
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Piecewise Constant Conic Sections for Accelerated Volume
Density Rendering

R. B. Hougs and A. M. Day

School of Information Systems, University of East Anglia, Norwich, England

Abstract

In order to accelerate the rendering of volumetric shadows, we propose a new technique which builds sets of
conic volumes to approximate the shape of shadows in a participating medium. The novelty of our approach is
notably the construction of the cone-sets, which are built with no knowledge of the underlying geometry of the
scene. Instead, information collected during the construction of a global photon map is used to derive an estimate
of the outline of the shadows in three dimensions. This information is then used in several different ways to speed
up the rendering pass. The method shares many of the advantages proposed by photon maps such as viewpoint
independence and decoupling from the geometry of the scene.

1. Introduction

This article is concerned with speeding up, as well as ap-
proximating the result of rendering a scene containing par-
ticipating media. The underlying global illumination frame-
work is assumed to use photon maps 6� 8. The concept of
using data collected during the photon tracing pass of that
method to approximate and estimate shadows on surfaces
has already been presented 7. However, shadows in volu-
metric media present a quite different problem: firstly, the
bucket-extended kd-tree data structure 2 normally used to
store the positions of photons in the scene cannot be used
to represent the three-dimensional regions of space occupied
by volumetric shadows. Second, it is important that the ap-
proximation of the volumetric shadows does not end up be-
ing slower than using a standard adaptive ray-marching tech-
nique. Finally, it is desirable that the volumetric shadow ap-
proximation maintain some of the prime advantages of pho-
ton maps, namely a decoupling from the underlying scene
geometry and viewpoint independence.

The use of constant conic sections, as described in this ar-
ticle, fulfills many of these requirements. Conic sections can
either be used independently or in conjunction with other
occlusion-estimation methods such as shadow buffers (20,
see section 2.2.2). They are not subject to aliasing in the
same way shadow buffers are, use little storage space and
do not require any modifications to an already existing pho-

ton mapping framework in order to function. They are also
relatively simple to implement.

This article introduces the ideas behind constant conic
section: a brief introduction to photon maps and participat-
ing media rendering leads into a concise overview of previ-
ous research in the area. An outline and explanation of our
method follows, with enough information that implement-
ing the method in a global illumination renderer should be
straightforward. Then, various results of the technique for
some standard and not-so-standard test scenes are presented.
Finally, a discussion of the advantages and disadvantages of
the proposal lead to suggestions for further extensions.

2. Background

2.1. The problem setting

The goal of photorealistic rendering is of course to deter-
mine an accurate estimate of the radiant flux arriving at every
point on the image plane of a film (e.g. see 10) or simulated
eye (e.g. see 17). We do not have the space here to provide
an overview of all the numerous solutions proposed to this
problem — for an excellent summary of these see 18. In order
to estimate the incoming flux at the image plane, we gener-
ally need to be able to estimate the light field of the scene we
are simulating. This in turn implies the ability to compute all
the different phenomena which affect the passage of light.

c� The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Day and Hougs / Piecewise Constant Conic Sections

Different rendering algorithms are generally well suited for
some of these phenomena and perform badly for others.

Of these phenomena, for the purpose of this article we
are specifically concerned with so-called volumetric density
objects (VDOs) 3. More specifically yet, we concentrate on
modelling the structure of the light field inside a VDO; that
is, we are not concerned here with the details of realistic
scattering and absorption (such details can be found in 14� 15)
or with simulating the density distribution within the VDO.

2.2. Previous work

The specific purpose of the research presented here is to find,
for a given object, a way of representing the volume of space
in which an object occludes light from a given lightsource.
The aim of the research is to improve the speed and accuracy
of rendering scenes containing VDOs. Our survey of pre-
vious work will therefore be divided into two sections: the
first reviews models for representing the extents of shadows
in space or on surfaces; the second briefly reviews different
approaches to modeling and rendering VDOs.

2.2.1. Modeling shadows on surfaces

Starting with the “simple” case of representing shadows on
surfaces, we observe that such a problem reduces to repre-
senting an arbitrarily shaped area in two dimensions (the co-
ordinate system of the surface). How to deduce the extents
of that surface? Several methods are known:

� projection techniques project the shape of objects onto
the surface in question, with the point of projection being
the lightsource. This approach works well for primitive
shapes or triangle meshes (where vertices can be projected
individually), but for shapes with a more complex defini-
tion, the projection can be difficult to determine. The tech-
niques does not work well with area light sources (how to
project a shape relative to an area?).

� particle tracing methods can be extended to encode the
area of a shadow. Using shadow photons 7 with the photon
map technique 6 is a good example of this. Using shadow
photons, rendering time can be cut dramatically for some
scenes. For a further description of this approach see sec-
tion 3.1.

2.2.2. Modeling shadow volumes

For the more complex case of encoding information about
volumes of shadows, the following methods have been pro-
posed:

� a shadow buffer 20 stores information about the objects
“visible” from a lightsource, as well as the distance of
those objects from the light source. It then becomes fast
to check whether an object is potentially in shadow or
not. The major downside of this algorithm is that it can-
not handle area light sources, and it is subject to aliasing,

due to the discrete nature of the buffer. A recent improve-
ment on this algorithm is the deep shadow map 11, which
stores compressed, prefiltered exctinction functions at ev-
ery depth map pixel. Even this method, however, cannot
handle area light sources.

� hierarchical representations of space, such as voxels,
quad-trees or octrees allow for the delimitation of space
into shadowed/non-shadowed areas in a very direct and
hierarchical way. A recent example of the use of these
techniques to represent occluded volumes of space is 16.
Problems with such data structures is that they are poten-
tially very memory intensive, and they are generally re-
quired to be axis-aligned, a requirement which may con-
flict with the orientation of shadow volumes in the scene.

� “projection volumes” can be constructed, which are ei-
ther primitives or boundary representations of the shape
of the shadow volume. Intersection tests can then be done
against such shapes to determine the boundary of the
shadow region. However, such projection volumes can be
difficult to construct, and may comprise many polygons if
the occluding shape is complex.

2.3. Rendering VDOs

One of the main application areas of our technique is for de-
tecting the boundaries of shadow regions in space, which is
of particular importance when rendering environments with
participating media. We therefore propose a brief review of
rendering methods applicable to VDOs.

2.3.1. Light transfer in participating media

Flow of light in a volumetric density object is characterised
by two kinds of events, absorption and scattering. The for-
mer stops the flow, whereas the latter changes its direction.
The combined action of scattering and absorption over the
length of a ray is described by attenuation. What attenuation
cannot describe is in-scattering, that is, light being scattered
into the direction of the sampling point. Estimating the in-
scattering can be very computationally expensive. Volume
photon maps 8 can help in this situation by providing an
estimate of in-scattering contributed by light paths which
have been scattered at least once. However, the authors of
8 recommend the direct calculation of in-scattered light ar-
riving directly from the light source; this will naturally be the
largest contributor of flux. Sampling this in-scattered light is
generally done by taking samples along the ray to estimate

Lis �

� 1

0
b�γ�σ�0� t�Li�t�dt (1)

where Li�t� is the incoming light from the lightsource at
point t along the ray, σ�0� t� is the attenuation occurring be-
tween the sampling point and the ray origin and b�γ� is the
scattering coefficient of the VDO (γ being the angle between
the light source ray direction and the sampling ray direction).

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

2.3.2. Path tracing and its variants

Path tracing techniques use various sampling schemes to es-
timate the flux arriving at the image plane. The most impor-
tant factor determining the performance of such techniques
is the choice of sampling points in the space of the scene.
Hence most improvements to the basic path tracing algo-
rithm 9 are concerned with finding the areas in the scene
where the biggest variations in the light field occur. Al-
though improvements such as bidirectional path tracing and
Metropolis light sampling 19� 13 can greatly improve this pro-
cess, their underlying framework still relies on a simulation
of the light flow between points in space. Consequently, they
still need other methods of getting an estimate of the in-
scattering that occurs between two such points.

In other words, finding a good approximation to equa-
tion 1 is still critical in estimating the flux arriving at a sam-
ple point in the scene. In order to capture the intervals of
high discrepancy along the ray (i.e. those intervals where
many samples should be taken) the most commonly used
technique is ray-marching 4. Although ray-marching is at-
tractive by its simplicity and elegance, it has no knowledge
of where the discrepancies lie — instead it has to “feel” its
way toward such areas, which requires much computation,
and may even miss them entirely.

If the ray-marching algorithm could be given some knowl-
edge of where to look for discrepancies, its accuracy could
improve while reducing rendering time. This is exactly what
our technique proposes to do (see section 3.1 for details).

2.3.3. Discretization of space

Data structures which discretize space, such as those out-
lined in section 2.2.2 can be used to directly represent the
light flux within the scene, and hence inherently represent
the areas of light and shadow. However, the memory us-
age and axis-alignment requirements of such methods ren-
der them impracticable for the kind of use we are envisaging
here.

3. Cone sets

3.1. Overview

If we consider a point light source illuminating a finite ob-
ject in two dimensions (see figure 1a), it seems clear that
the outline of the shadow will be in the shape of a trun-
cated cone. If we now consider an area light source, still in
two dimensions, illuminating the same object, and model the
light as a collection of point light sources, then the resulting
shadow can be approximated as a set of cones of different
base widths and apertures (see figure 1b). If we now expand
this concept to three dimensions, the result is that an approx-
imate outline of the volumetric shadow can be provided by a
set of cones, chosen so that their expansion rates as closely
as possible match the expansion rate of the shadow.

Figure 1: An occluder object illuminated by a point light
source, and the resulting shadow area (figure a); extending
this concept to area light sources results in a set of shadow
areas, shaped like cones with varying base radius and aper-
ture (figure b).

Figure 2: Shadow photons are stored on the next surface
“beyond” the photon intersection point (shown to the left).
Shadow vectors are stored on the “underside” of the object
intersected by the original photon path (shown here to the
right).

In order to build such a set of cones, we need some infor-
mation about the absence of light flux within the scene: such
information is available at the time of construction of the
photon map. This idea was exploited in 7 to store so-called
shadow photons on the surfaces of objects situated “behind”
those surfaces being intersected by photons (see figure 2a).
This allows for the renderer to determine with some degree
of accuracy when and when not to send visibility rays toward
light sources. We would like to extend this concept to three
dimensions, from surfaces to volumes. Our solution to this
problem is to store so-called shadow vectors, not on the sur-
face below the intersected one, but rather on the backside of
the intersected surface (see figure 2b). We store the intersec-
tion point and outgoing direction, as well as the object that
cause the shadow vector to be added in a kd-tree, similar to
the usual photon map approach.

The resulting set of shadow vectors encode information
about the geometric structure of the shadow behind the given
object. How now to store and access this information? Our
solution is to group this set of vectors into several cones
with different characteristics. Using several passes as de-
scribed below, we can group most of the available vectors
into such cones. Because the concentration of points will
follow the general outline of the object, the generated cones

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

Figure 3: An example of a difficult case for the algorithm. If
we naïvely generate cones based on point densities, the cone
bases often end up “spilling over” the edges of the shape
as illustrated in figure a. In figure b a better distribution is
shown, with more cones but little over-spilling.

should automatically provide an approximation of the three-
dimensional shape of the shadow. Every cone data structure
contains information about the geometry of the cone, as well
a pointer to the occluder associated with the cone. These
cones can be enclosed inside e.g. a bounding cone for faster
visibility testing in the next step.

In the subsequent rendering step, the information encoded
by the cones can be utilised in various ways. Firstly, if for a
given ray no shadow cones belonging to a certain object are
intersected, then that object does not need to be tested for oc-
clusion at any point along the ray. If the set of shadow cones
is intersected, then we have a bound on the segment of the
ray in which we need to test for occlusion — outside of that
segment, no intersection tests with that object are necessary
(neither are any tests inside, if we are not interested in cap-
turing light scattering in the penumbra-delimited zone).

3.2. Constructing the cone set

In order to construct the cone set, we assume the shadow
volume caused by a differential area dAL of a light source
not illuminating the volume behind a differential area dA of
an occluder object can be modelled by an infinitesimally thin
cone with aperture dω (we use notation similar to that of
solid angle theory). The base radius of the cone is dR � dA.
Then the shadow volume created by the light source L is

�
AL

�
A

V �dA�dAL� dAdAL (2)

where V �dA�dAL� is the volume of the shadow cone
caused by dA blocking the light from L.

3.2.1. Partitioning the vector sets

We wish to approximate the shadow volume described by
equation 2 with as few cones as possible, without compro-
mising the quality of the approximation. Given a set S of

Figure 4: As described in section 3.2.1, we determine a set
K of points from which to construct the cone. These coor-
dinates are transformed into a two-dimensional plane. The
points are then partitioned into bins depending on their an-
gular sector. As can be see in figure b, in this case the cone
would be generated with a radius corresponding to the in-
nermost circle, since the second one already contains empty
sectors, a sign that we have found a discrepancy in the un-
derlying geometrical structure.

Figure 5: The correct base radius of the cone is given by
multiplying the original radius (r in the figure) by cosθ to
compensate for the projected base radius r� (projected along
�D in the figure) being smaller than r.

shadow vectors, we need to find the S1 � � �SN different sub-
sets of S which will make up the N shadow volume cones.

The main problem we need to overcome is that we wish
for the technique to work with no knowledge of the geometry
of the object which caused the shadow vectors to be gener-
ated. At the same time, the shadow cones should provide a
good estimate of the outline of the shadow; in particular, we
need to avoid situations like the one in figure 3 where cones
are generated in such a way that they miss or misrepresent
the shape of the occluding object.

We have found the following approach to work well. We
begin by selecting the first point in S, S1, and query the kd-
tree for the set K of nearest neighbours to this point. Then,
beginning with S1, we collect the vectors in K, going ra-
dially outwards from S1, into “bins” according to an an-
gular two-dimensional partitioning (see figure 4). Note that
this assumes that the points in K all lie in the same plane;
this will not always be true, particularly for highly irregu-
lar shapes with a low shadow vector density. In this case,
smaller cones should be generated; we show how to detect

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

and handle this case in section 3.2.3. Once all points within
radius r have been collected into bins, we calculate a rough
estimate of the variance from bin to bin. If this variance is
below a given threshold, we continue the process with the
points in the disc of outer radius 2r and inner radius r, and
so forth. If the variance is above the threshold in the disc
with radii ��k� 1�r�kr�, we stop the process and add a cone
with base radius �k� 1�r. The points contained within that
radius are then removed from S, and the process resumes
with the first point in the updated set. The process is illus-
trated in figure 4. The final base radius of the cone is cal-
culated as rb � �k� 1�r cos θ where θ is the angle between
the estimated normal of the surface and the direction vector
�VM of the cone (see section 3.2.2). This is necessary because
the projected area of the cone base onto the surface is pro-
portional to cosθ, a well-known result from radiometry. See
figure 5.

After the last vector in the set is reached, any remaining
shadow vectors are discarded from the set. Although this
makes the algorithm less precise, the fine details captured
by the remaining vectors is either not likely to show up in
the final image, or is already mostly accounted for by sur-
rounding cones. Four parameters control the cone determi-
nation process: p1, the number of vectors to use to build K;
p2 the number of angular subdivisions to use; p3, the num-
ber of points per “sector test” (which determines the values
of r1 � � �rk) and p4, the minimum number of shadow vectors
per cone. By varying these parameters, the user can control
how the cones are generated.

3.2.2. Determining the other cone attributes

To calculate the expansion rate of a cone, we first determine
the mean vector �VM which approximates the “average” di-
rection of all the shadow vectors within Si:

�VM �
1
N

N

∑
i�1

�Vi (3)

where N is the number of vectors in S. We then calculate the
maximal deviation Θ from �VM :

THETA=0
FOR i=0 TO N

D=DOTPRODUCT(VSET[I],VM)
IF D > THETA THEN

THETA=ARCCOS(D)
ENDIF

NEXT i

We then determine the expansion rate of the cone by sim-
ple trigonometry to be tanΘ. Note that this method will not
detect the case where the vectors converge — it assumes that
they diverge (and hence cause the cone to expand). Another
way of calculating the expansion rate of the cone would be to
calculate the ratio between the base radius of the cone, and
the radius of the disc described by the ends of the shadow
vectors.

Figure 6: Intersecting the sampling ray with the cones in
its path results in a (possibly empty) set of intersection in-
tervals. These intervals are then grouped together using a
simple method, described in section 3.3.1, to obtain the final
set of intervals.

A cone data structure can also contain a pointer to the ob-
ject whose shadow vectors cause the cone’s construction. In
this case, the renderer could quickly determine which object
to test against if testing for light source occlusion. For scenes
with many potential occluders, this would constitute a major
speed increase since the renderer could quickly discard irrel-
evant occluders.

3.2.3. Handling curved surfaces

In the previous discussions, it has been assumed that the
points in K all lie in the same plane. This is not necessarily
true — for surfaces with abrupt, frequent changes in curva-
ture the assumption that a small group of points will always
be distributed “more or less” in the same plane may not be
valid. If handling such a situation is required, one could sim-
ply, as part of the process described in section 3.2.1 for ev-
ery point under consideration, verify the variance of the y-
coordinate. If this variance becomes too big, it would be a
sign that the assumption of planarity is not valid for this set
of points. If such a case arises, a simple solution would be to
either use more photons to obtain a denser point distribution
(resulting in less local variance), or to decrease the value of
K (see section 3.2.1).

3.3. Using the cone set in the rendering pass

Having constructed a cone set C for every object in the scene
which is illuminated by direct lighting, we now need to use
this information in the rendering pass.

3.3.1. Determining cone intersections

For a given parametric ray segment R�t� � �P��Vt described
by t � �0�1�, we would like to know over which intervals
of t the path to the light source is not occluded, over which
intervals it is partially occluded, and where it is fully oc-
cluded. Generally, the cone sets will be fairly conservative

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

in their estimate of occlusion volumes: points lying outside
of a cone are almost certain of having a clear view of the
light source. Just how conservative the estimate is can be ad-
justed by making the cone’s expansion rate be a fraction of
Θ.

As a first step, any intersections of the ray with the cone
set are calculated (appendix A presents the mathematics for
doing so). Because it is fast to determine the point of in-
tersection of a ray and a cone, this step is fast. The result
is a collection of intervals (see figure 5). These intervals
are sorted in increasing order (we have found bubble-sort
to work well, since the number of intersections is generally
fairly small) and collected, so that any overlapping intervals
are merged together.

The result is a set of intervals Is indicating possible shad-
owing by an object, and a set of intervals Ic indicating areas
where no occlusions occurs. This information can be used in
various ways by the renderer. A straightforward application
is to simply not do any occlusion testing in the Ic intervals,
which in itself will significantly speed up the rendering pro-
cess. This is the only speedup we currently use in our ren-
derer. We can also vary the sampling density according to
interval boundaries: within an interval from Is we take many
samples close to the edges of the interval where the variation
in intensity is likely to be large, and fewer samples close to
the centre of the interval.

4. Results

4.1. The test scene

As the main testing environment, we have chosen a stan-
dard Cornell box with diffuse walls. We have then inserted
a variety of objects into the box. The scene is illuminated
by a disc-shaped area light source of finite radius. Although
our renderer supports global illumination algorithms such as
(volume, surface and shadow) photon maps, all rendered im-
ages only show direct lighting. This is partly to keep com-
putation time down, partly because we wish to emphasize
the volume shadows, which would be less distinct if mul-
tiple scattering were taken into account. The VDO is sim-
ulated using the Blasi-Schlick phase function approxima-
tion to Rayleigh scattering 3, and the medium is assumed
to be homogeneous (simulating an inhomogeneous medium
would make no difference to the algorithm, but would blur
out the volume shadows).

4.2. Cone construction

As the main test case for the cone construction algorithm,
we have chosen an occluder object with geometrical features
that are difficult to capture for the technique. The chair de-
picted in figure 7 is mostly made up of thin, straight features
at right angles to each other — a case which is quite difficult
to handle for cylindrical/circular shapes such as cones. As

Figure 7: Two difficult geometric models for the algorithm.
In both cases, the shadow cones are shown in blue (they
have been truncated for clarity of presentation), and their
bases are superimposed in red, to estimate how accurately
the cone set captures the underlying geometry of the struc-
ture. Shadow vectors are shown in green. As can be seen
in the top left picture, which is from a vantage point close
to the light source, the fine geometry of the chair’s seat has
been captured quite successfully — both in terms of the ini-
tial radius of the cones (only a few overspill significantly),
as well as in terms of the expansion rate of the cones. Pa-
rameters for both cases were p1 � 100 p2 � 20 p3 � 16
p4 � 20 (see section 3.2.1) and the initial shadow vector set
comprised approximately 5800 vectors in both cases, gener-
ated by the emission of 40000 photons from the light source
in the case of the chair, and 80000 in the case of the tree
(the increase is due to the very thin, narrow geometry of the
tree). Currently the parameters p1 � � � p4 are determined em-
pirically based on manual experimentation. A future project
consists in automating the determination of these parame-
ters (see section 6).

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

Figure 8: Rendering the tree and chair models. The first row
shows the reference images, rendered using brute force path
tracing. The second rows shows the “intermediate” setting,
where occlusion testing is only done in the intervals covered
by the cones (see section 3.3.1). The third row shows fast
approach, which simply consists of not taking any samples
within the cone-intersection intervals.

can be seen in the figure, where the base radii of the cones
are shown as red circles, it is rare that a cone base goes be-
yond the border of the geometry of the chair. The tree is
even more difficult: consisting of long, very thin branches
and sparse clusters of leaves, it would be a challenging ge-
ometry to handle for any rendering method. However, even
using the same parameters as for the chair, the constructed
cone set follows the outlines of the branches and leaves rea-
sonably well — it certainly doesn’t seem to miss any impor-
tant features of the tree.

4.3. Rendering

Figure 8 shows the results of rendering the scene with the
chair object and the tree object, respectively. Rendering was
done at an image resolution of 256 by 256 pixels, with 7
spectral samples. In all cases, sampling was done using a
simple ray marcher which recursively super-samples the in-

timings chair tree

fast 106s 117s

medium 282s 298s

brute force 858s 580s

Table 1: Approximate rendering times for the images shown
in figure 8.

tensity along the ray if a too large discrepancy is detected.
The back of the box has been set to black, so the fine vari-
ations in intensity in the VDO can better be percieved. All
renderings were done on a multiprocessor Compaq Alpha
DS20 (only one processor was used for the computations).
The timings for the different figures is shown in table 1; all
timings were conducted using the UNIX ‘time’ command.
In the table, “fast” refers to a rendering approach where the
light source is sampled in unoccluded intervals (with no oc-
clusion test), and no samples are taken in occluded intervals.
“Medium” refers to a sampling strategy whereby the light
source is sampled evenly in both occluded and unoccluded
intervals, but where occlusion testing (i.e., whether the light
source is blocked or not from a given sample point) is only
done in the occluded intervals.

As can be seen from the table, in terms of processing time,
both the “fast” and “medium” settings are much faster than
brute force path tracing 9. As can be seen from the rendered
images, the algorithm manages to capture many of the sub-
tle variations in shading through the VDO — in some cases
better so than the path tracing algorithm. On the other hand,
the cone-based methods tend to cause an overestimation of
the scattered light in some areas (around the top back of the
chair model in particular). This seems to be mainly due to the
bases of the cones near the surface of the seat being spaced
apart too much. The parameters described in section 3.2.1
can be varied, however, to produce different results.

5. Limitations of the algorithm

One important limitation of the technique is that, at a cer-
tain distance from the apex of each cone, the renderer will
start overestimating the portion of occluded space. Although
this only helps to ensure that regions of space marked as
unoccluded really are unoccluded, for the “fast” rendering
method described in section 4.3 regions of the scene may be
darkened excessively. This problem could be remedied by
simply not using the cone estimate if the cone intersection
point occurs too far from the base of the cone.

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

6. Future work

6.1. Cone set construction

Constructing optimal- or close-to-optimal cone sets which
approximate the shape of the shadow volume as closely as
possible will likely involve adjusting the parameters p1 � � � p4
(described in section 3.2.1). We would like to be able to au-
tomatically provide some estimate of the optimal combina-
tion of these for a given object and shadow vector density.
Finding ways of doing so is a future path of investigation.

6.2. Rendering

For accelerating the rendering step, a cone hierarchy could
be constructed, wherein a “bounding” cone would encom-
pass several shadow cones. This would provide a bounding
volume to avoid unnecessary intersection tests. Also, some
of the suggestions proposed in section 3.3.1 should be im-
plemented to try to find a more optimal way of using the in-
formation given by the cone set to direct sampling. Also, an
automatic way of assessing the accuracy of the cone set ap-
proximation at a given point along the ray could help solve
inaccuracies such as those occurring near the back of the
chair (see the two lower left images in figure 8).

7. Conclusion

We have presented a method for determining, modeling and
rendering occluded portions of space. Our algorithm is de-
signed to work together with the photon map technique, and
hence can be implemented directly into a renderer which al-
ready supports photon maps. To model the volume, we use
a set of primitives with fast intersection tests and very little
memory overhead. Our method, like the photon map, does
not need any knowledge of the geometry of a scene to func-
tion; we have presented a technique for detecting geometri-
cal discrepancies when constructing the cone set, and hence
our model can work with very difficult geometrical struc-
tures. Furthermore, our model supports area light sources.
When rendering scenes comprising volumetric density ob-
jects, we can obtain good estimates of the final appearance
of the shadowed volumes in a fifth of the time or less that
a basic ray marcher would use. Contrary to shadow maps,
cone volumes do not directly exhibit aliasing problems, and
they can be used with area light sources.

The technique can be used in different ways, depending
on the user’s aims: either it can generate a fast preview of
the scene, or it can help speed up a more accurate rendering.
Although it has been presented within the context of ren-
dering scenes with VDOs, it can also be used for occlusion
detection for detecting shadows on surfaces.

8. Acknowledgments

We use the Approximate Nearest Neighbour (ANN) library 1

by David Mount and Sunil Arya for kd-tree operations. The

tree model is shipped with the tutorials for 3D Studio MAX
by Discreet. We use Möller and Trumbore’s source code for
fast ray-triangle intersection calculations (published in 12).
The first author would like to thank Dr. A. Boswell and Dr.
J. Harold for their help with setting up and using the UEA
high performance computing facilities.

References

1. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silver-
man, and A. Y. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching. Journal of the
ACM, 45:891–923, 1998. ANN can be downloaded
from http://www.cs.umd.edu/ mount/ANN/. 8

2. J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9), September 1975. 1

3. P. Blasi, Bertrand Le Saëc, and Christophe Schlick. A
rendering algorithm for distrete volume density objects.
Computer Graphics Forum, 12(3):201–210, 1993. 2, 6

4. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey,
Ken Perlin, and Steven Worley. Texturing and Model-
ing: a Procedural Approach. AP Professional, 1994.
3

5. Andrew S. Glassner. Introduction to Ray Tracing. Aca-
demic Press, 1994. 9

6. Henrik Wann Jensen. Global illumination using pho-
ton maps. In Xavier Pueyo and Peter Schröder, ed-
itors, Rendering Techniques ’96, Eurographics, pages
21–30. Springer-Verlag Wien New York, 1996. Proc.
7th Eurographics Rendering Workshop, Porto, Portu-
gal, June 17–19, 1996. 1, 2

7. Henrik Wann Jensen and Niels Jørgen Christensen. Ef-
ficiently rendering shadows using the photon map. Pro-
ceedings of Compugraphics ’95, pages 285–291, 1995.
1, 2, 3

8. Henrik Wann Jensen and Per H. Christensen. Efficient
simulation of light transport in scenes with participating
media using photon maps. Proceedings of SIGGRAPH
98, pages 311–320, July 1998. ISBN 0-89791-999-8.
Held in Orlando, Florida. 1, 2

9. James T. Kajiya. The Rendering Equation. In Seminal
Graphics: Pioneering Efforts That Shaped The Field.
ACM SIGGRAPH, 1998. Reprinted from Computer
Graphics Vol. 20, No. 4, August 1986, pp. 143–150. 3,
7

10. Craig Kolb, Pat Hanrahan, and Don Mitchell. A realis-
tic camera model for computer graphics. Proceedings
of SIGGRAPH 95, pages 317–324, August 1995. ISBN
0-201-84776-0. Held in Los Angeles, California. 1

11. Tom Lokovic and Eric Veach. Deep shadow maps. In

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

Proceedings of SIGGRAPH 2000, pages 385–392, july
2000. 2

12. Tomas Möller and Ben Trumbore. Fast, minimum stor-
age ray-triangle intersection. Journal of graphics tools,
2(1):21–28, 1998. 8

13. Mark Pauly, Thomas Kollig, and Alexander Keller.
Metropolis light transport for participating media. Ren-
dering Techniques 2000: 11th Eurographics Workshop
on Rendering, pages 11–22, June 2000. ISBN 3-211-
83535-0. 3

14. Holly E. Rushmeier. Rendering Participating Media:
Problems and Solutions from Application Areas (re-
vised edition). In Sakas, Shirley, and Mueller, edi-
tors, Photorealistic Rendering Techniques, Proceedings
of the Fifth EUROGRAPHICS Rendering Workshop.
Springer-Verlag, 1994. 2

15. Holly E. Rushmeier. A Basic Guide to Global Illumi-
nation (course 5). SIGGRAPH ’98 Course Notes. SIG-
GRAPH ’98 Course Notes, 1998. 2

16. Gernot Schaufler, Julie Dorsey, Xavier Decoret, and
François X. Sillion. Conservative volumetric visibil-
ity with occluder fusion. Proceedings of SIGGRAPH
2000, pages 229–238, July 2000. ISBN 1-58113-208-
5. 2

17. Peter Shirley, Changyaw Wang, and Kurt Zimmerman.
Monte carlo techniques for direct lighting calculations.
ACM Transactions on Graphics, 15(1):1–36, January
1996. ISSN 0730-0301. 1

18. László Szirmay-Kalos. Monte-Carlo Methods in
Global Illumination. Winter School of Computer
Graphics, 1999. 1

19. Eric Veach and Leonidas J. Guibas. Metropolis light
transport. In Proceedings of SIGGRAPH 97, pages 65–
76, 1997. 3

20. Lance Williams. Casting curved shadows on curved
surfaces. In Proceedings of SIGGRAPH 87, pages 270–
274, 1978. 1, 2

Appendix A: Calculating intersections with cones of
varying aperture

The canonical equation of a cone is usually given as 5:

x2 � y2 � z2 (4)

This formulation describes a cone of half-aperture θ � π�4,
centered on the z-axis. We would like to reformulate equa-
tion 4 so it can describe a cone of any half-aperture 0 �
θ � π�2. We assume this requires a constant factor F , which
varies as a function of θ:

x2 � y2 � Fz2
� F �

x2 � y2

z2 (5)

Figure 9: Illustration of the notation used in appendix A.

Looking at figure 9, we can observe a few properties of the
geometry of a cone. Firstly, L and r are related by simple
trigonometry:

tanθ �
r
L
� L �

r
tanθ

(6)

Second, a cone is rotationally symmetrical about its central
axis, which in the case of figure 9 is the z-axis. Hence, if
we solve F for the two-dimensional case presented in fig-
ure 9, the result will be valid for any three-dimensional case.
Therefore, we can reformulate equation 5, setting y � 0; in
this case, x corresponds to the radius of the cone at any point
on its surface (r in figure 9) and z corresponds to L in the
figure. Substituting this into equation 5 yields

F �
r2 �0

L2 (7)

Substituting equation 6 into equation 7 results in the follow-
ing equation:

F �
r2

r2

tanθ
� tan2 θ (8)

So the equation we are looking for is:

x2 � y2 � z2 tan2 θ (9)

Substituting the parametric ray equation (as described in sec-
tion 3.3.1) into equation 9 and collecting for t gives the fol-
lowing quadratic equation:

At2 �Bt �C � 0 (10)

with

A � V 2
x �V 2

y �V 2
z tan2 θ

B � 2�PxVx �PyVy�PzVz tan2 θ�

C � P2
x �P2

y �P2
z tan2 θ

Solving equation 10 for a given ray gives the usual three
possibilities: two roots in case two intersections are found,

c� The Eurographics Association 2001.



Day and Hougs / Piecewise Constant Conic Sections

one root in case the ray grazes the cone, and no roots if no
intersection occurs. Note that tan2 θ can be precalculated for
a given cone.

c� The Eurographics Association 2001.


