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Abstract
In this study, we concentrate on the extraction of reflectance properties of a 3D rigid object from its 2D images and
the other aim of this work is rendering the object in real-time with photorealistic quality in varying illumination
conditions. The reflectance property of the object is decomposed in diffuse and specular components. While the
diffuse components are stored in a global texture, the specularity of the object is represented by a single Bidirec-
tional Reflectance Distribution Function (BRDF). In the rendering phase, these two components are combined to
obtain the behavior of the real surface property of the object.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Modeling packages; Color, shading, shadowing,
and texture; Virtual reality]:

1. Introduction

3D model reconstruction has many application areas
varying from 3D virtual environments, computer games,
visualisation of cultural heritage to 3D visualisation of the
products in e-commerce applications. In this study, our
goal is the extraction of material reflectance property of a
3D object from a set of images when the geometry of the
object is known. This technique can be easily adopted to
image-based model reconstruction frameworks such as 8 to
improve the appearance quality of the obtained 3D models.

In literature, various methods are proposed to model
the appearance of an object. The most common method
is texturing. In most of these studies, the model is repre-
sented as a triangular mesh, and each triangle is associated
with one of the images for texture extraction. However,
this approach may cause discontinuities on the triangle
boundaries if adjacent triangles are associated with different
images. To overcome this problem, mostly blending 4, 2

is used. Also alternatively, surface particles concept can
be used in extracting the texture 8. However, the main
weakness of texturing is that it does not capture the
true physical characteristics of the object surface, i.e. it
ignores changes in illumination and viewing conditions.
Therefore, some more complex but physically more ac-

curate models are introduced. As an example, light fields
are one way beyond the texture maps where the idea is
representing the radiance as a function of position and
viewing direction. In this study, we use another complex
and popular model, Bidirectional Reflectance Distribution
Functions(BRDFs) to represent the appearance of the object.

Traditionally, BRDFs are measured by using special
devices known as gonioreflectometers. However, recently
image-based techniques are introduced where there is no
need to use any special device. In general, these techniques
are used for modeling any homogenous or spatially varying
surfaces. For example, Debevec et al. 6 use BRDFs for
rendering architectures in varying illumination conditions.
Even BRDFs can be used for modeling the human skin 9, ?.
These image based measurement techniques can be mainly
grouped in two categories. While some try to acquire the
reflectance property from just one image 10, 11, the others try
to capture this information by using multiple views 6, 9, 3. We
also use a multiple image set to reconstruct the appearance
of the model. Since in computer graphics, reflection is mod-
eled by a combination of diffuse and specular components,
we decompose the overall reflectance data into these two
components. While we are storing the diffuse component
in a global texture, the specular component is represented
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M. Erkut ERDEM, İ. Aykut ERDEM, Volkan ATALAY / Image-based Extraction of Material Reflectance Properties

as a single BRDF. Furthermore, interactively rendering of
the object with photorealistic quality is achieved due to this
decomposition.

The rest of the paper is organized as follows: Section 2
describes the reflectance model we used. Section 3 and Sec-
tion 4 explain details of estimation of diffuse and specular
components respectively. Section 5 decribes the interactive
rendering process and Section 6 presents the experimental
results and the conclusion.

2. Reflectance Model

The amount of reflection depends on the material property
of the object. In this study, we use BRDFs to represent the
reflectance. In short BRDFs are the functions that describe
how light is reflected when it interacts with a surface. While
BRDFs ignore some other concepts such as subsurface
scattering, fluorescence, phosphorescence and polarization,
they still give more realistic results than the other conven-
tional methods.We can use the following function notation
for BRDF, BRDFλ(�u,�v) where λ is the wavelength of the
incoming light; �u is the incoming light direction; and �v is
the viewing direction. Since in our study, we work on RGB
color space, we can omit the wavelength (λ) in the function
notation and use the BRDF as a 4D function for each color
channel.

Finding an efficient way to represent BRDFs is an-
other difficult problem. Historically, tabular represention of
BRDFs is used. But since it is not an efficient and com-
pact way, some parametric models are introduced. Either the
sampled reflectance data are used to fit a phsically plausible
model or more compact forms such as splines, spherical har-
monics, spherical wavelets, etc. are obtained from the sam-
pled data. In this study, we use the parametric representation
propose by Lafortune et. al. 5 because the model is simple
and compact and it can represent natural reflection phenom-
enas such as off-specular reflection, increasing reflectance
and retro-reflection. It has the following representation:

f (�u,�v) = ρd +∑
i

[Cx,i(uxvx +uyvy)+Cz,iuzvz]Ni (1)

where �u is the incoming light direction, �v is the viewing di-
rection, ρd is the diffuse component, Ni is the specular ex-
ponent, and the ratio between Cx,i and Cz,i indicates the off-
specularity of lobe i of the BRDF f . In this study, we only
use one lobe representation. The diffuse component(ρd ) and
specular terms(N, Cx and Cz) of each surface point are esti-
mated individually. Basically while the diffuse components
are stored in a global texture, a single BRDF with ρd=0 is
represents the specularity of the whole object.

3. Estimation of Diffuse Components

Diffuse reflection is the view-independent component of the
reflection. When light interacts with the surface of an ob-
ject, the incident light is scattered in various directions. For
the ideal case which assumes Lambertian surface, light is
scattered equally in all directions. In our computations, we
also assume a Lambertian surface. In general ρd is esti-
mated as the minimal pixel value among the acquired input
images where the corresponding surface point p is visible.
But this initial estimation is inaccurate when p belongs to
a shadow area in one of the input images. In our approach
we are storing ρd of each surface point p in a global texture.
This texture is extracted by using surface particles concept
proposed in 8. However, initially, an unshading phase pro-
posed by Rocchini et. al. 2 is applied to the input images
to remove the illumination effects like shadows and specu-
lar highlights. This unshading phase requires a system setup
where six point light sources are placed around the camera
at the known positions and during each shot only one of the
light sources are activated and six images are acquired for
each view.

3.1. Computing Illumination-invariant Images

For each view, the illumination effects such as shadows,
specular highlights, etc. can be eliminated by inspecting
pixel values in the images. While the pixels having lower in-
tensities correspond to shadow areas, the unsaturated pixels
correspond to specular highlights. To obtain the correspond-
ing illumination-invariant images for each view, we need to
compute the diffuse component ρd of each surface point p
that is visible in that view. The diffuse component can be
reconstructed by assuming a Lambertian surface. This can
be formulated as the following linear system of equations
ρd li ·n = ci where li is incoming light direction, n is the sur-
face normal and ci is the observed color value in input image
i. After removing the shadows and specular highlights in the
input images, for a surface point this linear equation can be
solved if at least three different color values are observed
in the input images for each view. If this is not the case,
some bad pixels may occur in the output image. While Roc-
chini 2 estimates the values of these bad pixels by interpolat-
ing from neighboring pixels, we don’t need to fully recon-
struct the illumination-invariant image since we use surface
particle concept in texture extraction. In Figure 1(a)&(b), for
a view one of the input images out of six and corresponding
illumination-invariant image are shown.

3.2. Extracting Texture for Diffuse Components

Once the illumination-invariant images are computed, the
diffuse component of the object’s surface appearance is
stored in a global texture. In constructing the texture, the
surface particles concept is used like in 8. The model is com-
posed of surface particles with three attributes: position, nor-
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(a) (b) (c)

Figure 1: (a) An input image, (b) computed illumination-
invariant image, (c) corresponding residual image.

mal and color. The main idea is in extracting the global tex-
ture, instead of assigning triangles to images, particles are
assigned to images. Each surface particle is associated with
a pixel on the texture. The value for that particle can be de-
termined from the image where the particle is visible and
whose normal vector produces the minimum angle with the
particle normal. The particle is projected to this image and
the corresponding color in the image is assigned to the cor-
responding pixel in the global texture.

4. Estimation of Specular Component

Specular reflection is the view-dependent component of
the reflection. Estimation of specular component requires
mainly two steps: collecting the reflectance data from the
images and fitting a single BRDF to the reflectance data.

4.1. Collecting Reflectance Data

After computing illumination-invariant images, the residual
images are obtained by taking difference between the input
images and corresponding illumination-invariant images. In
Figure 1(c), a residual image is shown. In collecting re-
flectance data, we use a similar approach to the one proposed
by Lensch et al. 3, but since we are decomposing the re-
flectance as the combination of diffuse and specular compo-
nents, the reflectance data obtained from the residual images
contain only the specular reflectance. The idea is that for a
set of surface points in the object, the corresponding radi-
ance samples are collected from each residual image where
the point is visible. Also local incident light direction �u and
viewing direction �v are determined and stored for that view.
These vectors can be easily determined since the position of
light source, the camera position and position of the surface
point are known and the corresponding radiance values can
be found by projecting the surface point to the images. The
radiance values are proportional to the color value at the pro-
jected pixels, the brightness of the point light source and the
squared distance from the light source to the surface point.
These collected data are used in the BRDF fitting process.

4.2. Fitting a BRDF model

As mentioned in Section 2, we use Lafortune BRDF model
to represent the specularity of the object. Lafortune model
has four parameters (See Equation 1). Since we work on
RGB color space, three different models are fit for each
color channel. However, for each model, ρd is assumed to
be zero since we are fitting only the specular data. The re-
maining parameters can be determined by using Levenberg-
Marquardt optimization technique as stated in the original
work by Lafortune 5.

5. Interactive Rendering

In the rendering phase, we need to combine diffuse and
specular components of the object. Therefore the rendering
is performed in two passes. In the first pass, the object
is rendered using global texture containing the diffuse
component, and in the second pass, the specular component
is added to the diffuse component by blending. This can be
seen in Figure 2. Since specular component is represented
by a single BRDF, we need to render the model using fitted
parameters.

Normally, rendering of a model using parametric repre-
sentation of BRDF requires evaluation of BRDF for each
surface point for the current viewing and incoming light di-
rections. In real-time rendering, these evaluations must be
recomputed when the view or the position of the light source
changes. But this results very low rendering speeds in cur-
rent graphics hardware. To interactively render BRDFs some
algorithms are developed where texture maps are used to
store the parameters of BRDF models 7, 1. In our work, we
choosed to use Kautz and McCools 7 method which is based
on separable decompositions of BRDFs. Separable decom-
positions approximate a high-dimensional function f using
a sum of products of lower-dimensional functions gk and hk:

f (x,y, z,w)≈
N

∑
k=1

gk(x,y)hk(z,w) (2)

In their work, Kautz and McCool stated that N = 1 has
proven to be visually adequate for many BRDFs. So the pro-
cess turns out to be seperating the 4D function as products
of two 2D functions. These functions are preevaluated and
stored as cube-maps and rendering can be done in one pass
by using multi-texturing feature of OpenGL.

6. Conclusions and Future Work

In this study, we describe a method to seperate diffuse and
specular components of reflectance. We store the diffuse
component as a global texture and fit a Lafortune BRDF
model to the reflentance data obtained from residual images
to represent the specularity of the object. We generate artifi-
cial test data by using a 3D modeling tool with 3 different ob-
jects. The first and second objects are a ceramic vase and pot
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Figure 2: In rendering phase, diffuse and specular compo-
nents are combined to form a photorealistic appearance.

and the last one is a pepsi can. Test objects are rendered from
20 different viewpoints, totally having 120 images(6 images
for each view). All the processing is done on a 2 GHz Pen-
tium4 PC. The geometry of the objects are obtained using A.
Mulayim’s 8 3D reconstruction method. For each test object,
total number of faces and execution times of our method is
shown in Table 1. As it can be observed from the table, for
the vase object the execution time is higher since the texture
detail is complex. Interactive rendering of the reconstructed
objects can be performed with around 20 fps on the same PC.
The reconstruction results for the other objects can be seen
in Figure 3. As a future work, a more complete extraction of
reflectance properties can be done by fitting multiple BRDFs
for each material exist in the object and associating each sur-
face point with these BRDFs. However, the main problem is
interactive rendering of these multiple BRDFs.
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Figure 3: Reconstructed (a) pot model, (b) pepsi can model.
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