
EUROGRAPHICS 2001 / Jonathan C. Roberts Short Presentations

Collision Detection for Continuously Deforming Bodies

Thomas Larssony and Tomas Akenine-Möllerz

yDepartment of Computer Science and Engineering, Mälardalen University, Västerås, Sweden
zDepartment of Computer Engineering, Chalmers University of Technology, Gothenburg, Sweden

Abstract
Fast and accurate collision detection between geometric bodies is essential in application areas like virtual reality,
animation, simulation, games and robotics. In this work, we address the collision detection problem in applications
where deformable bodies are used, which change their overall shape every time step of the simulation. We propose
and evaluate suitable bounding volume trees for deforming bodies that can be pre-built and then updated very
efficiently during simulation. Several heuristics for updating the trees due to deformations are compared to each
other. By combining a top-down and a bottom-up update strategy into a hybrid tree update method, promising
results were achieved. Experiments show that our approach is four to five times faster than a previously leading
method.

1. Introduction

Fast and reliable collision detection is of great importance
in areas like real-time graphics, virtual reality, games, an-
imation, CAD, robotics and manufacturing. Today, scenes
of hundreds of thousands of polygons can be rendered in
real-time using dedicated commodity graphics hardware and
powerful workstations or desktop PCs. This rendering and
computational power make new kinds of applications possi-
ble, with higher demands on performance and geometric de-
tail. One such possibility is the simulation of geometrically
complex scenes of multiple continuously deforming bodies.
Some examples of deformable objects include soft tissues
and organs, articulated characters with clothing, biological
structures as well as other soft or elastic objects or materials.

A significant amount of research has been done regard-
ing collision detection algorithms in virtual environments.
Most of the efforts have been concentrated around solving
the collision detection problem for rigid body simulation.
When rigid bodies are used, many of the techniques used
for collision detection are heavily based on data structures
that can be more or less pre-computed before the simulation
start. This work is of great importance in many industrial
applications, for example in virtual prototyping or in virtual
walkthroughs of architectural models. But in cases where de-
formable bodies are used, the proposed methods for rigid
bodies cannot be used directly. Since the shapes of the bod-
ies are changed, the data structures used to accelerate the

collision queries must either be rebuilt or updated in ways
that are not normally needed for rigid bodies.

In this paper we describe a method for efficient colli-
sion detection of multiple translating, rotating and deform-
ing bodies. It is assumed that all bodies change their over-
all shape every time step throughout the simulation, i.e. all
the meshes’ vertices are repositioned at every time step. The
proposed algorithm uses bounding volume trees adapted for
such deforming bodies. The effects of different variations in
the way the trees are constructed and updated are examined.
Some of the interesting questions are: What kinds of bound-
ing volume trees are suitable to use? What heuristic should
be used to partition the geometric primitives of a body into
its tree? How can the bounding volumes in a tree be updated
efficiently? We examine trees where the nodes can have up
to two, four or eight children. For the partitioning we use two
basic strategies. The first is based on the initial body’s shape
and primitives close to each other are grouped together in the
nodes of the tree. The second strategy is based on the body’s
mesh connectivity; all the primitives placed under any given
node in a tree are neighbours in the body’s polygon mesh. In
the first case we call a tree the initial shape tree and in the
latter case we call it the mesh connectivity tree. Both of these
two tree hierarchies can be pre-constructed and efficiently
updated during simulation. To update the necessary bound-
ing volumes in a tree after a deformation has been applied
to a body, we use a combination of an incremental bottom-

c The Eurographics Association 2001.

http://www.eg.org
http://diglib.eg.org


Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

up update and a selective top-down update, which we call a
hybrid update.

The rest of this paper is organised as follows. The next
section gives a brief overview of some of the previously sug-
gested methods for solving the collision detection problem.
Then follows a description of the new collision detection al-
gorithm. After that, experiments and results are presented.
Finally, some possible future work and conclusions that can
be drawn from this work are described.

2. Previous Work

The collision detection problem has been addressed in many
papers. A recent survey1 classifies different solving ap-
proaches into four general groups. Another survey2 focuses
more on how the model representation leads to different col-
lision detection algorithms.

In environments with n moving bodies, the first step of
an algorithm is typically to reduce the O(n2) running time
needed to perform intersection tests on all possible pairs out
of n bodies. This part of a collision detection algorithm is
commonly referred to as the broad phase. One possibility is
to use a spatial subdivision of the space in cells3. In another
approach4, a sort and prune method is used. Other spatial de-
composition techniques that have been used are octrees5, k-
d trees6, BSP-trees7 and brep-indices8. An event-driven ap-
proach has also been proposed9 that efficiently detects colli-
sions among multiple moving spheres by using a hierarchi-
cal uniform space subdivision scheme.

Typically, in those cases where the broad phase of the
algorithm is not able to determine the collision status,
the narrow phase takes over in order to do more de-
tailed intersection calculations. To speed up the intersec-
tion tests of these close body pairs, bounding volume hi-
erarchies are commonly used. Some of the bounding vol-
umes that have been used to build such hierarchies are for
example spheres10; 11; 12; 13, Axis Aligned Bounding Boxes
(AABBs)4; 6, Oriented Bounding boxes (OBBs)14; 15, k-
DOPs16, Quantized Orientation Slabs with Primary Orienta-
tions (QuOSPOs)17 and spherical shells18. Another possibil-
ity is to partition objects into voxelised containers, without
using any hierarchical organisation within the containers19.

Another class of algorithms efficiently tracks the closest
features between convex bodies or bodies decomposed into
a set of convex pieces. By doing so, they are not only able
to report collisions, but also to report the shortest distance
between bodies. Some of these methods use pre-computed
Voroni regions4; 20. Others treat the body as the convex hull
of a point set and operate on simplices defined by subsets
of these points21; 22; 23. The incremental hierarchical walk
algorithm24 efficiently maintains the distance between mov-
ing convex bodies by exploiting both motion coherence and
hierarchical representations.

There are also some four-dimensional approaches

for solving the collision detection problem for mov-
ing bodies10; 25. By considering the intersection of four-
dimensional volumes swept out by body motion over time,
future contact times can be calculated. These methods re-
quire that information about the bodies’ velocities and ac-
celerations can be given beforehand. Some cases of dynamic
object-object intersection are described by Eberly26.

Usually these mentioned methods have been demon-
strated to work efficiently in different kinds of environments
for rigid body simulations. When we consider the problem
of deforming bodies, they are not as useful, since they rely
heavily on pre-computed data and data structures or they
are dependent on certain body characteristics, for example
bodies that must be decomposed into convex pieces. In fact,
even if there exist many documented works on collision de-
tection in virtual environments, there are significantly fewer
that have dealt with deforming bodies.

A very general collision detection method for deformable
objects has been proposed by Smith et al.27 The input models
can be groups of deforming triangle soups freely moving in
space. At every time step, the AABB of all objects is calcu-
lated. When two overlapping AABBs are found, object faces
are first pruned against their overlap region. Remaining faces
from all such overlap regions are used to build a world face
octree, which is traversed to find faces located in the same
voxels. The high performance of this method breaks down in
hard cases, i.e. when an overlap region is large and there are
many geometric primitives (overlapping or not) in that re-
gion, which are passed on to the face octree building stage.

A data structure called the BucketTree has also been
proposed28, which is an octree data structure with buckets
as leaves where geometrical primitives can be placed. At ev-
ery time step of a simulation, the models’ primitives are as-
signed to an appropriate bucket. Then the intersection tests
between any two models are done recursively by testing the
nodes AABBs as their trees are traversed. This algorithm is
also very general, since it only sees an object as a soup of
freely moving primitives.

Another approach is suggested by van den Bergen29,
which is also used in the collision detection library called
SOLID30. Initially, AABB trees are built for every model in
its own local coordinate system. The AABBs in the trees
are then transformed as the models are moved or rotated in
the scene. This transformation causes the models’ locally
defined AABBs to become OOBs in world space. When a
model is deformed an update of the affected nodes in the
trees has to be done.

In the literature, there are also some other algorithms for
flexible objects5; 31. Some methods are designed for bodies
undergoing polynomial deformations32; 33.

All the work mentioned above is interesting, but efficient
interference detection between deformable bodies is defi-
nitely an area worth more attention1. Better methods are

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

needed and much work remains to be done. In the follow-
ing sections we describe our implemented method in more
detail.

3. Algorithm Overview

Many practical algorithms are for performance reasons so
called discrete methods, i.e. they report contact between
bodies when they have already interpenetrated each other.
Our algorithm is also a discrete method. If needed, back
tracking in simulation time might be used to determine the
colliding bodies’ first contact.

To efficiently detect collisions between multiple continu-
ously deforming bodies represented by polygon meshes, we
propose an algorithm divided into two loosely coupled main
phases. The first or the broad phase uses a sort and prune
method4 to find the bodies that are close to each other, and
the second or the narrow phase uses bounding volume trees
to determine the intersection status between bodies, which
have already been found to be close to each other, in a more
detailed manner. A schematic overview of the algorithm’s
main parts and its working context is given in Figure 1. It
is assumed that the application using the collision detection
module drives the simulation forward and calls the collision
detection algorithm at appropriate time intervals. The appli-
cation is also responsible for translating the reported colli-
sion status into suitable response actions.

Figure 1: Schematic overview of the collision detection
module for deforming bodies and its communication with an
application specific simulation module.

In the narrow phase of the collision detection algorithm,
there are three main problems that have to be solved effi-
ciently. First of all, nodes in the bounding volume trees must
be updated every time step of the simulation, since the bodies
are deformed continuously. Therefore, we chose AABBs as
our bounding volume. When bodies deform, the correspond-
ing AABBs can be recalculated very efficiently to reflect the
changes in the geometry. Also, when testing the intersection
status of tree nodes during collision traversals, AABBs are
very efficient to do intersection tests with. Finally, the close

face pairs that the collision traversals sort out must be in-
terference tested explicitly. For this test, we use the method
provided by Akenine-Möller34.

Different parts and aspects of the algorithm, as well as
some variations, are described in more detail in the following
sections.

3.1. Deformation Types

A body might undergo a complete change of shape, from
one time step to the other, by moving the relative position
of all of its vertices. We refer to this type of deformation
as arbitrary vertex repositioning. During such deformations,
the mesh connectivity stays the same, i.e. the mesh is not
torn up in any way. Our method efficiently handles this kind
of deformation. Sometimes other types of deformation are
desired; such as increasing or decreasing the number of geo-
metric primitives in the mesh or splitting the body into new
separated pieces. Currently, we do not support these kinds of
deformation in our method.

3.2. Bounding Volume Pre-processing

For all input bodies, bounding volume trees are initially built
as a pre-processing stage. A tree is built by repeatedly split-
ting the geometry in the parent AABB into smaller AABBs
until there is only one geometric primitive left in them. We
have chosen to support the building of bounding volume
trees where the maximum degree of a node can be two, four
or eight, and we refer to these trees as binary trees, 4-ary
trees or 8-ary trees.

For the geometric splitting, many different rules can be
used. We have tried two different main strategies. Both of
them build the trees in a top-down manner. The first one
builds the tree based on the initial shape of the body. De-
pending on the maximum degree of a tree node, a parent
AABB is split along one, two or three coordinate axes into
two, four or eight sub-volumes. Then the midpoint of each
geometric primitive is assigned to one of these sub-volumes
and a child node is created for every non-empty sub-volume.
If the degree of the tree is two, then the parent AABB is
split along its longest side, if it is four the split is done along
the two longest sides and if it is eight all three sides of the
parent AABB are split. To choose the actual values for the
split planes two different heuristics have been examined. The
simplest one picks values from the coordinates of the cen-
tre point of the box. The other heuristic calculates the aver-
age point of all polygons’ midpoints and the values for the
split planes are chosen from that point. In our experiments,
there is no significant difference between these two ways of
choosing the values for the split planes, but we prefer the
first one since it is a more efficient operation. (Some other
split methods have also been described and examined29; 16).
The partitioning into new child nodes is repeated recursively

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

until there is only one geometric primitive left per node. We
call the resulting tree an initial shape tree.

Another interesting way of building the trees is based
on partitioning the geometry of a body into a tree we call
the mesh connectivity tree. The partitioning is done so that
all faces under a certain node in the tree form a connected
neighbourhood. Even for highly deformable bodies, the con-
nectivity of our meshes always stays the same. This way of
partitioning the geometry does not pay much attention to the
initial shape of a body, which might be completely differ-
ent after some deformations have occurred. A tree is built in
the following way. The whole mesh is associated with the
root node. Then, depending on the maximum node degree in
the tree, which in our case can be either two, four or eight,
the mesh is split into a suitable number of sub-meshes and
placed in new nodes inserted as the root node’s children. The
partitioning into new child nodes is repeated recursively un-
til there is only one geometric primitive left in a node. A
possible advantage of these trees is that they avoid the po-
tential risk of grouping faces deep down in the trees that are
very close to each other initially, although they may not be
close at all, when we only consider the connectivity of the
faces in the mesh. This type of surface-based hierarchy has
been suggested for building good fit OOBs and used to speed
up radiosity calculations as well as for collision detection of
rigid bodies35. In contrast, we are interested in examining
their properties when dealing with deforming bodies.

A potential problem with building the bounding volume
trees initially is that deformations applied during run-time
can drastically change the volumes of the AABBs and also
cause increases in their overlap among themselves. An alter-
native to pre-build the trees would be to rebuild them when
their qualities have degenerated to a certain extent. Rebuild-
ing the trees, however, is a much more expensive operation
compared to only updating the bounding volumes in an oth-
erwise fixed tree. In many practical cases, rebuilding is not
needed29.

When dealing with continuously deforming bodies, we
have also found in our experiments that using 8-ary tree
versions of the bounding volume trees was a slightly better
choice than both 4-ary and binary versions of the trees. In
the 8-ary tree case, fewer bounding boxes need to be calcu-
lated each time step and the search towards contact regions
converges faster per entered level in the tree traversals.

3.3. Run-time AABB Updates

During run-time, we have to update bounding volume trees
due to deformations. But in a typical collision traversal, far
from all bounding boxes in a tree are needed. Therefore, we
have tried to update as few AABBs as possible by updating
them top-down, as they are needed during the traversals. In
this case the AABB of a node is calculated by traversing the
faces placed under it. If the meshes have connectivity infor-
mation, i.e. the polygons share a list of common vertices, we

update the node’s AABB by traversing the shared vertices of
the faces in the node, instead of the faces themselves, which
is typically much faster. As an alternative, the AABBs in a
tree can be updated incrementally bottom-up29, starting from
the AABBs of the leaves and merging them upwards to the
root of the tree. The strength of this method is that a par-
ent AABB can always be calculated very efficiently directly
from the AABBs of its children, but on the other hand all
tree nodes are visited and updated, despite the fact that only
some of them will be needed in the following tree traversal.

Figure 2: Example of a hybrid tree update method, combin-
ing the bottom-up and top-down strategy.

We have found that in hard cases, where many deep nodes
in a tree are reached during a collision test, it gave a better
overall performance to update the AABBs in a tree bottom-
up. In simple cases, however, with only a few deep nodes
visited in a collision test, the top-down update normally per-
forms better. What we would like is a method to update the
trees, which performs well in both simple and hard cases.
Therefore, our approach is to use a hybrid update method
that combines efficient bottom-up calculations with selec-
tive top-down updates, which gives the desired result. The
method attempts to update as few AABBs as possible, while
still updating the ones covering most faces in the top of a
tree bottom-up. For a tree with depth n, we initially up-
date the n / 2 first levels bottom-up, which we have found
to be an efficient choice. During a collision traversal, when
non-updated nodes are reached, they can either be updated
top-down as needed or a specified number of levels in their
sub-trees may be updated bottom-up. For the models that we
have examined, with a typical triangle count between 5000
and 32000, we have found it fastest to update these nodes
top-down as they are needed. An illustration of the hybrid
tree update is given in Figure 2 for a very simple binary tree.
First the three topmost levels in the tree are updated bottom-
up (step 1 to 3). Then during a collision traversal, when non-
updated nodes are reached, they are updated on the fly (step
4 and 5). There are 31 nodes in this small example tree, but
only 11 of them are updated (those that are marked grey).
In practise, the trees are much larger and so is the difference
between the number of non-updated and updated nodes.

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

A drawback of our hybrid update method (as well as the
top-down method) is that we have to store vertex or face
information in the internal tree nodes, not only in the leaf
nodes. This memory cost is another reason for using 8-ary
trees, with fewer nodes, compared to 4-ary or binary trees.

3.4. Multiple Body Simulation

For simulations with up to approximately 100 bodies, the
naïve brute force technique, comparing n(n-1)/2 body pairs
for n bodies, performs very well. But if there are more bod-
ies in a simulation, our first phase uses the sweep and prune
sorting technique suggested by Cohen et al.4 Initially, all ex-
tents of the objects along the three principal axes are sorted
into three lists. These lists can be used to efficiently find all
objects close to each other. As objects move, the lists are re-
sorted during all stages of the simulation. The changes in rel-
ative placement of the bodies are expected to be small from
one time step to the next and the resorting operation is thus
expected to take O(n) time for n bodies. The O(n2) running
time complexity for checking collision among n bodies is
reduced to O(n+m), where m is the number of pairwise over-
laps between the bounding volumes of the bodies.

To avoid calculating the best fitting AABB for all bodies
in the world at every time step, we first use predetermined
loose AABBs that are large enough to bound every possible
orientation and deformation of the bodies, whenever possi-
ble. If it is not possible to determine such loose AABBs, for
example, because of the unknown bounds of the possible de-
formations, then an AABB has to be calculated for all bodies
before the sweep and prune technique can be used.

4. Experiments and Results

We have done many different experiments to investigate the
performance characteristics of our proposed method. The
experiments used have to be chosen with care, since the re-
sults depend on the shapes of the models, their relative ori-
entation and the deformations applied. Three of the experi-
ments are presented here, which were all done using a Pen-
tium III, 550 MHz CPU. Our scenarios were chosen before
our hybrid update method was developed and the results of
our algorithm are compared to the results from our imple-
mented version of the method by van den Bergen29, which is
similar to ours.

In the first experiment, two continuously deforming
bumpy sphere bodies were moved slowly into each other
during 200 simulation time steps. Each one of the two bodies
consisted of 20 480 triangles. The collision queries ranged
from very simple cases in the beginning to quite hard cases
towards the end of the simulation. The very first intersection
of the bodies was reported at time step 60. In the last time
step, 3760 intersecting triangle pairs were reported. We used
the 8-ary version of our initial shape trees and we reported
the collision detection times per time step for the top-down,

bottom-up as well as the hybrid tree update methods. The
results are given in Figure 3. In Figure 3a, the timings for
reporting all intersecting triangle pairs are reported, and in
Figure 3b the timings for finding a first arbitrary intersect-
ing triangle pair is reported, which in cases where there are
a lot of intersecting triangles is much faster. Reporting only
one triangle pair might be sufficient for many applications.
For example, if we want to search for the exact time for the
bodies’ first contact, it is sufficient to find one intersecting
triangle pair to know that we need to back track in simula-
tion time. As we can see, the hybrid update method performs
best, both in simple and hard cases. Furthermore, it is ap-
proximately five times faster than the competing method29.

50 100 150 200

0.1

0.2

0.3

0.4

0.5

simulation time steps

time (s)

top−down update
bottom−up update
hybrid update
van den Bergen

(a)

50 100 150 200

0.04

0.08

0.12

0.16

0.2

simulation time steps

time (s)

top−down update
bottom−up update
hybrid update
van den Bergen

(b)

Figure 3: Collision detection performance reported from the
first experiment when a) all intersecting triangle pairs were
reported, b) only the first found intersecting triangle pair
was reported.

In the second experiment, we used the same scenario as
in the first experiment, but this time we ran the simulations
multiple times with varying polygon counts for the bumpy
spheres. For every simulation the collision detection time at
the time step where the bodies first hit each other as well
as the worst time were reported. In Table 1 we can see the
results. The last column reports the number of intersecting

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

triangle pairs that were found during the worst time step.
It is obvious that, for this experiment, the measured results
indicate roughly linear performance in the number of used
faces.

faces per first worst triangle
body contact (ms) contact (ms) intersections

1280 2 4 138
5120 6 15 562
8192 8 28 1010

16384 15 64 2422
20480 20 98 3760
32768 30 151 4775
65536 62 334 12358

Table 1: Running time for deforming bodies with different
polygon counts.

In the third experiment, 27 translating, rotating and de-
forming bodies hit each other frequently during 200 simu-
lation time steps in a rather dense environment. A simple
collision response method was applied to prevent the bod-
ies passing through each other. Each one of the bodies con-
sisted of 5120 triangles. The simulation was repeated twice.
In the first simulation, the bodies were bumpy spheres and
in the second simulation the bodies had multiple deforming
arms. The collision detection performance using our hybrid
update method with 8-ary versions of the initial shape trees
is presented in Figure 4. Also, the performance of van den
Bergen’s method is included for comparison. When using
our method, the average collision detection time per time
step is about a factor of 5.6 faster, in Figure 4a, and a factor
of 4.5 faster, in Figure 4b, than when using the method by
van den Bergen.

The major differences between our method and van den
Bergen’s are in the way the trees are updated and how the
intersection tests are done between the bounding volumes
in the nodes during tree traversals. Where van den Bergen
uses a complete bottom-up update of the bounding volume
trees, visiting every node, we use the hybrid update, combin-
ing benefits from both bottom-up and top-down approaches.
Also, because we use world coordinate space AABB trees,
we have to calculate world coordinates of the vertices in the
bodies before a collision tree traversal, i.e. if the simulation
process does not already provide them. (In some cases it
might be more convenient to apply deformations directly in
world coordinate space). Anyway, this makes it possible to
use very fast AABB intersection tests during the tree traver-
sals. Van den Bergen, on the other hand, uses local coor-
dinate space AABB trees, which in fact becomes OBBs in
world coordinate space, and then the intersection tests be-
tween tree nodes are a more expensive operation, like the
used SAT lite test29, which starts to dominate the running
time in hard cases (see Figure 3a). Another difference is that

50 100 150 200

0.1

0.2

0.3

0.4

simulation time steps

time (s)

hybrid update
van den Bergen

(a)

50 100 150 200

0.1

0.2

0.3

0.4

simulation time steps

time (s)

hybrid update
van den Bergen

(b)

Figure 4: Collision detection performance per time step ac-
cording to experiment 3 where a) 27 bumpy sphere bodies
were used. b) 27 bodies with multiple arms were used.

we use 8-ary trees instead of binary trees for our bounding
volume hierarchies. (We have implemented an 8-ary tree ver-
sion of van den Bergen’s method, which runs approximately
10 to 20 percent faster than the binary version of it in our ex-
periments). Finally, it is worth mentioning that the purpose
of van den Bergen’s method is to deal with both rigid and de-
formable bodies in a unified framework. We have not aimed
at supporting rigid bodies efficiently in our algorithm.

We have also tried our mesh connectivity trees in these
experiments, but the performance difference is very small
between them and the initial shape trees for the type of bod-
ies we have used. The average collision detection time per
time step is typically between zero to 10 percent better for
the mesh connectivity trees than for the initial shape trees in
these experiments. Despite this small difference, we believe
that it would be interesting to study the mesh connectivity
trees further.

In Figure 5 and 6, images of the types of bodies that were
used in our experiments are shown. Animations showing the
reported experiments have also been produced.

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

5. Future Work

There is much more interesting work to do regarding colli-
sion detection and deforming bodies. For example, cut op-
erations, where bodies are torn into two or more separated
pieces, might yield very hard close proximity situations for
the collision detection algorithm and more efficient solutions
would be desirable to increase realism while maintaining
interactive performance. Fusion operations, where different
bodies are merged together, form another interesting type of
deformation, which might be interesting for certain kinds of
applications.

Efficient algorithms that automatically create suitable
mesh connectivity trees would be another interesting topic
to study, so their usefulness for operations like collision de-
tection could be evaluated. Another very important feature
for deforming bodies is to avoid self-intersections. We have
not included any support to avoid such situations automati-
cally. Instead, we have assumed that the algorithm that ap-
plies the deformations to the bodies does it in a proper way.
Another possible direction for future work would be to de-
sign parallel algorithms for collision detection of deformable
bodies. It would also be beneficial to create test scenes suit-
able for comparison of different algorithms for collision de-
tection of deforming bodies. If some suitable test scenes to-
gether with some general software were available, such com-
parisons would be much simpler to do.

6. Conclusions

Real-time graphics simulations, where the shapes of the
bodies deform continuously over time, constitute a partic-
ular challenge since the possibilities of using pre-calculated
data and data structures are dramatically decreased. The re-
sult of this work is an efficient collision detection algorithm
that works well in real-time simulations for multiple mov-
ing and deforming bodies represented by polygonal meshes.
The proposed bounding volumes trees are suitable to pre-
build before simulation time for many types of deformable
bodies and very fast to update during simulation time, due
to the applied deformations. Our proposed hybrid tree up-
date method performs well in both simple and hard collision
detection cases. In our experiments, our method has been
found to be approximately four to five times faster than a pre-
viously leading method for deformable bodies. The perfor-
mance of the algorithm has been verified by experiments in
complex dynamic environments with multiple continuously
deforming bodies.

References

1. P. Jiménez, F. Thomas, C. Torras. 3D Collision Detec-
tion: a Survey. Computers & Graphics, 25(2):269–285,
2001. 2

2. M.C. Lin, S. Gotttschalk. Collision Detection Between

Geometric Models: A Survey. Proceedings of IMA,
Conference of Mathematics of Surfaces, pp. 602–608,
1998. 2

3. G. Turk. Interactive Collision Detection for Molecu-
lar Graphics. Technical Report TR90-014, Computer
Science Department, University of North Carolina at
Chapel Hill, 1990. 2

4. J.D. Cohen, M.C. Lin, D. Manocha, M. Ponamgi. I-
COLLIDE: an interactive and exact collision detection
system for large-scale environments. Symposium on
Interactive 3D Techniques, Proceedings of the 1995
symposium on Interactive 3D graphics, pp. 189–196,
Monterey, CA USA, 1995. 2, 3, 5

5. M. Moore, J. Wilhelms. Collision Detection and Re-
sponse for Computer Animation. ACM Computer
Graphics (Proc. of SIGGRAPH ’88), 22(4):289–298,
1988. 2

6. M. Held, J.T. Klosowski, J.S.B. Mitchell. Evaluation
of Collision Detection Methods for Virtual Reality Fly-
Throughs. Proceedings Seventh Canadian Conference
on Computational Geometry, pp. 205–210, 1995. 2

7. B. Naylor, J.A. Amatodes, W. Thibault. Merging BSP
Trees Yields Polyhedral Set Operations. ACM Com-
puter Graphics (Proc. of SIGGRAPH ’90), 24(4):115–
124, 1990. 2

8. W. Bouma, G. Vanecek, Jr. Collision Detection and
Analysis in a Physical Based Simulation. Eurographics
Workshop on Animation and Simulation, pp. 191-203,
Vienna, 1991 2

9. D. Kim, L.J. Guibas, S. Shin. Fast Collision Detection
Among Multiple Moving Spheres. IEEE Transactions
on Visualisation and Computer Graphics, 4(3):230–
242, July-September 1998. 2

10. P.M. Hubbard. Interactive Collision Detection. Pro-
ceedings of IEEE Symposium on Research Frontiers in
Virtual Reality, pp. 24–31, 1993. 2

11. P.M. Hubbard. Collision Detection for Interactive
Graphics Applications. IEEE Transactions on Visual-
ization and Computer Graphics, 1(3):218–230, 1995.
2

12. P.M. Hubbard. Approximating Poyhedra with Spheres
for Time-Critical Collision Detection. ACM Transac-
tion on Graphics, 15(3):179–210, July 1996. 2

13. I. Palmer, R. Grimsdale. Collision Detection for An-
imation using Sphere-Trees. Computer Graphics Fo-
rum, 14(2):105–116, 1995. 2

14. S. Gottschalk, M. C. Lin, D. Manocha. OOBTree:
A Hierarchical Structure for Rapid Interference Detec-
tion. ACM Computer Graphics (Proc. of SIGGRAPH
’96), pp. 171–180, 1996. 2

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

15. G. Zachmann, W. Felger. The BoxTree: Enabling Real-
Time and Exact Collision Detection of Arbitrary Poly-
hedra. Proceedings of SIVE ’95, pp. 104–113, 1995.
2

16. J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral,
K. Zikan. Efficient Collision Detection Using Bound-
ing Volume Hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, 4(1):21–36,
1998. 2, 3

17. Taosong He. Fast Collision Detection using QuOSPO
trees. Symposium on Interactive 3D Techniques, Pro-
ceedings of the 1999 Symposium on Interactive 3D
Graphics, pp. 55–62, Atlanta, GA USA, 1999. 2

18. S. Krishnan, A. Pattekar, M. Lin and D. Manocha.
Spherical Shell: A Higher Order Bounding Volume for
Fast Proximity Queries. In Proceedings of WAFR ’98,
pp. 287–296, 1998. 2

19. A. García-Alonso, N. Serrano, J. Flaquer. Solving the
Collision Detection Problem. IEEE Computer Graph-
ics and Applications, pp. 36–43, 1994. 2

20. B. Mirtich. V-Clip: Fast and Robust Polyhedral Col-
lision Detection. ACM Transaction on Graphics,
17(3):177–208, 1998. 2

21. E.G. Gillbert, D.W. Johnson, S.S. Keerthi. A Fast Pro-
cedure for Computing the Distance Between Complex
Objects in three-dimensional space. IEEE Journal of
Robotics and Automation, 4(2):193–203, 1988. 2

22. S. Cameron. Enhancing GJK: Computing minimum
Penetration Distances Between Convex Polyhedra. Pro-
ceedings of International Conference on Robotics and
Automation, pp. 3112–3117, 1997. 2

23. G. van den Bergen. A Fast Robust GJK Implementation
for Collision Detection of Convex Objects. Journal of
Graphics Tools, 4(2):7–25, 1999. 2

24. L.J. Guibas, D. Hsu, L. Zhang. A Hierarchical Method
for Real-Time Distance Computation Among Moving
Convex Bodies. Computational Geomtery: Theory and
Applications, 15(1-3):51–68, 2000. 2

25. S. Cameron. Collision Detection by Four-Dimensional
Intersection Testing. IEEE Transactions on Robotics
and Animation, 6(3):291–302, 1990. 2

26. D.H. Eberly. 3D Game Engine Design - A Practical
Approach to Real-Time Computer Graphics. Morgan
Kaufmann, 2001. 2

27. A. Smith, Y. Kitamura, H. Takemura, F. Kishino. A
Simple and Efficient Method for Accurate Collision
Detection Among Deformable Polyhedral Objects in
Arbitrary Motion. Proceedings of the IEEE Virtual
Reality Annual International Symposium, pp. 136–145,
1995. 2

28. F. Ganovelli, J. Dingliana, C. O’Sullivan. BucketTree:
Improving Collision Detection Between Deformable
Objects. Spring Conference in Computer Graphics
(SCCG2000), Bratislava, pp. 156–163, 2000. 2

29. G. van den Bergen. Efficient Collision Detection
of Complex Deformable Models using AABB Trees.
Journal of Graphics Tools, 2(4):1–14, 1997. 2, 3, 4, 5,
6

30. G. van det Bergen. SOLID. Software Li-
brary for Interference Detection, 1999, Available at
http://www.win.tue.nl/cs/tt/gino/solid 2

31. A. Joukhadar, A. Scheuer, Ch. Laugier. Fast Con-
tact Detection between Moving Deformable Polyhedra.
Proceedings of the IEEE International Conference on
Intelligent Robots and Systems, pp. 1810–1815, 1999.
2

32. D. Baraff, A. Witkin. Dynamic Simulation of Non-
Penetrating Flexible Bodies. SIGGRAPH’92 Confer-
ence Proceedings, pp. 303–308, 1992. 2

33. M. Hughes, M. Lin, D. Manocha, C. Dimattia. Efficient
and accurate interference detection for polynomial de-
formation. Proceedings of Computer Animation, pp.
155–166, Geneva, Switzerland, 1996. 2

34. T. Möller. A Fast Triangle-Triangle Intersection Test.
Journal of Graphics Tools, 2(2):25–30, 1997. 3

35. M. Garland, A. Willmot, P.S. Heckbert. Hierarchical
Face Clustering on Polygonal Surfaces. ACM Sympo-
sium on Interactive 3D Graphics, 2001. 4

c The Eurographics Association 2001.



Larsson and Akenine-Möller / Collision Detection for Continuously Deforming Bodies

Figure 5: Some moving deforming bodies before and after they have interpenetrated
each other. Intersecting triangles are in red colour.

Figure 6: Multiple deforming bodies moving from a simple start case towards a com-
mon goal point in order to stress the collision detection algorithm.

c The Eurographics Association 2001.


