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Abstract 
The classic implicit scalar field distance transform representation of a mesh is very useful to perform many 
mesh processing operations and to obtain better results than with other methods. In this paper we propose a 
new and more accurate implicit vector field distance transform representation of a mesh. We adapt Marching 
Cube and Marching Triangle, the two most widely used triangulation algorithms, to our new vector field 
representation to correctly reconstruct the final mesh after data processing in the implicit domain. According 
to a reliable surface error metric, we show our new vector field is more accurate than the classic scalar field to 
implicitly represent a mesh. We adapt to our vector field a previously introduced mesh denoising algorithm 
performed on the scalar field. Results show mesh denoising with our vector field outperforms the one with 
classic scalar field in terms of an error metric comparison. 
 
Categories and Subject Descriptors (according to ACM CCS):  
I.3.5 [Computer Graphics]: Computational Geometry and Object Modeling – Curve, surface, solid, and object 
representations; Geometric algorithms, languages, and systems; Hierarchy and geometric transformations. 
I.4.3 [Image Processing and Computer Vision]: Enhancement – Filtering; Geometric correction; Smoothing. 

 

 
1.  Introduction 
 
   The classic implicit scalar field distance transform 
representation (SFDT) is a voxel-based volumetric implicit 
representation to describe a 3D object surface mesh. To 
compute SFDT we need to create a voxel grid inside the 
mesh bounding box. For each voxel the closest point on the 
mesh surface is found and the distance between the voxel 
and that closest point is saved in the voxel structure. When 
the voxels size tends toward zero, we have a continuous 
implicit surface representation of the mesh which correctly 
represents both the surface topology and geometry. The 
zero-set f(x,y,z) = 0 of the SFDT defines the mesh surface. 
The SFDT is used to perform mesh processing operations 
in the implicit domain. After data processing, we need to 
triangulate the SFDT in order to produce the resulting 
mesh. In practice the voxel size is finite and the domain 
conversion itself introduces a surface error which can be 
controlled by choosing an appropriate voxel grid resolution 
required for specific applications. Converting a mesh in its 
SFDT and without performing any operation on the SFDT, 
if we triangulate that SFDT to create a new mesh 
equivalent to the initial one, we will not obtain the exact 
same surface but only its approximation. 

   In this paper we propose a new implicit vector field 
distance transform representation (VFDT) which is more 
accurate than the SFDT. The VFDT minimizes the surface 
error introduced by the domain conversion. To triangulate 
our new VFDT we adapt the two most widely used 
algorithms, Marching Cube [LC87] and Marching Triangle 
[HSI*96], to correctly reconstruct the resulting mesh after 
implicit data processing. Since our new VFDT data 
structure is different than the SFDT, all mesh processing 
operations usually performed on SFDT will need to be 
adapted to VFDT. As a first application of our VFDT, we 
adapt a previously introduced mesh denoising algorithm 
[FDB06] performed on SFDT and show the results quality 
is better with our VFDT. The goal of this paper is to 
introduce a more accurate VFDT for meshes and to adapt 
SFDT mesh processing operations to VFDT in order to 
produce more accurate results compared to SFDT. The 
remaining parts of the paper are organized as follows: 
Section 2 overviews related works. Section 3 presents our 
new VFDT and its adapted triangulation algorithms. 
Section 4 presents the mesh denoising algorithm adapted to 
our VFDT. And in Section 5, before concluding, we 
discuss the results of triangulation and mesh denoising with 
our new VFDT compared with the SFDT representation. 
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2.  Related works 
 
   The SFDT is an important volumetric alternative surface 
representation which is widely used to perform many mesh 
processing operations. For many applications, even if the 
domain conversion introduces a surface error, using the 
SFDT produces better results than other methods and the 
algorithms are often easier to implement or they provide 
more versatile tools which enable new processing features. 
In the context of real 3D objects reconstruction from 
scanned data, the SFDT has the advantage of being able to 
process every step of the reconstruction procedure in the 
same data structure and it produces good results at each 
step with relatively simple algorithms. In that context the 
SFDT was previously used in mesh fusion [CL96] to 
integrate all range images into a unique representation, 
followed by mesh repair and mesh simplification [NT03] to 
fill holes in the mesh and to produce a more compact 
model, and then mesh smoothing and denoising [FDB06] 
to remove acquisition noise introduced by the scanner. 

   We propose a new VFDT which will contribute to 
enhance the results quality of these mesh processing 
operations in the implicit field representation. We already 
have adapted a mesh denoising algorithm [FDB06] to our 
VFDT which shows good results and we are currently 
working to adapt mesh fusion algorithm [CL96] to the new 
VFDT. As far as we know, we will be able to adapt most of 
SFDT mesh processing operations to our VFDT and since 
the model is more accurate than SFDT, we are confident 
the results will also be more accurate. Furthermore many 
recent works such as [JLS*02, BPK05] focused on 
improving the generated surface quality and approximation 
over classical Marching Cube by proposing Marching Cube 
extensions and dual contouring from SFDT. These works 
aim at better fitting the Marching Cube surface to the input 
data using polynomial fitting or equivalent techniques and 
they are suitable for our VFDT. We also are currently 
working to adapt these major improvements to the new 
VFDT which will hopefully produce better results 
compared to their SFDT implementation. 
 
3.  VFDT definition and its adapted triangulations 
 
   As for SFDT, the VFDT of a mesh is defined over a 
voxel grid. For each voxel the closest point on the mesh 
surface is also found. But instead of saving only the 
distance as in SFDT, in VFDT the 3D vector starting from 
the voxel and pointing to that closest point found on the 
surface is saved in each voxel. This new VFDT is more 
precise and complete than SFDT representation because at 
each voxel we know the distance as well and in addition we 
know the exact orientation of the closest point on the 
surface. As for SFDT, zero-set f(x,y,z) = 0 when VFDT 
vectors length are zero defines the mesh surface. In practice 
with a discrete and finite grid resolution we need to fix a 
threshold to determine if a voxel is on the surface. With the 
SFDT representation it introduces an approximation error 
on the surface vertices. In the VFDT representation we use 
the small residual vector of the surface voxels to correct the 
vertices coordinates and retrieve the exact surface position. 

3.1.  First Marching Cube triangulation adaptation 
 
   The Marching Cube is a widely used triangulation 
algorithm to reconstruct a mesh from SFDT. We adapt this 
algorithm to correctly reconstruct the mesh from our VFDT 
representation. The overall algorithm is the same with the 
VFDT except for the interpolation part to find the new 
triangle vertices on the cubes edges. Figure 1 is a 2D 
example which shows the new VFDT interpolation method 
and its advantage compared to SFDT vertex interpolation. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SFDT and VFDT surface interpolation 
 
   In Figure 1 example, A, B, C and D are neighbor voxels 
of the distance transforms and the doted square represents 
the “marching cube”. In the SFDT representation, Dist(A) 
and Dist(B) are the scalar minimal distances to the surface 
from voxels A and B. In the VFDT representation, α and β 
are the vectors from voxels A and B to the closest points a 
and b on the original surface. At reconstruction step with 
the Marching Cube algorithm, we need to interpolate a new 
surface vertex i’ on edge AB. With the SFDT 
representation, adding the two distances Dist(A) and 
Dist(B) leads to a first incoherence according to edge AB 
length. In general cases, either there is no solution or two 
solutions (infinity of solutions in 3D) for the intersection of 
the two circles of radius Dist(A) and Dist(B) which are 
centered on A and B. So the rough interpolation is made 
with the ratio of distances Dist(A) and Dist(B) transposed 
on edge AB length which leads to a greater error. 

   With the VFDT representation, a and b original surface 
points are used to interpolate vertex i’ on edge AB at 
intersection with interpolated surface segment ab. In 
general 3D cases, edge AB and interpolation segment ab 
will not intersect so the closest point to segment ab on edge 
AB is found and it is the new surface interpolated vertex i’. 
This interpolation method gives a better approximation of 
the original surface at same grid resolution compared to the 
SFDT representation. We define vector u = AB and vector 
v = ab. Then the interpolated vertex i’ = λu and Equation 1 
shows how to find λ factor which resizes vector u to obtain 
the interpolation vertex i’ on edge AB. The dot operator (◦) 
defines a dot product between vectors. 
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   Figure 2 shows an example of Marching Cube 
triangulation over a SFDT and a VFDT of the same object. 
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In Figure 2 example, the SFDT and VFDT of a mesh which 
defines a 3D step function have been computed. Then the 
Marching Cube algorithm has been applied to triangulate 
both of them, using the standard algorithm over the SFDT 
and the modified one over the VFDT representation. The 
same coarse grid resolution at same spatial position has 
been defined for both distance transforms to highlight the 
differences and advantages of the VFDT representation. 
With the SFDT sharp edge A has been respected, there are 
unwanted inflection points at B and E and sharp edges at 
corners C, D, and F have been truncated. With the VFDT 
only sharp edge at corner C has been truncated because of 
the very low grid resolution used in this example. At same 
grid resolution, the VFDT has a more accurate 
representation of the underlying mesh.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: SFDT and VFDT step function triangulation 

 
   Figure 3 shows another advantage of the VFDT 
representation in terms of the triangles size and distribution 
produced by the Marching Cube algorithm on a half sphere 
model. In Figure 3 example both raw triangulations are 
shown without any mesh simplification algorithm. Both 
results have the exact same amount of triangles and 
vertices. On the SFDT triangulation, we see the usual 
Marching Cube elevation lines produced with unwanted 
small degenerated triangles. The VFDT representation 
produces a more uniform triangulation without any small 
degenerated triangle. The VFDT solid shaded model is 
therefore visually more uniform than the SFDT model. 
This VFDT representation advantage can save a 
simplification step for specific applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: SFDT and VFDT half sphere triangulation 
 

3.2.  Second Marching Cube triangulation adaptation 
 
   We propose a second Marching Cube adaptation and as 
before, the overall algorithm is equivalent to the SFDT one 
except for the interpolation part. Actually there is no more 
interpolation in this adaptation. Referring to Figure 1 
VFDT example, if a new vertex position needs to be 
interpolated on edge AB, instead of actually interpolating 
that vertex, we simply use one of the two initial surface 
points a or b pointed by vectors α or β. This method is fast 
and easy to compute, we only compare both vectors α and 
β length and we keep the shortest one. In Figure 1 example, 
vector α is shorter than vector β and the new vertex 
position would simply be initial surface point a. This 
second Marching Cube adaptation has two major 
differences with SFDT triangulation. First the new vertices 
are no longer on the cubes edges, they are exactly on the 
initial surface and this gives a better surface approximation. 
Second the resulting mesh has fewer triangles, some of the 
triangles which would have been created in SFDT no 
longer exist. Depending on the cubes configuration, a 
triangle can collapse into an edge or into a single vertex if 
two or three adjacent voxels which need to be interpolated 
result in the same new vertex according to their vector 
length. These two differences do not affect surface 
continuity while adjacent cubes will produce same new 
vertices and if triangles collapse, their neighbors will adapt 
their size to fill empty spaces. Figure 4 shows triangulation 
results on the Venus model for the SFDT and the VFDT 
with this new Marching Cube adaptation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4: SFDT and VFDT Venus model triangulation 
 
   Results in Figure 4 have been compared to initial Venus 
model mesh with vertex to surface error metric introduced 
in [FDB06]. VFDT triangulation has only 3228 triangles 
and it is 12.2% better than SFDT which has 5463 triangles. 
VFDT triangulation is even more uniform with this method 
while SFDT still has these small degenerated triangles 
elevation lines. Moreover at the model bottom end we see 
SFDT result do not match exactly the initial model 
underneath the mesh. VFDT do not have this problem at 
same grid resolution which is another VFDT advantage. 
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3.3.  Marching Triangle triangulation adaptation 
 
   We adapt Marching Triangle to our VFDT simply by 
changing the algorithm step 2 defined in [HSI*96]. With 
SFDT, at step 2 a search is made to find the nearest surface 
point from a previously projected point. The result depends 
on a threshold and it introduces an approximation error on 
the new vertex position evaluation according to the initial 
surface. With VFDT, step 2 search is no longer needed. 
From the projected point, we simply add the vector of the 
current voxel to obtain the nearest exact initial surface 
point without any error. Figure 5 shows Marching Triangle 
results on the bunny model for SFDT and VFDT. 
 
 
 
 
 
   
 
 
 
 

 

Figure 5: SFDT and VFDT bunny model triangulation 
 
   In Figure 5 example, same triangulation parameters such 
as projection distance have been used for both resulting 
meshes which are visually similar. Low resolution has been 
selected to highlight differences between models which 
have almost same amount of triangles, 3472 for SFDT and 
3621 for VFDT. The bunny left ear has some deformation 
in SFDT triangulation. VFDT resulting mesh has slightly 
more uniform triangles and it is 7.2% better than SFDT 
mostly because of error free new vertex position. 
 
4.  VFDT mesh denoising algorithm 
 
   As a first application to demonstrate the efficiency of our 
VFDT, we adapt the mesh denoising method introduced in 
[FDB06] which is performed on SFDT. It is an adaptive 
and feature preserving filtering algorithm which is based 
on a noise variance threshold. The filter equation works on 
scalar data and we simply use it independently for each 
vector coordinate in order to filter the VFDT. Figure 6 
shows filtering results on the camel model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: SFDT and VFDT camel model filter results 

   The camel model has been corrupted with artificial noise, 
filtered with both implicit representations and compared to 
the initial model with the error metric. The VFDT result 
has smaller error and it is visually better especially in high 
curvature regions such as under the eye and along the jaw. 
 
5.  Results 
 
Figure 2 and Figure 3 show the first Marching Cube 
triangulation with the interpolation adaptation to VFDT 
produce better results than the standard SFDT 
triangulation. The results are more uniform without small 
degenerated triangles and they are more accurate compared 
to the initial model. Figure 4 shows the second Marching 
Cube adaptation produce a more accurate mesh boundary 
result with fewer triangles. Figure 5 shows Marching 
Triangle algorithm is also suitable with our VFDT and the 
result is also better than with SFDT. In the second 
Marching Cube and Marching Triangle adaptation cases, 
both algorithms are simplified compared to the ones with 
SFDT. Figure 6 shows the new VFDT is well adapted to 
mesh denoising and the result quality is enhanced 
compared to the equivalent algorithm performed on SFDT. 
 
Conclusion and future works 
 
A new VFDT has been introduced in this paper. It is a 
more complete and accurate implicit mesh representation 
than the classic SFDT. The two most widely used 
triangulation algorithms have been adapted to the new 
VFDT to correctly reconstruct its resulting mesh. A mesh 
denoising algorithm previously performed on SFDT has 
been adapted to VFDT and results show it outperform the 
previous one with SFDT. We are currently working to 
adapt mesh fusion to VFDT and preliminary results are 
encouraging. In future works we will adapt to our VFDT 
other useful mesh operations usually performed on SFDT. 
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