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Abstract
We present an adaptive method for scattered data interpolation. The method is based on multilevel nonuniform B-
splines. It makes use of a coarse-to-fine hierarchy of control lattices to generate a sequence of bicubic nonuniform
B-spline functions whose sum approaches the desired interpolation function. Experimental results demonstrate
that the method performs better than the method using uniform B-splines.

1. Introduction

Scattered data interpolation is the practice of fitting a smooth
surface through a scattered distribution of data samples. This
is often applied in science and engineering where data are
measured or generated at sparse and irregular positions. In-
terpolation is to estimate an underlying function that can be
evaluated at any position. The use of bicubic B-spline sur-
faces to represent functions is very popular due to the ad-
vantages, such as C 2 continuity, of such surfaces.

There has been much work in this area. However, scat-
tered data interpolation is still a difficult and computation-
ally expensive problem. Much of the work suffers from lim-
itations in smoothness, time complexity or allowable data
distributions 5. Lee et al. 7 have significantly improved per-
formance by applying multilevel B-spline interpolation.

Based on the idea of multilevel interpolation, we present
a different way to adaptively interpolate the scattered data
samples. It is an extension of the method by Lee et al., where
uniform B-splines are used. They also propose an adaptive
representation of the control lattice hierarchy but a linear ar-
ray is used. We will show the use of nonuniform B-splines
is a better representation in our method.
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2. Other Relevant Work

There is much work devoted to scattered data interpolation.
An excellent review can be found in 1. The well-known
methods include approaches based on Shepard's method 5,
radial basis functions 3, thin plate splines 2, finite element
method 8, a hierarchical B-Spline approach 4, and optimiza-
tion based techniques 6.

3. The Algorithm

3.1. Overview

The algorithm is outlined as follows:

1. Initial approximation: use a coarse lattice Φ0 to calculate
a uniform B-spline surface f0 based on point set P. We
use index i to represent the current layer of subdivision.
So i = 0 at this step. More details can be found in Lee et
al. 7.

2. Derivation of the deviation: increase index i by 1, i.e.,
i = i+ 1. Then, derive the deviation function ∆i of the
last approximation in layer i�1.

3. Refinement of the approximation: check the error and
gradient of the surface fi�1 on each subdividing region
of Φi�1:

a. If the test results for all current regions are below the
specified threshold, sum f0; f1; � � � ; fi�1 to get the fi-
nal approximation function f . Stop.

b. Otherwise, go to next step.

4. Adaptive subdivision: for each region in which the test
fails, further subdivide it. A new lattice Φi is derived.
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5. Derive an approximation to the deviation: derive a
nonuniform B-spline function fi to approximate ∆i, go
to step 2 for deriving the deviation.

3.2. Adaptive Subdivision

Consider a hierarchy of control lattices, Φ0;Φ1; � � � ;Φh;

overlaid on domain Ω. We derive Φ0 from the initial ap-
proximation. As the lattice Φ0 is very coarse, the initial ap-
proximation f0 leaves large errors at the data points in P.
Assume f0 leaves a deviation ∆1zc = zc� f0(xc;yc) for each
point (xc;yc;zc) in P. The next finer control lattice Φ1 is then
used to obtain function f1 to approximate the difference P1 =

f(xc;yc;∆1zc)g. From this step, all successively finer lattices
serve to approximate and remove the residual error. In gen-
eral, for level k in the hierarchy, the function fk is derived by
using control lattice Φk to approximate Pk = f(xc;yc;∆kzc)g,
where ∆kzc = zc�∑k�1

i=0 fi(xc;yc) = ∆k�1zc � fk�1(xc;yc),

and ∆0zc = zc. This process continues incrementally until
some conditions are met, e.g., ∆h+1zc < ε. Then, we get fh
to approximate ∆hzc over lattice Φh. The final approximation
function f is derived by summing the fk:

f =
h

∑
k=0

fk: (1)

In this way, the scattered data P = f(xc;yc;zc)g is approxi-
mated by f , the sum of multilevel B-spline functions.

Lee et al. have proposed a sufficient condition for the
function f to become an interpolant from an approximant: if
no two data points share a control point in their 4�4 neigh-
borhoods, i.e., each control point in Φk contains at most one
data point in its proximity data set7.

The sufficient condition means that a multilevel interpola-
tion requires the control point spacing in the finest lattice Φh
becomes sufficiently small. However, it is not necessary to
use a fine uniform lattice to overlay the whole domain Ω in
which not all regions have data points. Lee et al. noticed the
problem and proposed an adaptive control lattice hierarchy
to tackle the problem. Their purpose is only to save memory.
Thus a linear array is used to represent a hierarchy of two
dimensional lattices.

Noticing the same problem, we believe the use of nonuni-
form B-spline functions is a better choice:

1. Less control points are needed than the multilevel ap-
proximation using uniform B-splines.

2. More accurate and efficient:

a. the highly varying regions of the data points are ap-
proximated by finer control lattices.

b. the low varying regions by coarser lattices.

3. Easier to maintain the data structure than the use of a lin-
ear array for a hierarchy of two dimensional lattices.

We generalize the subdivision condition of Lee et al. who
proposed that a region needs further division if it has data
points. It is true that a region without data points does not
need to be divided. However, a region with data points does
not need subdivision either if the approximation is already
accurate enough.

We measure the accuracy by checking the error at data
points and gradient of the approximant for each region.
Thus, a more general condition for adaptive subdivision is
given: a subdivision is necessary for a region if its error or
the magnitude of gradient is larger than threshold. The error
of a region R is derived by:

errk(R) = max
(xc ;yc)2R

j∆kzcj; (2)

where k is the layer of subdivision.

Using error as the subdivision condition is intuitive. If a
surface interpolates all data points in a region, it approxi-
mates the underlying function well in this region. Another
important factor is gradient. The gradient of a function g is
defined as:

rg =
∂g
∂x
�!i +

∂g
∂y
�!j : (3)

In a region R, a high magnitude of gradient means the func-
tion changes rapidly. Thus R needs a finer subdivision. In
our estimation, we use the intermediate B-spline function fk
to approximate ∆kzc. We calculate the maximal magnitude

of partial derivatives max(x;y)2R

�
�
�

∂ fk
∂x

�
�
� and max(x;y)2R

�
�
�

∂ fk
∂y

�
�
�.

The results are compared with specified threshold to deter-
mine whether subdivisions for R are necessary in x and y
directions respectively.

Before estimating the maximal magnitude of partial
derivatives, we check the length ` and width w of R. If `

(w) is smaller than a specified threshold, no further subdivi-
sion is necessary in x (y) direction in R. Therefore, there is
no need to estimate partial derivative with respect to x (y).

We derive the knot vectors s and t of nonuniform B-spline
functions directly from the subdivision of lattice. The para-
metric st-space is same as the object xy-space in our imple-
mentation. The method to derive the knot vectors is consis-
tent with the approximation principle that a highly variable
region needs a finer lattice. The knot vectors are derived by

s = fx�3;x�2;x�1;x0; � � � ;

xm;xm+1;xm+2;xm+3g;

t = fy�3;y�2;y�1;y0; � � � ;

yn;yn+1;yn+2;yn+3g:

(4)

fxiji = 0; � � � ;mg and fyiji = 0; � � � ;ng are the subdivi-
sions of the current layer in x and y directions respec-
tively. The additional knots x�3;x�2, and x�1 are cho-
sen so that x0 � x�1 = x�1 � x�2 = x�2 � x�3 = (xm �

x0)=m. Similarly, xm+1;xm+2, and xm+3 are added after xm.
y�3;y�2;y�1;yn+1;yn+2, and yn+3 are derived in a similar
way.
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Table 1: Comparison results of Test 1.

nonuniform uniform
layer memory NRMS (%) memory NRMS (%)

1 7�7 20.564 7�7 20.564
2 11�11 10.250 11�11 10.250
3 15�15 5.034 19�19 5.334
4 19�19 4.058 35�35 4.928

Note: After four subdivisions, the memory cost of nonuniform AMBA method is less than
half of that of uniform method. NRMS is Normalized Root Mean Square error.
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Figure 1: Original hat function (left). Random points used
in Test 1 (right).

4. Results

In the first test we used a hat function shown in Figure 1
(left). We took 200 randomly distributed data points in its
domain (Figure 1 (right)) and reconstructed the function. We
compared the results between the AMBA (Adaptive Multi-
level B-spline Approximation) method and uniform B-spline
based method. The reconstructed results are shown in Fig-
ure 2 with the final subdivisions shown in Figure 3. We ob-
serve the AMBA method performs a little better than uniform
method in accuracy but with a much less memory cost (Ta-
ble 1). More subdivisions are dedicated to the highly vari-
able regions. Notice that some regions with data points are
not further subdivided such as the top of the hat.

In the second test we used another function shown in
Figure 4 (left). We took 120 data points, 40 in each of the
two nonzero regions and 40 randomly distributed in the en-
tire domain. The reconstructed result is shown in Figure 4
(right).
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Figure 2: Approximation to the hat function using uniform
(left) and nonuniform (right) B-splines.
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Figure 3: The control lattices on Ω of layer 4 in examples
shown in Figure 2.
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Figure 4: Original function (left). Result using nonuniform
B-splines (right).
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