Overview
We use a reconstructed surface based on algebraic spheres to control the mesh decimation.

Curvature estimation
We compute the algebraic sphere S_i for each vertex x_i of the mesh.

Computing the curvature at any point consists in interpolating the spheres along the edges and faces, e.g., for the edge (x_i, x_j), we have:

$$S_a = S_1 + \alpha(S_2 - S_1) \quad (1)$$

Reconstructed APSS curve (blue) from the polyline (black). Interpolated spheres (red).

Context
The use of proxies as a high level control of the surface has been studied for mesh simplification with planes [3] and spheres [4]. We propose as a proxy the reconstructed surface of the input mesh based on algebraic spheres, which handles curvatures as well as sharp features.

Proposition
Mesh simplification algorithm

Input: High resolution mesh
Output: Coarser mesh

begin
for each vertex x_i do
 $p_{x_i} = \text{curvature estimation of } x_i$;
end
for each pair (x_i, x_j) do
 $(c_{x_i, x_j}, x_{a}) = \text{curvature error metric at } (x_i, x_j)$;
 push (x_i, x_j, x_{a}) in a heap keyed on cost c_{x_i, x_j};
end
while heap not empty do
 collapse (x_i, x_j) on x_{a};
 $p_{x_{a}} = p_{x_i} + \alpha(p_{x_j} - p_{x_i})$;
 update cost of x_{a} neighbors in the heap;
end

Conclusion
We present a new error metric for mesh simplification which preserves local curvature. Thanks to the properties of interpolated algebraic sphere, the curvature is easily computed.

Future work
- Finding the 3D optimal position by minimizing the distance face-sphere
- Investigate adaptive kernel size when computing the algebraic spheres w.r.t. the surface features

References
Algebraic point set surfaces.

Feature Preserving Point Set Surfaces based on Non-Linear Kernel Regression.

Structure-Aware Mesh Decimation.

Spheres-meshes: Shape approximation using spherical quadric error metrics.
ACM Trans. Graph., 32(6), Nov. 2013.