
EUROGRAPHICS 2008 / K. Mania and E. Reinhard Short Papers

Boolean Operations for Free-form Models Represented in
Geometry Images

Yan Fu and Bingfeng Zhou† ‡

State Key Lab of Text Information Processing
Institute of Computer Science & Technology, Peking University, Beijing, China

Abstract
We present a Boolean operation algorithm for free-form solid models represented in geometry images. By taking
advantage of the regular data organization of geometry images, our algorithm can perform efficient surface divi-
sion using boundary-fill algorithm which is previously used for digital image processing. A quadtree subdivision
scheme is also applied to the geometry images to accelerate the intersection line calculation. Experimental result
shows that the algorithm can generate well-defined closed triangle meshes for Boolean operations. The resulted
triangle mesh can also be converted into a geometry image for further processing.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Boolean operation of solid models is a key algorithm for
geometry modeling. Many efforts have been made to de-
velop Boolean operation algorithms oriented to different
ways of model representations, which include level-set sur-
faces [KDRA02], multi-resolution meshes [BKZ01] and
point clouds [AD03]. Some methods even support Boolean
operations on hybrid of implicit models and explicit ones
[FGF05]. Though Boolean operations on volumetric rep-
resentation [FL00] is typically more stable than those on
surface-based manner, the result objects have no continuous
geometric representation.

Geometry image is a novel boundary representation pro-
posed by Gu et al. [GGH02]. It represents a surface as a
two-dimensional matrix, which can be stored in the format
of image. The “color” at a pixel of the image represents
the geometric information or other properties of the sur-
face. For free-from models, the representation of geometry
image avoids the storage of connectivity information since
they have been implied in the regular grid of geometry im-
age. Due to the regularity of the data organization of geome-

† Corresponding author. E-mail: cczbf@pku.edu.cn
‡ This work is supported in part by NSFC(No. 60573149) and NSF-
Beijing(No. 4072013).

try image, many techniques previously developed for digital
images can be applied to geometry images [NYC05]. More-
over, the processing of geometry images can be accelerated
by hardware [LHSW03].

In this paper, a Boolean operation algorithm for two ge-
ometry images is described. We take advantage of the regu-
larity of the data organization of geometry image to increase
the efficiency of Boolean operations. The two input geom-
etry images are organized in the structure of quadtree to
accelerate the intersection test. Afterwards, the intersection
lines are mapped onto the parameter domain, which define
connected close boundaries in geometry images. As these
boundaries are closed, algorithms such as boundary-fill used
in the digital image processing can be employed to classify
the inside / outside regions over the surface. When the re-
gions are classified, the result of the Boolean operation can
be obtained by triangulating and gluing the retained regions,
and the results can be converted into geometry images for
further processing.

2. Problem Definition and Algorithm Overview

Definitions and Notations Given a triangle meshM as a
set of triangles, the geometry image G ofM can be written
in the form of a matrix G = (gi j)m×m, where

gi j = p−1(si, t j), si =
i−1

m−1
, t j =

j−1

m−1
(1)

c© The Eurographics Association 2008.

http://www.eg.org
http://diglib.eg.org

Yan Fu & Bingfeng Zhou / Boolean Operation

and p(·) is the conformal parameterization [FH05] fromM
to 2D parameter domainD. As the elements of G correspond
to a set of points lining on the orthogonal grids in D, G cor-
responds to a 2D mesh G in D:

G = {tk | k = 1, . . . ,2(m−1)(m−1)} , (2)

where tk are triangles that are generated from grids in D by
creating two triangles tk1 , tk2 for each grid cell. Let di, j =
(si, t j) be a point from the grids, then

tk1 = (di, j, di+1, j, di+1, j+1), tk2 = (di, j, di, j+1, di+1, j+1).

When the triangle vertices are mapped back to the 3D space
using p−1(·), the transformed triangles {Tk} form a closed
3D triangle mesh G−1 whose vertices are on the surface of
M. We call G−1 reconstructed mesh :

G−1 = {Tk | k = 1, . . . ,2(m−1)(m−1)} , (3)

where

Tk1 =
(
gi, j, gi+1, j, gi+1, j+1

)
,Tk2 =

(
gi, j, gi, j+1, gi+1, j+1

)
.

Algorithm Overview For two 3D solid models A and B,
their geometry images are denoted as GA and GB respec-
tively, which correspond to two 2D meshes GA and GB and
two reconstructed meshes G−1

A and G−1
B respectively.

With the notation given above, our Boolean operation al-
gorithm can be presented as the following steps:

Step 1: Intersection. The algorithm begins with the cal-
culation of intersection lines between G−1

A and G−1
B . Then

the intersection lines are mapped into GA and GB in 2D do-
main (Figure 1 (d, g)).

Step 2: Pixel classification. The intersection lines form
several closed paths over the parameter domain, these paths
divide the pixels of geometry image into subsets (Figure 1 (e,
h)). The elements of each individual subset are either inside
or outside the other reconstructed mesh. After deciding the
inside / outside property of the elements in geometry images,
the elements that will be used as the vertices of the resulted
triangle mesh can be determined based on the type of the
Boolean operation being performed.

Step 3: Triangulation. When pixels of a geometry image
to be kept in the result are determined, they can be triangu-
lated using a constrained Delaunay triangulation, where the
constrained edges fed into the triangulation algorithm are the
intersection lines mapped into the parameter domain (Figure
1 (f, i)). When the triangulations are performed for both ge-
ometry images, the set of triangles obtained can be merged
to get the resulted triangle mesh(Figure 1 (b, c)).

3. Calculation of Intersection Lines

In our algorithm, the B-reps models are geometry images,
but as a matter of fact they represent triangle meshes. There-
fore the intersection line calculation is confined to the in-
tersection of triangles. In our algorithm, the reconstructed
meshes G−1

A and G−1
B are used to perform intersection test

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Procedure of Boolean operations on Geometry
Images (See Section 2 for detail).

[Mol97]. For a pair of triangles from G−1
A and G−1

B respec-
tively, there exist two triangle edges that intersect with the
other triangle (See Figure 2 (b, c). It is also possible that
the intersection points lie on the edges from the same trian-
gle.). We name the triangle edges that intersect with a trian-
gle from the other reconstructed mesh as boundary grid lines
and denote the set of boundary grid lines over the surface of
G−1

A and G−1
B as LA and LB respectively. The end points of

the boundary grid lines are called boundary pixels, which
form the boundary for the boundary-fill algorithm to clas-
sify the surface of models. The intersection lines obtained
in 3D space are mapped into both GA and GB and they form
one or more closed paths in the parameter domain which are
used in the triangulation step to construct the result mesh of
Boolean operation.

In our implementation, we apply a quadtree scheme to lo-
calize and accelerate the triangle intersection. Since each ge-
ometry image represents a 3D model in a regular structure,
the construction of quadtree is quite straightforward. For a
m×m geometry image, the depth of the quadtree is at most
�log2 m�.
4. Classification of Pixels in Geometry Image

In this section, we shall use a boundary-fill scheme to decide
the inside / outside property of each pixel in the geometry
image. The boundary is formed by the boundary pixels of
all the boundary grid lines. Here, we take GA as an example.

c© The Eurographics Association 2008.

Yan Fu & Bingfeng Zhou / Boolean Operation

BB ji ,g

1p 2p

BB ji ,1g

AA ji ,
g

1,1 AA jig
AA ji ,1g

1,1 BB jig

(a)

)1,1(AA ji),1(AA ji

),(AA ji

1p 2p

(b)

)1,1(BB ji),1(BB ji

1p

2p

),(BB ji

(c)

Figure 2: An example case of intersections of two triangles
from G−1

A and G−1
B .

Pixels in geometry images are classified into three types:
outside pixels, inside pixels and intersecting pixels. Since all
the intersection lines are obtained, it is straightforward to
find out all intersecting pixels first. Other pixels are classi-
fied using boundary-fill process outlined in Figure 3. At the
beginning of this algorithm, a valid boundary pixel gi0, j0 can
be randomly picked. Here, we call a boundary pixel valid if
its property has not been set and the boundary grid line it lies
on intersects with only one triangle TkB in G−1

B . Suppose the
normal of triangle TkB points outward, it is easy to determine
whether gi0, j0 is inside or outside G−1

B . Then, in procedure
FindNextSeed, from the 4-neighboring pixels of gi0, j0 , we
choose a pixel whose property has not been set and itself is
not a boundary pixel as the first seed pixel. And the seed is
labeled as the same property as that of gi0, j0 .

After a seed pixel is selected, the geometry image pixels
situated in the same connected region with the seed can be
found out in BoundaryFill4. Here, the boundary filling pro-
cess searches the pixels in 4-connected neighborhood. The
reason for this is that pixels acting as the boundary for the
algorithm are sometimes 8-connected. The calling to the pro-
cedure FindNextSeed and BoundaryFill4 is repeated until no
seed can be found and thus the pixels of GA are classified
(Figure 3).

When the pixels of GB are classified in the same way, we
are thus ready to proceed to the next step of mesh recon-
struction.

5. Triangulation and Mesh Reconstruction

When geometry image pixels are classified and non-surface
pixels with respect to the result model determined, we use
a constrained Delaunay triangulation library given in [Tri]
to triangulate the part of the result mesh surface. To merge
the result mesh correctly, the intersection line set must be re-
tained and act as the constrained edges in the triangulation
process. After the triangulations are finished, we obtain two
triangle meshes. By transforming the vertices of the triangles
into 3D space using p−1(·), we obtain two sets of triangles
in 3D space. Suppose they are denoted as RA and RB, then
R=RA∪RB is the result triangle mesh, which can be fur-
ther converted into a geometry image [GGH02].

Procedure:PIXEL-CLASSIFICATION(G)

Input:GA and GB with boundary grid lines information;
Output:GA and GB with pixels’ properties been
classified;

Set properties of all intersecting pixels ;
gi0 j0 ← a valid boundary pixel;
Set property of gi0 j0 ;
while FindNextSeed(seed,Prop)=TRUE do

BoundaryFill4(seed.x, seed.y, Prop);

Procedure:FindNextSeed(seed,SeedProp)

flag← FALSE;
foreach boundary grid line l do

Get the end points of the grid line:Pl and Ql ;
if the property of pixel Pl has been set and Pl is not
an intersection point and property of Ql not set
then

gi0 j0 ← Ql ;
Nl ←number of triangles intersecting with l;
if Nl is odd then

property of Ql is opposite of Pl ;
else

property of Ql is the same as Pl ;
if one neighbor of gi0 j0 is not boundary pixel
then

gi1 j1←the neighbor pixel;
SeedProp←property of gi1 j1 ;
flag←TRUE ;
break;

if flag =FALSE then
if select a new valid boundary pixel as seed =
TRUE then

SeedProp←property of new seed;
flag =TRUE;

return flag

Figure 3: Pseudocode of determining properties of geometry
image pixels (Section 4).

6. Experimental Results and Analysis

By making use of the regular data organization of geome-
try images, our algorithm is able to perform efficient sur-
face division for Boolean operations. Figure 4 and 5 show
some experimental results of our algorithm, which indicate
that our algorithm can be used to sculpt the input models
and construct novel ones. The corresponding geometry im-
ages of the results are illustrated in the up-right corner of the
figures. When applying the algorithm, the resolution of the
input geometry image can be freely adjusted for a suitable
result.

Table 1 shows the timing comparison between optimized
and non-optimized Boolean operations for our experiments.

c© The Eurographics Association 2008.

Yan Fu & Bingfeng Zhou / Boolean Operation

(a) (b)

Figure 4: Results of Boolean operations.

(a) (b) (c)

Figure 5: Union of two input models in (a), (c) shows the
detail of intersection in result (b).

We also implemented a Boolean operation algorithm that
works directly on the 2D parameterizations of both meshes.
The timing of the algorithm for the same model sets is listed
in the right column. It is shown in Table 1 that the geome-
try image representation is superior to triangle meshes in the
timing, especially for those complex models.

Table 1: Timing for Boolean operations on geometry im-
ages(G.I.) optimized with quadtree, without quadtree, and
direct implementation on 2D parameterizations.

Results Size G.I. Without G.I. With Mesh
of G.I. quadtree quadtree

Fig 1 (b) 64×64 59.2 s 0.140 s 1.547 s
Fig 4 (a) 64×64 108.5 s 0.328 s 1.563 s
Fig 4 (b) 128×128 1932.2 s 0.906 s 4.453 s

Fig 5 64×64 58.3 s 0.078 s 5.234 s

To obtain a mesh of high quality for further processing,
the result mesh can be optimized by some mesh optimiza-
tion techniques. In our experiment, we collapse tiny edges
under the constraints that the collapse will not cause topol-
ogy error and the visual effect is not affected. The optimized
meshes near intersection lines are illustrated in Figure 1 (c)
and Figure 5 (c).

7. Conclusion

We have presented a method to perform Boolean operation
on free-form solid models represented by geometry images.
The algorithm is simple and efficient. The regular data or-
ganization of geometry image facilitates the construction of
hierarchical quadtrees, thus the time consumed in triangle-
triangle intersection is reduced. The effective performance

of pixel property classification also owes to the regular data
organization of geometry images. Moreover, the Boolean
operation can be performed independent of resolutions of
geometry images, which offers flexibilities for various ap-
plication requirements.

As most of the Boolean operations on explicit representa-
tions, the robustness of our algorithm mainly relies on the in-
tersection computations, which depends greatly on the qual-
ity of geometry images. If the triangles in the reconstructed
mesh of geometry image are well-shaped, the algorithm will
be more robust. Therefore, how to generate a good geome-
try image for general meshes is worth to be investigated fur-
ther. Also we are expecting to achieve performance improve-
ment of Boolean operation on geometry images by utilizing
graphics hardware.

References

[AD03] ADAMS B., DUTRĹĘ P.: Interactive boolean op-
erations on surfel-bounded solids. In ACM SIGGRAPH
2003 (2003), ACM Press, pp. 651–656.

[BKZ01] BIERMANN H., KRISTJANSSON D., ZORIN D.:
Approximate boolean operations on free-form solids. In
ACM SIGGRAPH 2001 Papers (New York, NY, USA,
2001), ACM Press, pp. 185–194.

[FGF05] FOUGEROLLE Y. D., GRIBOK A., FOUFOU S.:
Boolean operations with implicit and parametric represen-
tation of primitives using r-functions. IEEE Transactions
on Visualization and Computer Graphics 11, 5 (2005),
529–539.

[FH05] FLOATER M. S., HORMANN K.: Surface pa-
rameterization: a tutorial and survey. In Advances in
multiresolution for geometric modelling, Dodgson N. A.,
Floater M. S., Sabin M. A., (Eds.). Springer Verlag, 2005,
pp. 157–186.

[FL00] FANG S., LIAO D.: Fast csg voxelization by frame
buffer pixel mapping. In Proceedings of the 2000 IEEE
symposium on Volume visualization (2000), ACM Press,
pp. 43–48.

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry
images. In ACM SIGGRAPH 2002 (2002), ACM Press,
pp. 355–361.

[KDRA02] KEN M., DAVID E. B., ROSS T. W., ALAN

H. B.: Level set surface editing operators. 330–338.

[LHSW03] LOSASSO F., HOPPE H., SCHAEFER S.,
WARREN J.: Smooth geometry images. In SGP ’03:
Proceedings of the 2003 Eurographics/ACM SIGGRAPH
symposium on Geometry processing (2003), pp. 138–145.

[Mol97] MOLLER T.: A fast triangle-triangle intersection
test. J. Graph. Tools 2, 2 (1997), 25–30.

[NYC05] NGUYEN M. X., YUAN X., CHEN B.: Geome-
try completion and detail generation by texture synthesis.
The Visual Computer 21, 9–10 (2005), 669–678.

[Tri] http://www.cs.cmu.edu/ quake/triangle.html.

c© The Eurographics Association 2008.

