second line determines the length of the blend and it
can be dragged as well. The user composes the transition by
dragging and dropping animations and can test various tran-
sition times and interactively playback the resulting motion.

The design of the editor was made extendable so that sup-
port for new transition techniques could be added later. At
the start of a new project, there may be a decision to support
a new set of techniques. The editor would then need to be
modified at this time.

4. Evaluation

An informal user evaluation was done by letting a group of
3 animators use the system off and on for a week. After
the evaluation period a discussion was held about what they
thought of its usefulness and what were possible improve-
ments. In general they saw great potential in such a system.
The animators liked the idea of having full control of how
the motion is presented in the game. They also saw immedi-
ate use for such a system as a means to visualize transitions
and show programmers how they wanted them to look. The
notion of setting parameters for a range of frames was a new
concept. Animators are more accustomed to sequencing to-
gether animations at a fixed frame but learning this new con-
cept was not difficult for them.

The comments about improvements did not center around
specific transition techniques but were more related to user
interface issues and ways to better visualize the motion. The

users suggested that they wanted iconic representations of
the ball position and the player’s current direction of travel.
It was also the animators that requested a way of showing
the player’s pose at various frames with “stickmen” in the
same way they are presented in Figure 3.

The animators’ lack of comments regarding the actual
transition techniques is attributed to the informal nature of
the evaluation. Given a longer evaluation period and some
real production work to do, it is more likely that the anima-
tors would have more to say about specific transition tech-
niques and the usefulness of certain parameters and the de-
sire for others.

5. Conclusion and Future Work

As part of this work a successful prototype framework was
developed for data driven transitions. The framework allows
animators to specify the transitions with an interactive editor
and the programmers to access and apply the data through
a simple API. The feedback given by the animators for the
prototype system was encouraging and shows that pursuing
such a system is worth while. Some necessary improvements
have been identified before it can be used in a full production
environment and are detailed in 6.

It also remains to be seen how such a data driven approach
to transitions could be used in conjunction with a higher
level motion system. For example, the motion in the game
could be a hybrid of motion generated by a dynamic system
and playback of recorded motion capture clips. The dynamic
system could be used to control collisions between charac-
ters. Once the collision between characters has ended a tran-
sition could be made into an animation clip.

Another example of a high level system is one where mo-
tion blending and warping are used outside of transitions.
Walks and runs at different paces can be blended to produce
a large variation in tempos. The blended motions can be cy-
cled and a transition can be made from the blended motion
into an existing clip or another blended motion.

References

1. Matt Brown. Electronic Arts Confidential Information.

2. Armin Bruderlin and Lance Williams. Motion signal
processing, Computer Graphics (SIGGRAPH ’95 Pro-
ceedings), 97–104, 1995.

3. Michael Gleicher. Motion editing with spacetime con-
straints. Proceedings of the 1997 Symposium on Inter-
active 3D Graphics, 139-148, 1997.

4. Michael Gleicher and Peter Litwinowicz. Constraint-
based motion adaptation. The Journal of Visualization
and Computer Animation, 65–94, 1998.

5. Jehee Lee and Sung Yong Shin. A hierarchical ap-
proach to interactive motion editing for human-like

c� The Eurographics Association 2001.



Mizuguchi, Buchanan, Calvert / Data driven motion transitions for interactive games

characters. Computer Graphics (SIGGRAPH ’99 Pro-
ceedings), 39–48, 1999.

6. Mark Mizuguchi. Customizing human animation tran-
sitions for gaming environments. Master’s Thesis, Si-
mon Fraser University, 2000.

7. Ken Perlin. Real time responsive animation with per-
sonality. IEEE Transactions on Visualization and Com-
puter Graphics, 175–204, 1995.

8. Zoran Popovic and Andy Witkin. Physically based mo-
tion transformation. Computer Graphics (SIGGRAPH
’99 Proceedings), 11–20, 1999.

9. Charles Rose and Brian Guenter and Bobby Boden-
heimer and Michael F. Cohen. Efficient generation of
motion transitions using spacetime constraints. Com-
puter Graphics (SIGGRAPH ’96 Proceedings), 147–
154, 1996.

10. Andrew Witkin and Zoran Popovic. Motion warp-
ing. Computer Graphics (SIGGRAPH ’95 Proceed-
ings), 105–108, 1995.

c� The Eurographics Association 2001.



Mizuguchi, Buchanan, Calvert / Data driven motion transitions for interactive games

(a)

(b)

(c)

Figure 3: Three transitions of jog to run with varying degrees of phase correspondence: (a) Good - There is a good correspon-
dence causing the feet to strike the ground properly and the legs to move in a proper cycle, (b) Poor - The start frame has a
different support leg causing a hop, (c) Moderate - The correspondence is improved over (b) but the right foot loops at one of
the contact points.

c� The Eurographics Association 2001.


