Symmetry in Shapes – Theory and Practice

Niloy Mitra Maksim Ovsjanikov Mark Pauly Michael Wand Duygu Ceylan
Presenters

Duygu Ceylan
EPFL Lausanne
Switzerland
duygu.ceylan@gmail.com

Maksim Ovsjanikov
École Polytechnique LIX, France
maks@lix.polytechnique.fr

Michael Wand
Saarland University, MPI Informatik, Germany
mwand@mpi-inf.mpg.de

Niloy Mitra
University Colledge
London, UK
n.mitra@cs.ucl.ac.uk

Mark Pauly
EPFL Lausanne
Switzerland
mark.pauly@epfl.ch
Course Webpage

• Tutorial slides
• Literature & references

Linked from:
• http://www.mpi-inf.mpg.de/~mwand/
State-of-the-Art Report from EG 2012

- Symmetry in 3D Geometry: Extraction and Applications
 Niloy J. Mitra, Mark Pauly, Michael Wand, Duygu Ceylan
 State-of-the-art Report EUROGRAPHICS 2012

- STAR Report webpage:

- Journal version:

Provides many more details
What we cover

Topics

• **Part I:** What is symmetry?
• **Part II:** Extrinsic symmetry detection
• **Part III:** Intrinsic symmetries
• **Part IV:** Representations & applications
• Conclusions, wrap-up
Part I

What is Symmetry?

- Symmetry in nature
- Formalization: Symmetry groups
- Symmetry is the absence of information

Dyugu / Mark
Extrinsic Symmetry Detection

• Geometric matching
• Types of symmetry
• Stages:
 - Feature selection
 - Aggregation
 - Extraction
• Example algorithms
Part III

Intrinsic Symmetry Detection

• Overview: intrinsic geometry
• Intrinsic symmetries, specific problems
• Overview of algorithms
• Spectral view
Part IV

Representations and Applications

• From pairwise matching to regularity
• Representations of symmetry
 ▪ Pairwise equivalence
 ▪ Permutation groups
 ▪ Transformation groups
• Applications based on this classification