Growing Circles: A Region Growing Algorithm for Unstructured Grids and Non-aligned Boundaries

Saeed Dabbaghchian (saeedd@kth.se)

Department of Speech, Music, and Hearing, KTH Royal Institute of Technology, Stockholm, Sweden

1. Problem Statement

Geometry of an enclosed region
What about using Geometrical Boolean (i.e. union)?

- if boundaries are aligned

- non-aligned boundaries

2. Proposed Solution

Growing Circle

applying to the previous examples:

What about these examples?

maximum radius

more circles

Calculation of centers and maximum radius

$$
d=\min _{i \in(1,2)}\left\|x_{i}-p_{c}\right\|, \quad d_{l}=\frac{\left\|L_{1}-L_{2}\right\|}{2}, \quad r_{m}=K \times\left(d^{2}+d_{l}^{2}\right)^{0.5}
$$

3. What is K ?

Small K: several disconnected polygons
Large K: continuous polygon but problem with wide gaps

4. Upper Airway Modeling

2D cross-sections

From 2D cross-sections to 3D geometry

References

[AB94] ADAMS R., BISCHOF L.: Seeded Region Growing. IEEE Transactions on Pattern Analysis and Machine Intelligence 16, 6 (jun 1994), 641-647. 1
[AFH*17] ANDERSON P., FELS S., HARANDI N. M., HO A., MOISIK S., SÁNCHEZ C. A., STAVNESS I., TANG K.: FRANK: A Hybrid 3D Biomechanical Model of the Head and Neck. In Biomechanics of Living Organs. Elsevier, 2017, ch. 20, pp. 413-447. 1
[DAEG17] DABBAGHCHIAN S., ARNELA M., ENGWALL O., GUASCH O.: Synthesis of VV Utterances from Muscle Activation to Sound with a 3D Model. In Proc. Interspeech 2017 (Stockholm, Sweden, 2017), pp. 3497-3501. 1
[Vat92] VATTI B. R.: A generic solution to polygon clipping. Communications of the ACM 35, 7 (1992), 56-63. 1

