
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

Multiresolution GPU Mesh Painting

Tobias Ritschel1 Mario Botsch2 Stefan Müller1

1Institute for Computational Visualistics, University Koblenz-Landau, Germany
2Computer Graphics Laboratory, ETH Zurich

Abstract
Mesh painting is a well accepted and very intuitive metaphor for adding high-resolution detail to a given 3D
model: Using a brush interface, the designer simply paints fine-scale texture or geometry information onto the
surface. In this paper we propose a fully GPU-accelerated mesh painting technique, which provides real-time
feedback even for highly complex meshes. Our method can handle arbitrary input meshes, which are considered
as base meshes for Catmull-Clark subdivision. Representing the surface by an atlas of geometry images and
exploiting programmable vertex and fragment shaders allows for highly efficient LoD rendering and surface ma-
nipulation. Our painting metaphor supports real-time texturing, sculpting, smoothing, and multiresolution surface
deformations.

1. Introduction

Adding high resolution geometric or color detail to a given

surface is an important problem in 3D content creation. Es-

pecially in this context, where surface manipulations are

more artistic rather than engineering-like, an intuitive user

interface is required to support the designer’s creativity. This

has recently led to several commercial applications based

on the well-accepted mesh painting metaphor. To modify a

given high resolution mesh, the designer simply uses a brush

of adjustable size to directly paint the transformations onto

the model’s surface. The transformations itself can be as di-

verse as texture or color painting, local mesh smoothing,

carving, or sculpting.

Painting color or texture information onto meshes was

first introduced by Hanrahan and Häberli [HH90], and later

extended to painting geometric details or surface deforma-

tions [ZPKG02, LF03]. It is clear that real-time feedback is

crucial for this kind of interactive mesh manipulation, but on

the other hand it is also difficult to achieve for highly detailed

models, which often results in inacceptable latencies.

In this paper we propose to exploit the computational

power of modern graphics hardware (GPUs) not only for sur-

face rendering, but also for painting-based surface manipula-

tion, which eventually allows for interactive editing even of

models consisting of a few millions of triangles. Recent ap-

proaches started to exploit GPUs for painting textures or col-

ors, representing the surface either by a multiresolution atlas

of charts [CH04] or by an adaptive octree [LKS∗06]. How-

ever, these spatial data structures will be difficult to maintain

if the surface geometry (in addition to color) is modified.

We therefore propose a surface representation based on

an atlas of geometry images, similar to [SWG∗03]. The reg-

ular structure of geometry images [GGH02] allows for ef-

ficient GPU processing, as was shown for smooth subdivi-

sion of a single chart geometry image in [LHSW03]. While

[SWG∗03] partitioned the input mesh into charts that have

to be zippered later on, we rather consider the input mesh

as the coarse domain for Catmull-Clark subdivision, which

naturally yields a piecewise geometry image, as shown in the

next section.

2. Surface Representation

The input model is an irregular polygonal mesh of arbitrary

genus, which after one Catmull-Clark subdivision step con-

sists solely of quads (Fig. 1, left). After a few, say k, addi-

tional subdivision steps each of these quads will be refined to

a completely regular patch of 2k × 2k quads, such that each

patch can naturally be represented as a geometry image in a

2k ×2k section of a GPU texture.

Since all patches share the same resolution, packing them

into one global atlas texture is trivial (see Fig. 1 for k = 1).

The different surface attributes are stored in separate tex-

tures on the GPU: While for surface geometry like vertex

positions and normal vectors floating point precision is used,

lower precision is sufficient for diffuse and specular color.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


T. Ritschel, M. Botsch, S. Müller / Multiresolution GPU Mesh Painting

Figure 1: Surface representation for a tetrahedron. Subdividing the base mesh (1) once yields a pure quad mesh (2). After a
few additional subdivision steps the refined initial quads are mapped to quads in texture space (6). Enumerating the one-ring
neighbors of interior (3), edge (4), and corner (5) vertices.

Notice that vertices belonging to patch boundaries are

multiplexed, since a copy is stored for each incident patch,

which allows for easier rendering (Sec. 3) and neighborhood

enumeration (Sec. 4). This representation is redundant: In-

terior vertices are stored only once, but vertices on an edge

between two patches are doubled and vertices on patch cor-

ners are stored n times, where n is the vertex valence (Fig. 1).

However, the after a few subdivision steps the majority

of vertices are interior. For instance, at subdivision level

k = 6 a patch consist of 46 = 4096 vertices, of which only

4
√

4096 = 256 = 6.25% are edge vertices and only 4 are cor-

ner vertices. Although this representation imposes a small

memory and runtime overhead for edge and corner vertices,

it allows the perfectly regular interior vertices to be pro-

cessed by the GPU in the most efficient way (see below).

This representation is similar to the one in [SGP03], but

differs in two aspects. First, a direct two dimensional matrix

instead of linear array is used to store interior vertices, which

is the preferred access pattern for GPUs. Moreover, no indi-

rection is required to access corner and edge vertices, which

provides faster traversal during rendering.

3. Surface Rendering

In order to render a patch of 2k ×2k vertices, the two dimen-

sional unit quad [0,1]2 is tessellated at a resolution of 2k×2k

and sent to the GPU. For each vertex, its position within the

unit quad is used as texture coordinate, and a vertex texture

fetch into the corresponding geometry image yields its 3D

position, normal vector, and additional surface attributes. By

this the triangles within the unit quad are mapped to their

corresponding 3D positions.

Rendering the whole surface consisting of n patches then

only requires to draw the tessellated unit quad n times, once

for each geometry image chart. Notice that adaptive level-of-

detail (LoD) rendering can be implemented simply by ren-

dering a quad of coarser resolution 2l ×2l , l < k. This selects

a subset of vertices, but still uses the high resolution normals

and thus guarantees smooth shading.

4. Surface Manipulation

In order to modify a certain surface attribute (like vertex col-

ors or positions) a function that transforms this attribute has

to be called for each vertex. In general, these transforma-

tion functions require access to the one-ring neighbors of

the current vertex, for instance to perform filtering of colors

or geometric positions.

In our context, transforming a geometry image S to S′
means that each texel of the geometry image (i.e., each ver-

tex of the mesh) is transformed by a fragment shader, which

reads its inputs from the texture S and writes its result to

the texture S′. However, while for the regular interior ver-

tices this is similar to simple image filtering, the local surface

neighborhoods are not regular for edge or corner vertices.

Storing and enumerating the one-ring neighborhoods

therefore differs for the three kinds of vertices (Fig. 1). Since

interior, edge, and corner vertices are treated differently, they

also have to be sent to the GPU in different batches.

Interior vertices are stored only once and have a regular

neighborhood. Their 4 neighbors can be accessed easily by

offsetting their own texture coordinate by one texel in each

direction. Since the interior vertices of a 2k × 2k patch are

regularly arranged as a quad in texture space, they can be

sent to a fragment shader by rasterizing an image space quad

of size (2k − 2)× (2k − 2), each pixel of which then corre-

sponds to a texel in the geometry image.

Edge vertices also have 4 neighbors, but those are split over

the two patches sharing that edge. In order to update the ver-

tices belonging to a certain patch boundary, a horizontal or

vertical line of length 2k −2 is rasterized. During this update

the texture space location of the opposite patch is passed to

the GPU as a constant shader variable, which then allows to

access the other half of the neighborhood.

Corner vertices are stored for every patch sharing this cor-

ner, the number of which is the valence vi of the corner ver-

tex i. To enumerate its neighbors a small look-up texture is

c© The Eurographics Association 2006.



T. Ritschel, M. Botsch, S. Müller / Multiresolution GPU Mesh Painting

used, which stores the neighborhood information of corner i
in its ith row. Each row holds the valence vi and the neigh-

bors’ texture coordinates t1, . . . , tvi . A fragment program up-

dating the corner i first fetches vi and then uses vi depen-

dent texture reads to enumerate the neighbors. Since the rel-

ative number of corner vertices is small, this additional over-

head is negligible. In order to update all corner vertices a set

of points (equipped with proper texture coordinates) is ren-

dered.

This representation successfully puts the memory and

computation overhead on the small percentage of edge and

corner vertices, whereas the large regular parts can be pro-

cessed by the GPU at maximum efficiency.

5. Surface Painting

A painting transformation requires several sub-tasks: finding

the vertex under the mouse pointer, computing the brush’s

influence weight for all vertices, applying a (weighted) trans-

formation, and updating the mesh. Each of these steps has to

be implemented as efficiently as possible, i.e., on the GPU,

which is described in the following.

1. Finding the location of the brush, i.e., the vertex under the

mouse cursor, is difficult since the mesh is continuously

deforming. We therefore render the mesh into a second

render buffer, but instead of lighting each vertex, we en-

code its texture coordinates in color channels. The pixel

color at the mouse position then identifies the closest ver-

tex, i.e., the center of the brush.

2. The influence region of the brush is defined by comput-

ing a weighting factor for each mesh vertex from its dis-

tance to the brush center, using a linear or Gaussian trans-

fer function. Textures can be used to further modulate

this weighting. Using the general framework described

in Sec. 4 these computations are performed by a fragment

shader.

3. Another fragment shader detects patches that lie com-

pletely outside the influence region. Those patches are

discarded from the following transformation, which ef-

fectively avoids unnecessary computations, in particular

for small brush sizes (see Table 1).

4. The selected transformation is applied to each vertex,

weighted by the brush’s influence. The set of transforma-

tions we implemented contains color painting, smoothing

of colors or positions, sculpting, extrusion, or multireso-

lution deformation (Sec. 6).

5. The normal vectors at each vertex are re-computed as the

normals of the limit surface of the Catmull-Clark subdi-

vision process.

6. Optional: For multiresolution deformations the detail re-

construction is computed (Sec. 6).

Notice that all of these steps are implemented on the GPU,

which guarantees high performance during interactive mesh

painting.

6. Multiresolution Deformations

The painting metaphor allows to intuitively deform the sur-

face geometry, for instance by extrusion, sculpting, or drag-

ging transformations. However, whenever the surface is de-

formed on a coarser subdivision level, one has to make sure

that all its fine-scale geometric details on the higher subdi-

vision levels are preserved and transformed in an intuitive

manner.

This functionality is provided by so-called multiresolution
or multi-scale deformations. Since we are dealing with sub-

division surfaces, we follow the basic ideas of [ZSS97]. The

multiresolution framework has to provide operators for sub-

sampling, subdivision, and detail encoding.

Subsampling maps the surface to a lower level in the sub-

division hierarchy. Subsampling from level k to level l, l < k,

denoted by ↓k
l (S), is implemented by recursive Gaussian

filtering. In k − l rendering passes the patch charts of size

2k × 2k are successively reduced to charts of size 2l × 2l .

Each pass renders a patch of size 2m×2m to a patch of size

m×m and hence corresponds to a standard reduction opera-

tor [BGH∗04].

Subdivison from level l to level k, k > l, denoted by ↑k
l (S),

implements the Catmull-Clark subdivision masks in a frag-

ment program. This time, k − l passes are used to expand

patch charts of size 2l ×2l to charts of size 2k ×2k.

Detail encoding. For a multiresolution deformation at sub-

division level l < k, a base surface is generated in a prepro-

cess by subsampling the highest level: Sb =↓k
l (S). The dif-

ference between S and the smooth upsampled base surface

↑k
l (Sb), i.e., the high frequencies, are encoded as displace-

ment vectors in local coordinate frames consisting of two

orthogonal tangent vectors and the surface normal, similar

to [ZSS97].

Whenever the user deforms the base surface Sb to S′
b, the

high frequency details are added back onto the subdivided

deformed base surface ↑k
l (S′

b), which finally yields the de-

formed high resolution surface as S′. Since all computations

are performed entirely on the GPU, multiresolution defor-

mations of complex models can be done at interactive rates.

7. Results

Table 1 gives some performance statistics of our GPU-based

painting framework. At a medium brush size it is possible

to manipulate and render even a complex surface of about

2.3M vertices (Fig. 2) at 8.3 fps on a NVIDIA GeForce 7800.

The times include all the painting steps described in Sec. 5

and high quality rendering with a subsurface lighting effect

and tone mapping. Subsurface lighting is approximated by

smoothing illumination in texture space. More examples and

demonstrations of different painting tools can be found in the

accompanying video.

c© The Eurographics Association 2006.



T. Ritschel, M. Botsch, S. Müller / Multiresolution GPU Mesh Painting

Figure 2: A mesh with 2000 facets (1) subdivided to level 7 (2). Organic deformation (3, 4) is added by painting. The resulting
geometry image for this mesh (diffuse in 5 and normals in 6). Color and geometry channels can be painted together with
immediate high quality feedback (7). The final result (8). Lower tessellations can be used for LoD rendering (9).

Faces 1% 10% 50% LoD Full

100k 30 ms 30 ms 30 ms 16 ms 16 ms

600k 60 ms 80 ms 100 ms 50 ms 50 ms

2.3M 120 ms 220 ms 390 ms 75 ms 230 ms

Table 1: Overall performance for different brush sizes (1%,
10% and 50% of surface area), at different mesh resolu-
tions, including LoD rendering at 800×600 pixels. Render-
ing alone: with LoD and without (Full).

The maximum surface complexity is limited by the avail-

able GPU memory. For 256 MB GPU memory the 2.3M

character is the highest resolution possible. Another draw-

back of our system is under-sampling under extreme de-

formations. This could be avoided by surface remeshing

[LF03], but this does not seem to be suitable for a GPU im-

plementation.

8. Conclusion

In this paper we proposed a surface representation based on

piecewise geometry images, which allows for a fully GPU-

based implementation of a mesh painting framework. Our

technique handles arbitrary input meshes, achieves high up-

date rates even for complex meshes, and generally scales

with the rapidly increasing GPU (instead of CPU) perfor-

mance.

References

[BGH∗04] BUCK I., GOVINDARAJU N., HARRIS M., KRÜGER

J., LEFOHN A. E., LUEBKE D., PURCELL T. J., WOOLLEY C.:

GPGPU: General-purpose computation on graphics hardware. In

ACM SIGGRAPH course notes (2004).

[CH04] CARR N. A., HART J. C.: Painting detail. In Proc. of
ACM SIGGRAPH (2004), pp. 845–852.

[GGH02] GU X., GORTLER S. J., HOPPE H.: Geometry images.

In Proc. of ACM SIGGRAPH (2002), pp. 355–361.

[HH90] HANRAHAN P., HAEBERLI P.: Direct WYSIWYG paint-

ing and texturing on 3D shapes. In Proc. of ACM SIGGRAPH
(1990), pp. 215–223.

[LF03] LAWRENCE J., FUNKHOUSER T. A.: A painting interface

for interactive surface deformations. In Proc. of Pacific Graphics
(2003).

[LHSW03] LOSASSO F., HOPPE H., SCHAEFER S., WARREN

J. D.: Smooth geometry images. In Proc. of Symp. on Geometry
Processing (2003), pp. 138–145.

[LKS∗06] LEFOHN A., KNISS J. M., STRZODKA R., SEN-

GUPTA S., OWENS J. D.: Glift: Generic, Efficient, Random-

Access GPU Data Structures. ACM Trans. on Graphics 25, 1

(2006).

[SGP03] SHIUE L., GOEL V., PETERS J.: Mesh mutation in pro-

grammable graphics hardware. In Proc. of Graphics Hardware
(2003), pp. 15–24.

[SWG∗03] SANDER P. V., WOOD Z. J., GORTLER S. J., SNY-

DER J., HOPPE H.: Multi-chart geometry images. In Proc. of
Symp. on Geometry Processing (2003), pp. 146–155.

[ZPKG02] ZWICKER M., PAULY M., KNOLL O., GROSS M.:

Pointshop 3D: An interactive system for point-based surface edit-

ing. In Proc. of ACM SIGGRAPH (2002), pp. 322–329.

[ZSS97] ZORIN D., SCHRÖDER P., SWELDENS W.: Interactive

multiresolution mesh editing. In Proc. of ACM SIGGRAPH 97
(1997), pp. 259–268.

c© The Eurographics Association 2006.


