Towards Self-Perception in Augmented Virtuality: Hand Segmentation with Fully Convolutional Networks

Ester Gonzalez-Sosa, Pablo Perez, Redouane Kachach, Jaime J. Ruiz, and Alvaro Villegas
Nokia Bell Labs

Abstract

In this work, we propose the use of deep learning techniques to segment items of interest from the local region to increase self-presence in Virtual Reality (VR) scenarios. Our goal is to segment hand images from the perspective of a user wearing a VR headset. We create the VR Hand Dataset, composed of more than 10,000 images, including variations of hand position, scenario, outfits, sleeve and people. We also describe the procedure followed to automatically generate groundtruth images and create synthetic images. Preliminary results look promising.

Self Perception

- Reduce isolation
- Ease interaction

VR Hand Dataset

- Acquisition of Chroma key
- HSV Filtering to get Foreground
 \[f(x) = \begin{cases}
 1 & \text{if } H(x,y) \leq 0.22 \land H(x,y) \geq 0.45 \land S(x,y) \geq 0.20 \\
 0 & \text{otherwise}
\end{cases} \]
- Frame Selection and Preprocessing
- Combination of Chroma key masked with Foreground with Background to get the Synthetic Image

Hand Segmentation

Fully Convolutional Networks

- Inspired by [1]
- 2 classes: hand and background
- Transfer learning from VGG-16 pre-trained model

Future Work

- Deployment on embedded devices
- Quantitative results in terms of IoU
- Test generalization capabilities
- Further exploration of Semantic Segmentation

References